lecture 11: networks ii: conductance-based synapses, visual cortical hypercolumn model

116
Lecture 11: Networks II: conductance-based synapses, visual cortical hypercolumn model References: Hertz, Lerchner, Ahmadi, q-bio.NC/0402023 [Erice lectures] Lerchner, Ahmadi, Hertz, q-bio.NC/0402026 (Neurocomputing, 2004) [conductance-based synapses] Lerchner, Sterner, Hertz, Ahmadi, q-bio.NC/0403037 [orientation hypercolumn model]

Upload: ayla

Post on 08-Jan-2016

15 views

Category:

Documents


0 download

DESCRIPTION

Lecture 11: Networks II: conductance-based synapses, visual cortical hypercolumn model. References: Hertz, Lerchner, Ahmadi, q-bio.NC/0402023 [Erice lectures] Lerchner, Ahmadi, Hertz, q-bio.NC/0402026 (Neurocomputing, 2004) [conductance-based synapses] - PowerPoint PPT Presentation

TRANSCRIPT

Lecture 11: Networks II:conductance-based synapses,

visual cortical hypercolumn model

References:Hertz, Lerchner, Ahmadi, q-bio.NC/0402023 [Erice lectures]Lerchner, Ahmadi, Hertz, q-bio.NC/0402026

(Neurocomputing, 2004) [conductance-based synapses]Lerchner, Sterner, Hertz, Ahmadi, q-bio.NC/0403037

[orientation hypercolumn model]

Conductance-based synapses

In previous model: )()( tSJtI bj

jb

abij

ai

Conductance-based synapses

In previous model: )()( tSJtI bj

jb

abij

ai

But a synapse is a channel with a (neurotransmitter-gated) conductance:

Conductance-based synapses

In previous model: )()( tSJtI bj

jb

abij

ai

But a synapse is a channel with a (neurotransmitter-gated) conductance:

)]([)(~~)]([)()( tVVtSgtVVtgtI Rb

jb

bj

abij

Rb

jb

abij

ai

Conductance-based synapses

In previous model: )()( tSJtI bj

jb

abij

ai

But a synapse is a channel with a (neurotransmitter-gated) conductance:

)]([)(~~)]([)()( tVVtSgtVVtgtI Rb

jb

bj

abij

Rb

jb

abij

ai

where

t bj

bj tSttKdttS )()()(~ is the synaptically-filtered

presynaptic spike train

Conductance-based synapses

In previous model: )()( tSJtI bj

jb

abij

ai

But a synapse is a channel with a (neurotransmitter-gated) conductance:

)]([)(~~)]([)()( tVVtSgtVVtgtI Rb

jb

bj

abij

Rb

jb

abij

ai

where

t bj

bj tSttKdttS )()()(~ is the synaptically-filtered

presynaptic spike train

212121

)]/exp()/[exp(1

)(

tttKkernel:

Conductance-based synapses

In previous model: )()( tSJtI bj

jb

abij

ai

But a synapse is a channel with a (neurotransmitter-gated) conductance:

)]([)(~~)]([)()( tVVtSgtVVtgtI Rb

jb

bj

abij

Rb

jb

abij

ai

where

t bj

bj tSttKdttS )()()(~ is the synaptically-filtered

presynaptic spike train

212121

)]/exp()/[exp(1

)(

tttKkernel:

Conductance-based synapses

In previous model: )()( tSJtI bj

jb

abij

ai

But a synapse is a channel with a (neurotransmitter-gated) conductance:

)]([)(~~)]([)()( tVVtSgtVVtgtI Rb

jb

bj

abij

Rb

jb

abij

ai

where

t bj

bj tSttKdttS )()()(~ is the synaptically-filtered

presynaptic spike train

0

1)(tKdt

212121

)]/exp()/[exp(1

)(

tttKkernel:

Model

Model

b

babij

b

b

b

ababij N

Kg

N

K

K

gg 1 prob,0~;prob,~

0

Model

b

babij

b

b

b

ababij N

Kg

N

K

K

gg 1 prob,0~;prob,~

0

)()(~~)(

))(()(

0

2

0,0

Rb

ai

jb

bj

abij

Rleak

ai

bj

Rb

ai

abij

Rleak

ai

ai

VVtSgVVg

VVtgVVgdt

dV

Mean field theoryEffective single-neuron problem with synaptic input current

Mean field theory

aR

bb

ababb

b

bbbab

ba

Rbaba

VVtxqNK

rKg

VVtgtI

)(1

)()(

2/1

0

Effective single-neuron problem with synaptic input current

Mean field theory

aR

bb

ababb

b

bbbab

ba

Rbaba

VVtxqNK

rKg

VVtgtI

)(1

)()(

2/1

0

Effective single-neuron problem with synaptic input current

1)(,0 2 abab xx

)()()(,0)( ttCttt bababab

with 2)( bjb rq

Mean field theory

aR

bb

ababb

b

bbbab

ba

Rbaba

VVtxqNK

rKg

VVtgtI

)(1

)()(

2/1

0

Effective single-neuron problem with synaptic input current

1)(,0 2 abab xx

)()()(,0)( ttCttt bababab

with

where

t t

bbj

bjb ttCttKdtttKdttStSttC )()()()(~)(~)( 212211

= correlation function of synaptically-filtered presynaptic spike trains

2)( bjb rq

Balance conditionTotal mean current = 0:

Balance condition 0

2

0

00

b

Rbabbab

Rleaka VVrKgVVgTotal mean current = 0:

Balance condition 0

2

0

00

b

Rbabbab

Rleaka VVrKgVVg

aV

Total mean current = 0:

Mean membrane potential just below

Balance condition 0

2

0

00

b

Rbabbab

Rleaka VVrKgVVg

define )()( 00 Rbaba

Rbab

effab VgVVgJ

aV

Total mean current = 0:

Mean membrane potential just below

Balance condition 0

2

0

00

b

Rbabbab

Rleaka VVrKgVVg

define )()( 00 Rbaba

Rbab

effab VgVVgJ 02 eff

aJ

aV

Total mean current = 0:

Mean membrane potential just below

Balance condition 0

2

0

00

b

Rbabbab

Rleaka VVrKgVVg

define )()( 00 Rbaba

Rbab

effab VgVVgJ

Solve for rb as in current-based case:

02 effaJ

aV

Total mean current = 0:

Mean membrane potential just below

Balance condition 0

2

0

00

b

Rbabbab

Rleaka VVrKgVVg

define )()( 00 Rbaba

Rbab

effab VgVVgJ

Solve for rb as in current-based case:

2,1,),(ˆ 0

00

baVVgK

KJ

K

KJ a

Rbab

beffab

beffab

02 effaJ

aV

Total mean current = 0:

Mean membrane potential just below

Balance condition 0

2

0

00

b

Rbabbab

Rleaka VVrKgVVg

define )()( 00 Rbaba

Rbab

effab VgVVgJ

Solve for rb as in current-based case:

2,1,),(ˆ 0

00

baVVgK

KJ

K

KJ a

Rbab

beffab

beffab

))((

))((

ˆˆ

ˆˆ

)(

)(02

020

)(

)(01

010

1

2221

1211

2

1

20200

20

10100

10

VVgK

VVgRex

VVgK

VVgRex

effeff

effeff

Rex

Rleak

Rex

Rleak

rVVg

rVVg

JJ

JJ

r

r

02 effaJ

aV

Total mean current = 0:

Mean membrane potential just below

High-conductance-state

2

00

2

00

2

00

)()(

))(()(

b

Rbab

Rleaka

bab

b

Rbaab

Rleaka

a

VtgVgVtgg

VVtgVVgdt

dV

High-conductance-state

2

00

2

00

2

00

)()(

))(()(

b

Rbab

Rleaka

bab

b

Rbaab

Rleaka

a

VtgVgVtgg

VVtgVVgdt

dV

)]()[()(

)()(

0

0

0 tVVtgtgg

VtgVgVtgg a

satot

bab

b

Rbab

Rleak

ab

ab

High-conductance-state

2

00

2

00

2

00

)()(

))(()(

b

Rbab

Rleaka

bab

b

Rbaab

Rleaka

a

VtgVgVtgg

VVtgVVgdt

dV

)]()[()(

)()(

0

0

0 tVVtgtgg

VtgVgVtgg a

satot

bab

b

Rbab

Rleak

ab

ab

Va “chases” Vsa(t) at rate gtot(t)

High-conductance-state

2

00

2

00

2

00

)()(

))(()(

b

Rbab

Rleaka

bab

b

Rbaab

Rleaka

a

VtgVgVtgg

VVtgVVgdt

dV

)]()[()(

)()(

0

0

0 tVVtgtgg

VtgVgVtgg a

satot

bab

b

Rbab

Rleak

ab

ab

Va “chases” Vsa(t) at rate gtot(t)

mtot gg

1

0

High-conductance-state

2

00

2

00

2

00

)()(

))(()(

b

Rbab

Rleaka

bab

b

Rbaab

Rleaka

a

VtgVgVtgg

VVtgVVgdt

dV

)]()[()(

)()(

0

0

0 tVVtgtgg

VtgVgVtgg a

satot

bab

b

Rbab

Rleak

ab

ab

Va “chases” Vsa(t) at rate gtot(t)

mtot gg

1

0 meffm

High-conductance-state

2

00

2

00

2

00

)()(

))(()(

b

Rbab

Rleaka

bab

b

Rbaab

Rleaka

a

VtgVgVtgg

VVtgVVgdt

dV

)]()[()(

)()(

0

0

0 tVVtgtgg

VtgVgVtgg a

satot

bab

b

Rbab

Rleak

ab

ab

Va “chases” Vsa(t) at rate gtot(t)

mtot gg

1

0 meffm

Effective membrane time constant ~ 1 ms

Membrane potential and spiking dynamics for large gtot

FluctuationsMeasure membrane potential from :aV

FluctuationsMeasure membrane potential from :aV aaa uVV

FluctuationsMeasure membrane potential from :aV aaa uVV

Conductances: mean + fluctuations:

FluctuationsMeasure membrane potential from :aV aaa uVV

Conductances: mean + fluctuations:

)()( 0 tgrKgtg abbbabab

FluctuationsMeasure membrane potential from :aV aaa uVV

Conductances: mean + fluctuations:

)()( 0 tgrKgtg abbbabab )(1)( 0

2/1

txqgNK

tg ababbab

b

bab

FluctuationsMeasure membrane potential from :aV aaa uVV

Use balance equation in

Conductances: mean + fluctuations:

2

00 ))(()(

b

Rbaab

Rleaka

a VVtgVVgdt

dV

)()( 0 tgrKgtg abbbabab )(1)( 0

2/1

txqgNK

tg ababbab

b

bab

FluctuationsMeasure membrane potential from :aV aaa uVV

Use balance equation in

2

0

)()(b

aR

babatota VVtgutg

dt

du

Conductances: mean + fluctuations:

2

00 ))(()(

b

Rbaab

Rleaka

a VVtgVVgdt

dV

=>

)()( 0 tgrKgtg abbbabab )(1)( 0

2/1

txqgNK

tg ababbab

b

bab

FluctuationsMeasure membrane potential from :aV aaa uVV

Use balance equation in

2

0

)()(b

aR

babatota VVtgutg

dt

du

Conductances: mean + fluctuations:

2

00 ))(()(

b

Rbaab

Rleaka

a VVtgVVgdt

dV

=>

or )()( tuutgdt

du asatot

a

)()( 0 tgrKgtg abbbabab )(1)( 0

2/1

txqgNK

tg ababbab

b

bab

FluctuationsMeasure membrane potential from :aV aaa uVV

Use balance equation in

2

0

)()(b

aR

babatota VVtgutg

dt

du

Conductances: mean + fluctuations:

2

00 ))(()(

b

Rbaab

Rleaka

a VVtgVVgdt

dV

=>

or )()( tuutgdt

du asatot

a

)()( 0 tgrKgtg abbbabab

with)(

))(()()(

tg

VVtgtu

tot

ba

Rbab

ias

)(1)( 0

2/1

txqgNK

tg ababbab

b

bab

FluctuationsMeasure membrane potential from :aV aaa uVV

Use balance equation in

2

0

)()(b

aR

babatota VVtgutg

dt

du

Conductances: mean + fluctuations:

2

00 ))(()(

b

Rbaab

Rleaka

a VVtgVVgdt

dV

=>

or )()( tuutgdt

du asatot

a

)()( 0 tgrKgtg abbbabab

with)(

))(()()(

tg

VVtgtu

tot

ba

Rbab

ias

b babbbabtot tgrKggtg )()( 0

0

)(1)( 0

2/1

txqgNK

tg ababbab

b

bab

Effective current-based model)(0 tgrKg abbbab High connectivity:

Effective current-based model)(0 tgrKg abbbab

2

0

)(b

aR

babatota VVtgug

dtdu

High connectivity:

Effective current-based model)(0 tgrKg abbbab

2

0

)(b

aR

babatota VVtgug

dtdu

High connectivity:

)()(1 0

2/1

ba

Rb

ababbab

b

batot VVtxqg

NK

ug

Effective current-based model)(0 tgrKg abbbab

2

0

)(b

aR

babatota VVtgug

dtdu

High connectivity:

)()(1 0

2/1

ba

Rb

ababbab

b

batot VVtxqg

NK

ug

b

ababb

effab

b

batot txqJ

NK

ug )(12/1

Effective current-based model)(0 tgrKg abbbab

b

bbabtot rKggg 00

2

0

)(b

aR

babatota VVtgug

dtdu

High connectivity:

)()(1 0

2/1

ba

Rb

ababbab

b

batot VVtxqg

NK

ug

b

ababb

effab

b

batot txqJ

NK

ug )(12/1

Effective current-based model)(0 tgrKg abbbab

b

bbabtot rKggg 00

2

0

)(b

aR

babatota VVtgug

dtdu

High connectivity:

)()(1 0

2/1

ba

Rb

ababbab

b

batot VVtxqg

NK

ug

b

ababb

effab

b

batot txqJ

NK

ug )(12/1

Like current-based model with toteffmm

eff g/1; JJ

Effective current-based model)(0 tgrKg abbbab

b

bbabtot rKggg 00

2

0

)(b

aR

babatota VVtgug

dtdu

High connectivity:

)()(1 0

2/1

ba

Rb

ababbab

b

batot VVtxqg

NK

ug

b

ababb

effab

b

batot txqJ

NK

ug )(12/1

Like current-based model with toteffmm

eff g/1; JJ

(but effective membrane time constant depends onpresynaptic rates)

Firing irregularity depends on reset level and s

Modeling primary visual cortex

Modeling primary visual cortex

Background:

1. Neurons in primary visual cortex (area V1) respond strongly to oriented stimuli (bars, gratings)

Modeling primary visual cortex

Background:

1. Neurons in primary visual cortex (area V1) respond strongly to oriented stimuli (bars, gratings)

Modeling primary visual cortex

Background:

1. Neurons in primary visual cortex (area V1) respond strongly to oriented stimuli (bars, gratings)

Note:contrast-invarianttuning width

Spatial organization of area V1

2. In V1, nearby neurons have similar orientation tuning

Spatial organization of area V1

2. In V1, nearby neurons have similar orientation tuning

Orientation column~ 104 neurons that respond most strongly to a particular orientation

Orientation column~ 104 neurons that respond most strongly to a particular orientation

Tuning of input from LGN (Hubel-Wiesel):

Hubel-Wiesel feedforward connectivity cannot by itself explain contrast-invariant tuning

Simplest model: cortical neurons sums H-W inputs, firing rate isthreshold-linear function of sum

Hubel-Wiesel feedforward connectivity cannot by itself explain contrast-invariant tuning

Simplest model: cortical neurons sums H-W inputs, firing rate isthreshold-linear function of sum

Modeling a “hypercolumn” in V1

Coupled collection of networks, each representing an “orientation column”

Modeling a “hypercolumn” in V1

Coupled collection of networks, each representing an “orientation column”

Modeling a “hypercolumn” in V1

Coupled collection of networks, each representing an “orientation column”

2

1 1

/

1

,00 )()(

b

n nN

j

bj

baija

ai

ai

b

tSJIV

dtdV

Modeling a “hypercolumn” (2)

)](2cos1[)( 000 KII aa

Modeling a “hypercolumn” (2)

)](2cos1[)( 000 KII aa 10

Modeling a “hypercolumn” (2)

)](2cos1[)( 000 KII aa

0 is stimulus orientation

10

Modeling a “hypercolumn” (2)

)](2cos1[)( 000 KII aa

0 is stimulus orientation

10

(simplest model periodic in with period )

Modeling a “hypercolumn” (2)

)](2cos1[1 prob,0

)](2cos1[prob,

,

,

b

bbaij

b

b

b

abbaij

NK

J

NK

K

JJ

)](2cos1[)( 000 KII aa

0 is stimulus orientation

10

(simplest model periodic in with period )

Modeling a “hypercolumn” (2)

)](2cos1[1 prob,0

)](2cos1[prob,

,

,

b

bbaij

b

b

b

abbaij

NK

J

NK

K

JJ

)](2cos1[)( 000 KII aa

0 is stimulus orientation

10

2,0 bJab

10

(simplest model periodic in with period )

Modeling a “hypercolumn” (2)

)](2cos1[1 prob,0

)](2cos1[prob,

,

,

b

bbaij

b

b

b

abbaij

NK

J

NK

K

JJ

)](2cos1[)( 000 KII aa

0 is stimulus orientation

10

2,0 bJab

Connection probability falls off with increasing’, reflecting probable greater distance.

10

(simplest model periodic in with period )

Mean field theory

Effective intracortical input current )(tIa

Mean field theory

Effective intracortical input current )(tIa

)()](2cos1[1

bb

baba rKJ

nImean

Mean field theory

Effective intracortical input current )(tIa

)()](2cos1[1

bb

baba rKJ

nImean

)]()][(2cos1[11

)()( 2 ttCqNK

Jn

tItI bbb

b

babaa

fluctuations:

Mean field theory

Effective intracortical input current )(tIa

)()](2cos1[1

bb

baba rKJ

nImean

)]()][(2cos1[11

)()( 2 ttCqNK

Jn

tItI bbb

b

babaa

fluctuations:

2)(

b

jb rqwith

Mean field theory

Effective intracortical input current )(tIa

)()](2cos1[1

bb

baba rKJ

nImean

)]()][(2cos1[11

)()( 2 ttCqNK

Jn

tItI bbb

b

babaa

fluctuations:

2)(

b

jb rqwith

Solve self-consistently for order parameters )(,),( ttCqr bba

Balance conditionTotal mean current vanishes at all :

Balance conditionTotal mean current vanishes at all :

0)()](2cos1[1

)](2cos1[1

000

bbb

aba rKJn

KI

Balance conditionTotal mean current vanishes at all :

0)()](2cos1[1

)](2cos1[1

000

bbb

aba rKJn

KI

Ignore leak, make continuum approximation:

Balance conditionTotal mean current vanishes at all :

0)()](2cos1[1

)](2cos1[1

000

bbb

aba rKJn

KI

0)()](2cos1[)](2cos1[2/

2/000

b

bbaba r

dKJKI

Ignore leak, make continuum approximation:

Balance conditionTotal mean current vanishes at all :

0)()](2cos1[1

)](2cos1[1

000

bbb

aba rKJn

KI

0)()](2cos1[)](2cos1[2/

2/000

b

bbaba r

dKJKI

Ignore leak, make continuum approximation:

Integral equations for ra()

Balance conditionTotal mean current vanishes at all :

0)()](2cos1[1

)](2cos1[1

000

bbb

aba rKJn

KI

0)()](2cos1[)](2cos1[2/

2/000

b

bbaba r

dKJKI

Ignore leak, make continuum approximation:

Integral equations for ra()

Can take0 = 0

Broad tuning ,0)(br

Broad tuning ,0)(br

Make ansatz 2cos)( 2,0, bbb rrr

Broad tuning ,0)(br

Make ansatz 2cos)( 2,0, bbb rrr bababa sinsincoscos)cos( use

Broad tuning ,0)(br

Make ansatz 2cos)( 2,0, bbb rrr bababa sinsincoscos)cos( use

0)2cos()2cos1( 2,21

0,00 bbb

baba rrKJKI

Broad tuning ,0)(br

Make ansatz 2cos)( 2,0, bbb rrr bababa sinsincoscos)cos( use

0)2cos()2cos1( 2,21

0,00 bbb

baba rrKJKI

=> b

babab

baba rJIrJI 0ˆ;0ˆ2,2

100,0

abb

ab JKK

J0

ˆ with

Broad tuning ,0)(br

Make ansatz 2cos)( 2,0, bbb rrr bababa sinsincoscos)cos( use

0)2cos()2cos1( 2,21

0,00 bbb

baba rrKJKI

=> b

babab

baba rJIrJI 0ˆ;0ˆ2,2

100,0

abb

ab JKK

J0

ˆ with

Solve for Fourier components:

Broad tuning ,0)(br

Make ansatz 2cos)( 2,0, bbb rrr bababa sinsincoscos)cos( use

0)2cos()2cos1( 2,21

0,00 bbb

baba rrKJKI

=> b

babab

baba rJIrJI 0ˆ;0ˆ2,2

100,0

abb

ab JKK

J0

ˆ with

Solve for Fourier components:

20

10

2,2

2,1

20

10

0,2

0,1 ˆ2;ˆ

I

I

r

r

I

I

r

r1-1- JJ

Broad tuning ,0)(br

Make ansatz 2cos)( 2,0, bbb rrr bababa sinsincoscos)cos( use

0)2cos()2cos1( 2,21

0,00 bbb

baba rrKJKI

=> b

babab

baba rJIrJI 0ˆ;0ˆ2,2

100,0

abb

ab JKK

J0

ˆ with

Solve for Fourier components:

20

10

2,2

2,1

20

10

0,2

0,1 ˆ2;ˆ

I

I

r

r

I

I

r

r1-1- JJ

Valid for 21 (otherwise ra() < 0 at large )

narrow tuning 2cos)( 2,0, bbb rrr use only for )/(cos 2,0,

121

bbc rr

narrow tuning 2cos)( 2,0, bbb rrr use only for )/(cos 2,0,

121

bbc rr

i.e., )()2cos2(cos)( 2, ccbb rr

narrow tuning 2cos)( 2,0, bbb rrr use only for )/(cos 2,0,

121

bbc rr

i.e., )()2cos2(cos)( 2, ccbb rr

same c for both populations – consequence of

narrow tuning 2cos)( 2,0, bbb rrr use only for )/(cos 2,0,

121

bbc rr

i.e., )()2cos2(cos)( 2, ccbb rr

same c for both populations – consequence of

same for both populations in )](2cos1[)( 000 KII aa

narrow tuning 2cos)( 2,0, bbb rrr use only for )/(cos 2,0,

121

bbc rr

i.e., )()2cos2(cos)( 2, ccbb rr

same c for both populations – consequence of

same for both populations in

and same for all interactions in

)](2cos1[)( 000 KII aa

)](2cos1[prob,,

b

b

b

abbaij N

K

K

JJ

narrow tuning 2cos)( 2,0, bbb rrr use only for )/(cos 2,0,

121

bbc rr

i.e., )()2cos2(cos)( 2, ccbb rr

same c for both populations – consequence of

same for both populations in

and same for all interactions in

)](2cos1[)( 000 KII aa

)](2cos1[prob,,

b

b

b

abbaij N

K

K

JJ

0)()](2cos1[)2cos1(2/

2/00

b

bbaba r

dKJKI

Balance condition:

narrow tuning 2cos)( 2,0, bbb rrr use only for )/(cos 2,0,

121

bbc rr

i.e., )()2cos2(cos)( 2, ccbb rr

same c for both populations – consequence of

same for both populations in

and same for all interactions in

)](2cos1[)( 000 KII aa

)](2cos1[prob,,

b

b

b

abbaij N

K

K

JJ

0)2cos2(cos)2cos2cos1(

)2cos1(

2,

00

cbb

bab

a

rd

KJ

KI

c

c

0)()](2cos1[)2cos1(2/

2/00

b

bbaba r

dKJKI

Balance condition:

=>

Narrow tuning (2)

Now do the integrals:

Narrow tuning (2)

Now do the integrals:

0)(ˆ;0)(ˆ22,002,0

bcbaba

bcbaba frJIfrJI

Narrow tuning (2)

Now do the integrals:

0)(ˆ;0)(ˆ22,002,0

bcbaba

bcbaba frJIfrJI

)4sin(1

)2cos2(cos2cos)(

)2cos22(sin1

)2cos2(cos)(

41

2

0

cccc

ccccc

c

c

c

c

df

df

where

Narrow tuning (2)

Now do the integrals:

0)(ˆ;0)(ˆ22,002,0

bcbaba

bcbaba frJIfrJI

)4sin(1

)2cos2(cos2cos)(

)2cos22(sin1

)2cos2(cos)(

41

2

0

cccc

ccccc

c

c

c

c

df

df

where

f0:f2:

______

----------

Narrow tuning (3)0)(ˆ;0)(ˆ

22,002,0 b

cbabab

cbaba frJIfrJI

Narrow tuning (3)0)(ˆ;0)(ˆ

22,002,0 b

cbabab

cbaba frJIfrJI

Divide one by the other:

Narrow tuning (3)0)(ˆ;0)(ˆ

22,002,0 b

cbabab

cbaba frJIfrJI

Divide one by the other:

)(

)(

0

2

c

c

f

f determines c

Narrow tuning (3)0)(ˆ;0)(ˆ

22,002,0 b

cbabab

cbaba frJIfrJI

Divide one by the other:

)(

)(

0

2

c

c

f

f determines c

c is independent of Ia0: contrast-invariant tuning width (as in experiments)

Narrow tuning (3)0)(ˆ;0)(ˆ

22,002,0 b

cbabab

cbaba frJIfrJI

Divide one by the other:

)(

)(

0

2

c

c

f

f determines c

c is independent of Ia0: contrast-invariant tuning width (as in experiments)

Then can solve for rate components:

Narrow tuning (3)0)(ˆ;0)(ˆ

22,002,0 b

cbabab

cbaba frJIfrJI

Divide one by the other:

)(

)(

0

2

c

c

f

f determines c

c is independent of Ia0: contrast-invariant tuning width (as in experiments)

Then can solve for rate components:

c

c-

c r

r

r

r

I

I

fr

r

2cos

2cos;ˆ

)(1

2,2

2,1

0,2

0,1

20

101

02,2

2,1J

Noise tuningInput noise correlations:

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

partcontinuous)()()( ttrttC bb

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

partcontinuous)()()( ttrttC bb =>

)()](2cos1[1|)(| 22

b

b

b

baba r

dNK

JIc

c

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

partcontinuous)()()( ttrttC bb =>

)()](2cos1[1|)(| 22

b

b

b

baba r

dNK

JIc

c

Same integrals as in rate computation =>

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

partcontinuous)()()( ttrttC bb =>

)()](2cos1[1|)(| 22

b

b

b

baba r

dNK

JIc

c

Same integrals as in rate computation =>

]2cos)()([1|)(| 202,22 ccb

b

b

baba ffr

NK

JI

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

partcontinuous)()()( ttrttC bb =>

)()](2cos1[1|)(| 22

b

b

b

baba r

dNK

JIc

c

Same integrals as in rate computation =>

)(

)(

0

2

c

c

f

fusing

]2cos)()([1|)(| 202,22 ccb

b

b

baba ffr

NK

JI

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

partcontinuous)()()( ttrttC bb =>

)()](2cos1[1|)(| 22

b

b

b

baba r

dNK

JIc

c

Same integrals as in rate computation =>

2cos1|)(| 2

aI

)(

)(

0

2

c

c

f

fusing =>

]2cos)()([1|)(| 202,22 ccb

b

b

baba ffr

NK

JI

Noise tuning

)]()][(2cos1[1)()( 2 ttCqd

NK

JtItI bbb

b

babaa

c

c

Input noise correlations:

partcontinuous)()()( ttrttC bb =>

)()](2cos1[1|)(| 22

b

b

b

baba r

dNK

JIc

c

Same integrals as in rate computation =>

2cos1|)(| 2

aI

)(

)(

0

2

c

c

f

fusing =>

]2cos)()([1|)(| 202,22 ccb

b

b

baba ffr

NK

JI

Same tuning as input!

Some numerical results (1)

Numerical results (2):Fano factor tuning

Numerical results (3): noise tuning vs firing tuning