lecture 12: shock tube applications with lasers...lecture 12: shock tube applications with lasers 1....

33
Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate Constant Measurements Multi-Species Time-Histories 4. New Species Diagnostics

Upload: others

Post on 26-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

Lecture 12: Shock Tube Applications with Lasers

1. Laser Absorption Theory

2. Survey of Capabilities

3. Kinetics Applications:Rate Constant MeasurementsMulti-Species Time-Histories

4. New Species Diagnostics

Page 2: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

1. Laser Absorption Theory• Governing Equation: Beer‐Lambert Law

/0 = exp(‐Slu () Xspecies Ptotal L)

• Quantitative absorption requires database for S, • What species have been measured?

Line             LineStrength     shape

I0

ILASER

L

2

Page 3: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

2. Survey of Capabilities:Species and Wavelengths

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

Spectra‐Physics 380

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

First use of tunable dye lasers in shock tubes (1982) 

InfraredCO  2.3 mH2O  2.5 mCO2 2.7 mFuel      3.4 mNO  5.2 mC2H4 10.5 m

3

Page 4: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

Coherent MIRATi‐Sapphire Ring Laser

Ultra‐fast lasers used to extend UV tuning range  (2009) 

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

InfraredCO  2.3 mH2O  2.5 mCO2 2.7 mFuel      3.4 mNO  5.2 mC2H4 10.5 m

4

2. Survey of Capabilities:Species and Wavelengths

Page 5: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

NovaWave Mid‐IR Laser

InfraredCO  2.3 m, 4.6 mH2O  2.5 mCO2 2.7 m, 4.3 mFuel      3.4 mNO  5.2 mC2H4 10.5 m

New lasers allow simple access to mid‐IR (2007‐10)

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

5

2. Survey of Capabilities:Species and Wavelengths

Page 6: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

InfraredCO  2.3 m, 4.6 mH2O  2.5 mCO2 2.7 m, 4.3 mFuel      3.4 mNO  5.2 mC2H4 10.5 m

How sensitive are laser absorption diagnostics in shock tubes?

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

6

2. Survey of Capabilities:Species and Wavelengths

Page 7: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

2. Laser Absorption Yields High SensitivityRepresentative Detection Limits: Large Molecules

• Large molecules: 10‐100’s ppm

1000 1500 2000 2500 3000

0.01

0.1

1

10

100

1000CO2

CH3

C2H4M

inim

um D

etec

itivi

ty [p

pm]

Temperature [K]

1atm,15cm,1MHz

H2ONH2

7

Page 8: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

sub‐ppmsensitivity for OH, CH, CN

2. Laser Absorption Yields High SensitivityRepresentative Detection Limits: Diatomic Molecules

• Diatomic molecules @ 1500K:‐ sub‐ppm detectivity for UV absorbers‐ ppm detectivity for IR absorbers

1000 1500 2000 2500 3000

0.01

0.1

1

10

100

1000

CO

OH

Det

ectio

n Li

mit

[ppm

]

Temperature [K]

1atm,15cm,1MHz

CH

CN

8

Page 9: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3. Kinetics Applications

1. Foundation Fuel KineticsOH+H2=H2O+H

2. Methyl Ester KineticsME+OH=ProductsMethyl Formate pyrolysis

3. Butanol Isomer Kineticsn‐Butanol pyrolysist‐butanol+OH using isotopic labeling

9

Page 10: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics:

• H + O2 = OH + O• H2O2 + M = OH + OH + M• OH + H2O2 = H2O + HO2

• OH + HO2 = H2O + O2

• HO2 + HO2 = H2O2 + O2

• CH3 + HO2 = Products • C2H4 + M = C2H2 + H2 + M• OH + H2 = H2O + H

10

• Recent Elementary Rate Constant Measurementsusing Shock Tube/Laser Absorption Methods

Page 11: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics

1.     Design: use sensitivity analysis to kinetically isolate reactions

2.     Execute: use shock tubes for step heating and laser absorption for species detection

Example:     H + O2 OH + O

• Accurate k values critical to combustion modeling

k

How Do We Measure Individual Reaction Rates?- Two-Step Process

11

Page 12: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics

• H2O time‐history provides precise determination of k1

Shock Conditions: 1472 K, 1.8 atm, 0.1%O2/0.9%H2/Ar

H2O Sensitivity H2O Time‐History

12

• Example: H + O2 OH + ORate Measurement using H2O Laser at 2.55 mm

Page 13: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics

13

Arrhenius Plot: H + O2 OH + O

Page 14: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

Arrhenius Plot: H + O2 OH + O

Modern laser methods significantly reduce measurement uncertainty!

k1=1.04x1014 exp(‐7705/T) {1=5%}

14

3.1 Foundation Fuel Kinetics

Page 15: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics

fast upon shock heating

TBHP: tert‐butylhydroperoxide

Motivation: Large uncertainty in kOH+H2 gives large uncertaintyin modeled H2/air flame speeds

Experimental Strategy: Direct determination of rate constant• Pseudo‐first order experiment• Fuel in excess• TBHP used as a prompt OH precursor

‐ Useful T range (850 to 1350 K) ‐ Pioneered by Bott and Cohen (1984), also used at Argonne

Acetone

+ +

15

• Elementary Reaction Rate Determination:OH + H2 H2O + H

Page 16: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics

• High SNR data, ppm sensitivity• kbest‐fit determined within 3‐5%

16

• Representative OH Absorption Data

Page 17: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics

• Very low overall uncertainty in k:  ±17% (2) 

kBest‐Fit

17

• Arrhenius Plot: OH + H2 H2O + H

Page 18: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.1 Foundation Fuel Kinetics

• Excellent agreement with previous work,but uncertainty in k substantially reduced

0.4 0.6 0.8 1.0 1.21E11

1E12

1E13

2500K

kBest-Fit

833K1000K1250K

k 1 [cm

3 mol

-1 s

-1]

1000/T [1/K]

Current Study Krasnoperov and Michael (2004) Michael and Sutherland (1988) (revised Kc) Davidson et al. (1988) (revised Kc) Frank and Just (1985) Oldenborg et al. (1992)

1667K

18

• Comparison with Past Work: OH + H2 H2O + H

Page 19: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.2 Methyl Ester Kinetics

1. Rate Constant Measurements– OH + Methyl Formate– OH + Methyl Acetate– OH + Methyl Propanoate– OH + Methyl Butanoate

2. Methyl Formate Pyrolysis– Multi‐species Data

Conducted as first‐order experiments, with TBHP as source of OH

MF, CH3OHCO, CH4, CH2O

19

Page 20: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.2 Methyl Ester Kinetics

• Low scatter data with ± 25% overall uncertainty• Good agreement with modified SAR

(Structure Activity Relationship)

0.7 0.8 0.9 1.0 1.1 1.2

1E12

1E13

833K909K1000K1111K1250K

MButanoate MPropanoate MFormate MAcetate

Lines: Modified SAR (SAR x 0.75)

k [c

c/m

ol/s

]

1000/T [1/K]

Methyl Ester + OH = Products

1429K

+/-25%

MB

MP

MA

MF

20

• Summary: OH+Methyl Esters Products

Page 21: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.2 Methyl Ester Kinetics

• Shock tube/laser absorption rate 2‐4x faster than calculation

• Confirms continuing value of high–accuracy experimental data

0.7 0.8 0.9 1.0 1.1 1.21E11

1E12

1E13

+/-25%

Tan et al. (2012)

833K909K1000K1111K1250K

k

[cc

/mol

/s]

1000/T [1/K]

Methyl Formate + OH = Products

1429K

Current Study

21

• Comparison with Recent Quantum Calculations:Methyl Formate +OH Products

Page 22: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.2 Methyl Ester Kinetics

• Laser data successfully tracks all major contributors to O‐atom balance• Atom balance provides important new validation tool for chemical models

@ t = 300s

% Oxygen balance:5.5% in CH3OCHO34.8% in CH3OH44.9% in CO5.8% in CO2

7.2% in CH2OTotal: >98%

22

22

• Methyl Formate Pyrolysis Kinetics:Multi-Species Laser Absorption Data Can ProvideNear-Complete Oxygen Balance

Page 23: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.3 Butanol Isomer Kinetics

1. n‐Butanol Pyrolysis:Challenge: Complex PathwaysSolution:    Multi‐Species Time‐Histories

OH, CO, CH4, H2O, C2H4

2. tert‐Butanol + OH  ProductsChallenge: Multiple Reaction Sites,

OH ReformationSolution:  Isotopic Labeling

23

• Two Studies of Butanol Kinetics

Page 24: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.3 Butanol Isomer Kinetics

• Challenges: Multiple Reaction Sites, OH Reformation 

• Solution: Isotopic labeling provides strategy to identify OH attack sites

24

• OH+ tert-Butanol ProductsUse of Isotopic Labeling

Page 25: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.3 Butanol Isomer Kinetics

16

16

16

16

16 16 16

16

16

16

• Measurement of OH removal by t‐C4H9

16OH affected by OH reformation pathway

• Measurement gives 

k1b+ k1a (1‐BR2)

= (k1b+k1a )(1‐BR1BR2)

t‐C4H916OH + 16OH

OH reformation! 25

• OH+ tert-Butanol ProductsConventional Experiment using t-C4H9

16OH

Page 26: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.3 Butanol Isomer Kinetics

16

16

16

18

18

18

18

18 18

16

18

16

• Measurement of OH removal by t‐C4H9

16OH affected by OH reformation pathway

• Measurement gives 

k1b+ k1a (1‐BR2)

= (k1b+k1a )(1‐BR1BR2)

• Measurement of 16OH in t‐C4H9

18OH gives (k1a+k1b) with no 16OH reformation

t‐C4H9O18H + 16OH

No 16OH reformation! 26

• OH+ tert-Butanol ProductsConventional Experiment using t-C4H9

16OH

Page 27: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

3.3 Butanol Isomer Kinetics

0 20 40 60 80

10

20

30

500 ppm t-butan18ol29 ppm tbhp

Measurement 18k' = 1.08x10-11

1.218k' 0.818k'

OH

Mol

e Fr

actio

n [p

pm]

Time [s]

• Slow removal of OH during 16O butanol pyrolysis• Faster removal of OH during 18O butanol pyrolysis

• How do the rates compare?

0 20 40 60 80

5

10

15202530

OH

Mol

e Fr

actio

n [p

pm]

500 ppm t-butan16ol17 ppm tbhp

Measurement 16k' = 2.18x10-12 1.216k' 0.816k'

time [s]

16O‐Butanol 18O‐Butanol

1020 K1.22 atm

1020 K1.22 atm

27

• OH Absorption Data for tert-Butanol (O16 & O18)

Page 28: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

ktotal = (k1a+k1b)Derived from t‐C4H9

18OH

0.8 0.9 1.0 1.1

10-12

10-11

1000K

k1a+k1b

Sarathy et al. (2012)

Net

OH

dec

ay ra

te

(cm

3 /mol

ecul

e/s)

1000/T

1250K

28

• OH + tert‐Butanol (O16 & O18)Net OH Decay Rate due to Reaction with t‐Butanol

3.3 Butanol Isomer Kinetics

Page 29: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

(k1a+k1b) (1‐BR1BR2)Derived from t‐C4H9

16OH

• first direct determination of overall rate (k1a+k1b)• Ratio (18O/16O expts.) gives (1‐BR1BR2) = 0.2• Since BR1 = 0.95, then BR2 = 0.8 (±0.05)

0.8 0.9 1.0 1.1

10-12

10-11

1000K

k1a+k1b

Sarathy et al. (2012) (k1a+k1b) (1-BR1BR2)

Sarathy et al. (2012)

Net

OH

dec

ay ra

te

(cm

3 /mol

ecul

e/s)

1000/T

1250K

ktotal = (k1a+k1b)Derived from t‐C4H9

18OH

29

• OH + tert-Butanol (O16 & O18)Net OH Decay Rate due to Reaction with t-Butanol

3.3 Butanol Isomer Kinetics

Page 30: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

4. New Species Diagnostics

Current Work:– Alkyl radicals, e.g., C2H5

– Alkenes, Alkynes, e.g. C3H6, C2H2

– Aldehydes, e.g., CH2O, CH3CHO

Example: Aldehydes

30

Page 31: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

4. New Species Diagnostics

31

Motivation:  Aldehydes provide critical information about first stages of hydrocarbon oxidation, especially oxygenated fuels

H

HC=O C=O

H

CH3

Challenge:  Overlapping absorption spectraStrategy: Three colors (1 and 2 in IR, and 3 in UV)

1,2

IR absorption

3

Formaldehyde Acetaldehyde Reflectedshock wave

Detectors

Three Lasers

UV absorption

31

• Aldehyde Diagnostics

Page 32: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

4. New Species Diagnostics

Measured Absorbance Time‐Histories Aldehyde Concentration Time‐Histories

• Recovered dCH2O/dt & plateau mole fractions:  Success!

• Shock heat trioxane/acetaldehyde mixture• Observe formaldehyde formation• Recover correct CH2O/CH3CHO concentrations

32

• Validation Experiment: Simultaneous Measurement ofKnown CH2O & CH3CHO Concentrations

Page 33: Lecture 12: Shock Tube Applications with Lasers...Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate

Next: Three Lectures onLaser-Induced Fluorescence (LIF)

Two level model More complex models Applications

33

Summary:Laser absorption & shock tubes are a frontier for combustion kinetics