lecture 13

35
Microelectronic circuits 1 Lecture 13 MOSFET Differential Amplifiers

Upload: ryder

Post on 19-Jan-2016

38 views

Category:

Documents


0 download

DESCRIPTION

Lecture 13. MOSFET Differential Amplifiers. topics. Ideal characteristics of differential amplifier Input differential resistance Input common-mode resistance Differential voltage gain CMRR Non-ideal characteristics of differential amplifier Input offset voltage - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lecture 13

Microelectronic circuits 1

Lecture 13

MOSFET Differential Amplifiers

Page 2: Lecture 13

Microelectronic circuits 2

topics• Ideal characteristics of differential amplifier

– Input differential resistance– Input common-mode resistance– Differential voltage gain– CMRR

• Non-ideal characteristics of differential amplifier– Input offset voltage – Input biasing and offset current

• Differential Amplifier with active load• Frequency rresponse

Page 3: Lecture 13

Microelectronic circuits 3

Figure 7.1 The basic MOS differential-pair configuration.

MOS differential pair

Page 4: Lecture 13

Microelectronic circuits 4

Figure 7.2 The MOS differential pair with a common-mode input voltage vCM.

Common mode operation

DDDDDD

tGSnD

GSCMs

DD

RIVvv

VVL

Wk

II

Vvv

III

QQ

21

2'

21

21

)(2

1

2

2

Q1 and Q2 in saturation mode

)(2

(min)

(max)

tGStCSssCM

DDDtCM

VVVVVv

RI

VVv

Page 5: Lecture 13

Microelectronic circuits 5

Exercise 7.1 kRmAIVVVmAL

WkVVV DtnSSDD 5.2,4.0,5.0,/4,5.1 2'

Page 6: Lecture 13

Microelectronic circuits 6

Figure 7.3 (Continued)

Page 7: Lecture 13

Microelectronic circuits 7

Figure 7.4 The MOS differential pair with a differential input signal vid applied. With vid positive: vGS1 vGS2, iD1 iD2, and vD1 vD2; thus (vD2 vD1) will be positive. With vid negative: vGS1 vGS2, iD1 iD2, and vD1 vD2; thus (vD2 vD1) will be negative.

Differential mode operation

tntSGSid

ntGS

tGSnD

VLWkIVvvv

LWkIVV

VVL

WkII

)/(/2

)/(/2

)(2

1

'1(max)

'1

21

'1

offQvv

LWkIVv

Iivvif

sid

ntGS

Didid

2

'1

1max

)/(/2

)/(/2)/(/2 '' LWkIvLWkI nidn

Page 8: Lecture 13

Microelectronic circuits 8

Figure 7.5 The MOSFET differential pair for the purpose of deriving the transfer characteristics, iD1 and iD2 versus vid vG1 – vG2.

Large signal operation

22

'2

21

'1

)(2

1

)(2

1

tGSnD

tGSnD

VvL

Wki

VvL

Wki

2121 GGGSGSid vvvvv

2

'

'1

2

'

'1

2'2!

21

'21

21

2/1

22

1

2

21

2/1

22

1

2

2

12

2

1

LW

k

vvI

L

Wk

Ii

LW

k

vvI

L

Wk

Ii

vL

WkIii

Iii

vL

Wkii

n

ididnD

n

ididnD

idnDD

DD

idnDD

Page 9: Lecture 13

Microelectronic circuits 9

Figure 7.6 Normalized plots of the currents in a MOSFET differential pair. Note that VOV is the overdrive voltage at which Q1 and Q2 operate when conducting drain currents equal to I/2.

Page 10: Lecture 13

Microelectronic circuits 10

Figure 7.7 The linear range of operation of the MOS differential pair can be extended by operating the transistor at a higher value of VOV.

Page 11: Lecture 13

Microelectronic circuits 11

Figure 7.8 Small-signal analysis of the MOS differential amplifier: (a) The circuit with a common-mode voltage applied to set the dc bias voltage at the gates and with vid applied in a complementary (or balanced) manner. (b) The circuit prepared for small-signal analysis. (c) An alternative way of looking at the small-signal operation of the circuit.

Small signal operation (differential gain)

idCMG

idCMG

vVv

vVv

2

12

1

2

1

Page 12: Lecture 13

Microelectronic circuits 12

Dmid

ood

Dmid

oDm

id

o

Did

mo

Did

mo

Rgv

vvA

Rgv

vRg

v

v

Rv

gv

Rv

gv

12

21

2

1

2

1,

2

12

2

Page 13: Lecture 13

Microelectronic circuits 13

ro effects

idoDmooo

idoDmo

idoDmo

vrRgvvv

vrRgv

vrRgv

)//(

)2/)(//(

)2/)(//(

12

1

1

Page 14: Lecture 13

Microelectronic circuits 14

Common-mode gain et CMRR

SS

D

icm

o

icm

omSS

SSm

D

icm

o

icm

o

R

R

v

v

v

vgR

Rg

R

v

v

v

v

2/1

2/1

11

11

ssmcm

d

DmdssDcm

RgA

ACMRR

RgARRA

2

1,2/

(1) The differential pair is taken single-endedly

(2) The output is taken differentially

cm

d

Dmidoodicmoocm

A

ACMRR

RgvvvAvvvA /)(,0/)( 1212

Page 15: Lecture 13

Microelectronic circuits 15

Consider RD mismatch

D

Dssm

cm

d

Dmd

D

D

ss

D

ss

Dcm

icmss

Doo

icmss

DDo

icmss

Do

DD

R

RRg

A

ACMRR

RgA

R

R

R

R

R

RA

vR

Rvv

vR

RRv

vR

Rv

RRconsider

/2

22

2

2

2

12

2

1

21

Page 16: Lecture 13

Microelectronic circuits 16

Figure 7.11 Analysis of the MOS differential amplifier to determine the common-mode gain resulting from a mismatch in the gm values of Q1 and Q2.

Consider gm mismatch

21

21

22

21

11

21

2121

2

1

2

121

21

)(

)(

)(

)()(

mmm

ssmm

icmmd

ssmm

icmmd

ss

icmddicms

ss

sddssdds

m

m

d

dgsgs

mm

ggglet

Rgg

vgi

Rgg

vgi

R

viivv

R

viiRiiv

g

g

i

ivv

ggconsider

Page 17: Lecture 13

Microelectronic circuits 17

m

mssm

cm

d

Dmd

m

m

ss

Dcm

ssm

icmDmDdDdoo

ssm

icmmd

ssm

icmmd

g

gRg

A

ACMRR

RgA

g

g

R

RA

Rg

vRgRiRivv

Rg

vgi

Rg

vgi

/2

2

2

2

2

1212

22

11

Page 18: Lecture 13

Microelectronic circuits 18

Figure 7.25 (a) The MOS differential pair with both inputs grounded. Owing to device and resistor mismatches, a finite dc output voltage VO results. (b) Application of a voltage equal to the input offset voltage VOS to the terminals with opposite polarity reduces VO to zero.

Input offset voltage

Page 19: Lecture 13

Microelectronic circuits 19

))(2

(

2

)2

(2

)2

(2

2

2

12

2

1

2

1

21

D

DOVos

DDDO

DDDDD

DDDDD

DDD

DDD

DD

R

RVV

RI

VVV

RR

IVV

RR

IVV

RRR

RRR

RRconsider

))/(

)/()(

2(

)/(2

)/(

2

)/(

)/(

22

)/(

)/(

22

)(2

1)(

)(2

1)(

2

1

2

1

21

LW

LWVV

LW

LWII

LW

LWIII

LW

LWIII

L

W

L

W

L

WL

W

L

W

L

W

QQconsider

OVos

Page 20: Lecture 13

Microelectronic circuits 20tos

OV

t

tGS

t

tGSn

tGS

ttGSn

tGS

ttGSn

tGS

ttGSn

ttGSn

ttt

ttt

tt

VV

V

VI

VV

VII

IVV

L

Wk

VV

VVV

L

WkI

VV

VVV

L

WkI

VV

VVV

L

Wk

VVV

L

WkI

VVV

VVV

VVconsider

22

2)(

2

1

)1()(2

1

)1()(2

1

])(2

1[)(2

1)

2(

2

12

2

2'

2'12

2'1

22'2'1

2

1

21

222 )())/(

)/(

2()

2( t

OV

D

DOVos V

LW

LWV

R

RVV

Page 21: Lecture 13

Microelectronic circuits 21

Differential amplifier with active load

Page 22: Lecture 13

Microelectronic circuits 22

Differential amplifier with active load

1. Differential gain 2. Common-mode gain et CMRR3. Input offset voltage

Active load

Page 23: Lecture 13

Microelectronic circuits 23

Page 24: Lecture 13

Microelectronic circuits 24

Figure 7.29 Determining the short-circuit transconductance Gm ; io/vid of the active-loaded MOS differential pair.

1. Find the transconductance Gm

Page 25: Lecture 13

Microelectronic circuits 25

mm

idmo

mmmmm

idm

id

m

mmo

idmgmo

id

m

mg

moo

oom

idmg

gG

vgi

ggggg

vg

v

g

ggi

vgvgi

v

g

gv

grr

rrg

vgv

2143

23

41

234

3

13

331

133

13

,

)2

()2

)((

)2

(

)2

(

)/1(,

)////1

)(2

(

Page 26: Lecture 13

Microelectronic circuits 26

2. Find the output resistance Ro

3. Find the differential gain

42

4244

22

22

12222

2

//

22

2

1

)/1)(1(

/

oox

xo

o

x

o

x

o

x

o

xx

oo

om

momoo

ox

rri

vR

r

v

R

v

r

vi

r

viii

rR

rg

grgrR

Rvi

om

d

ooo

oomomid

od

rg

A

rrrwhen

rrgRGv

vA

2

)//(

42

42

Page 27: Lecture 13

Microelectronic circuits 27

Figure 7.31 Analysis of the active-loaded MOS differential amplifier to determine its common-mode gain.

Common-mode gain et CMRR

Page 28: Lecture 13

Microelectronic circuits 28ssmom

mmooo

ssmoomcm

d

ssmcm

ooom

om

o

ssicm

ocm

oom

moo

om

mgm

om

g

ssomssooo

ss

icm

RgrgCMRR

ggrrrlet

RgrrgA

ACMRR

RgA

rrrg

rg

r

Rv

vA

rirg

igriiv

rg

igvgi

rg

iv

RrgRrRR

R

vii

342

342

3

4333

33

4

4233

14424

33

14344

33

13

21

21

,

]2)][//([

2

1

,1

12

1

])//1

([)(

)//1

(

)//1

(

22

2

Page 29: Lecture 13

Microelectronic circuits 29

Frequency response

Page 30: Lecture 13

Microelectronic circuits 30

Page 31: Lecture 13

Microelectronic circuits 31

Page 32: Lecture 13

Microelectronic circuits 32

Page 33: Lecture 13

Microelectronic circuits 33

Page 34: Lecture 13

Microelectronic circuits 34

Page 35: Lecture 13

Microelectronic circuits 35