lecture 13: carbon capture and utilization...co2conversion: thermodynamics co2 + cxhyoz h2o gibbs...

68
| | André Bardow Energy & Process Systems Engineering ETH Zurich 17.05.2020 Lecture 13: Carbon Capture and Utilization CO 2 Capture and Storage (CCS) and the Industry of Carbon-Based Resources 1

Upload: others

Post on 25-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

André BardowEnergy & Process Systems EngineeringETH Zurich

17.05.2020

Lecture 13: Carbon Capture and UtilizationCO2 Capture and Storage (CCS) and the Industry of Carbon-Based Resources

1

Page 2: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

Background of the group

2007-2010: TU Delft2010-2020: RWTH Aachen University2018 – now: Forschungszentrum JülichNow: ETH Zürich

2

Page 3: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

From molecules to sustainable life cycles for energy & chemicals

PROCESS

ECO SYSTEM

SUPPLY CHAINS

Energy

Renewableenergy

O = C = O Carbon

biomasswastefossil ?

3

Page 4: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

From molecules to sustainable life cycles for energy & chemicals

PROCESS

MOLECULE

THERMODYNAMICS

ECO SYSTEM

SUPPLY CHAINS

Anal

ysis

(Dire

ctPr

oble

m)

Design (Inverse Problem

)computer-aidedmolecular & design

automatedexperiments

conceptual process& systems design

Life cycleassessment

Power-to-Storage

Power-to-Chemicals

Power-to-Heat

Carbon capture,utilization & storage

4

Page 5: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Carbon Capture and Utilization (CCU)

CO2

517.05.2020

Page 6: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 utilization – Saving the Climate ?The Problem:

CO2-EmissionsThe Solution :

Captain CCU!

617.05.2020

Page 7: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversionEnergy

CO2

Reactants

minerals

CO2-based products

717.05.2020

Page 8: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 utilization: The solution or a waste of time?

CO2-utilizationis always good !

CO2-utilization always bad !

vs.

817.05.2020

Page 9: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

At the end of this lecture, you will be able to …

• analyze the thermodynamics of carbon capture & utilization (CCU)

• distinguish services offered by CCU

• evaluate CCU pathways based on the functional unit

9

Page 10: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversionEnergy

CO2

Reactants

minerals

CO2-based products

1017.05.2020

Page 11: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 conversion - Stoichiometry

Carbon dioxide

WaterProductsReactor

Balances:

1117.05.2020

Page 12: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 conversion - Stoichiometry

Carbon dioxide

Water

ProductsReactor

CO2 conversion starting from CO2 + water= inverted combustion

1217.05.2020

Page 13: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 conversion: Minimal energy demand

Carbon dioxide

Waterisothermal-isobaric

Reactor

Products

Energy balance:

0 in out tH H Q P

Entropy balance

0 irrin out

QS S ST

reversible out inQ T S S

1317.05.2020

Page 14: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 conversion: Minimal energy demand

revt out out in inP H TS H TS

0 revin out out in tH H T S S P

revt out inP G G „Gibbs energy “

R R RG H T S

from last slide:

> 0 = „energy supply needed“< 0 = „energy released“

1417.05.2020

Page 15: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 conversion: ThermodynamicsReaction proceeds without energy supply ifGibbs Energy

reactants

products

17.05.2020 15

Page 16: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 conversion: Thermodynamics

CO2

+ CxHyOz

H2O

Gibbs energy

Molecule State / kJ/mol

O g 232

H g 203

C (Diamant) s 2,9

H2 g 0

O2 g 0

C (Graphit) s 0

NH3 g -16

CH4 g -51

CO g -137

CH3OH l -162

C2H5OH l -175

H2O g -229

H2O l -237

SO2 g -300

SO3 g -371

CO2 g -394H2SO4 l -690

0f G

1617.05.2020

Page 17: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

Minimal energy demand for CO2 conversionProduct

Methane CH4 801Acetlyene C2H2 1227Ethen C2H4 1314Ethane C2H6 1442Propane C3H8 2074Butane C4H10 2703Octane (l) C8H18 5219Ethanol (l) C2H6O 1301

CO2 conversion starting from CO2 + water= inverted combustion= intrinsically energy-demanding 17

Page 18: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

Minimal energy demand: CO2 conversion vs. CO2 captureProduct

Methane CH4 801 148 5,4Acetlyene C2H2 1227 296 4,1Ethen C2H4 1314 296 4,4Ethane C2H6 1442 296 4,9Propane C3H8 2074 445 4,7Butane C4H10 2703 593 4,6Octane (l) C8H18 5219 1186 4,4Ethanol (l) C2H6O 1301 296 4,4

CO2 conversion starting from CO2 + water= 4-5 times the minimal energy demand of direct air capture

18

Page 19: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

At the end of this lecture, you will be able to …

analyze the thermodynamics of carbon capture & utilization (CCU)

• distinguish services offered by CCU

• evaluate CCU pathways based on the functional unit

19

Page 20: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

Good news for CCU : We do not care about thermodynamics

Oil39%

Gas21%

Electricity7%

Wood10%

District heating4%

Solar thermal0%

Heat pumps18%

Other1%

Residential Heating in CH (2017)

Data source: Bundesamt für Statistik

20

Page 21: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

The vision: A sustainable world

17.05.2020 21

Page 22: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

https://www.dbb-nrw.de

https://www.bayika.de https://www.ingenieur.de

https://www.studium-ratgeber.de

A sustainable world is more than clean electricity

22

Page 23: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

https://www.dbb-nrw.de

https://www.bayika.de https://www.ingenieur.de

https://www.studium-ratgeber.de

CO2 utilization can contribute todefossilization of the material world

A sustainable world is more than clean electricityThe next challenge:

Defossilization of the material world

2317.05.2020

Page 24: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversion: 1. Inverting combustionEnergy

Chemicals & fuels

O = C = O

+ H2O

2417.05.2020

Page 25: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversion: 2. More efficient chemistryEnergy

Reactants

Chemicals & fuels

O = C = O

2517.05.2020

Page 26: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversion: 3. MineralizationEnergy

minerals

O = C = O

2617.05.2020

Page 27: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversionEnergy

Reactants

minerals

Chemicals & fuels

O = C = O

+ H2O

2717.05.2020

Page 28: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversion: 1. MineralizationEnergy

minerals

O = C = O

(Mg/Ca)XOYSiz + CO2 α (Mg/Ca)CO3+ β SiO2

Heat

HesamOstovari

storage utilization

2817.05.2020

Page 29: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

https://doi.org/10.1039/D0SE00190B

29

Page 30: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

The carbon footprint of CO2 mineralization to cement substitutes

stor

age

utiliz

atio

n30

Page 31: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

The carbon footprint of CO2 mineralization to cement substitutes

stor

age

utiliz

atio

n

• CO2 mineralization combines storage + utilization• GHG savings possible – even today !• benefit from substitution of current materials• product development crucial

31

Page 32: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Global cement production

Status Quo:• Cement Market:

4.5 Gt/year

• CO2e emissions: 3.6 Gt CO2e/year

Miller, Vanderley Pacca, Horvath, (2018): Cement and Concrete Research 114, 115–124.

3217.05.2020

Page 33: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversion: 2. More efficient chemistryEnergy

Reactants

Chemicals & fuels

O = C = O

3317.05.2020

Page 34: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2-based polymers: Project “Dream Production“

Scrubbing and supply of CO2

Process development and conversion of CO2

Fundamental researchLife Cycle Assessment

Production and testing of polyurethanes with CO2

von der Assen, Bardow, Green Chem., 2014, 16, 3272

Niklas von der Assen

3417.05.2020

Page 35: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Chemical conversion of CO2: Dream Production

Energy

CO2

Epoxide

Polyols

Langanke et al., Green Chem.,2014,16,1865–1870

3517.05.2020

Page 36: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Chemical conversion of CO2: Dream Production

Energy

CO2

Epoxide

Polyols

Langanke et al., Green Chem.,2014,16,1865–1870

3617.05.2020

• CO2 replaces part of epoxides• better catalysis & reaction engineering

allows to produce the desired product properties

Page 37: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

Dream Production: Life-cycle assessment

conventional polyol

kg CO2-eq /

(1.00 kg polyol +0.36 kWh electricity)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CO2-based polyol

3.57

−0.47+0.08 3.03

Substitution ofraw materials

−0.15

CO2capture

3.5

Epoxides Epoxides

Epoxides

von der Assen, Bardow, Green Chem., 2014, 16, 3272

37

Page 38: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

Dream Production: Life-cycle assessment

conventional polyol

kg CO2-eq /

(1.00 kg polyol +0.36 kWh electricity)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CO2-based polyol

3.57

−0.47+0.08 3.03

Substitution ofraw materials

−0.15

CO2capture

3.5

Epoxides Epoxides

Epoxides

1 kg CO2 as feedstock can save

3 kg of CO2 emissions

von der Assen, Bardow, Green Chem., 2014, 16, 3272

38

Page 39: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Conclusions from CO2-based polymers

CO2 can substitute fossil resourcesand thereby reduce GHG emissions today

CO2 avoided can exceed the amount of CO2 utilized

more CO2-based polymers are becoming available(e.g. elastomers, see Meys, Kätelhön, Bardow, Green Chem., 2019, 21, 3334)

3917.05.2020

Page 40: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Global polyurethane production

Status Quo:• polyurethane market:

33 Mt /year

• CO2e emissions: 164 Mt / year

R Geyer, JR Jambeck, KL Law. Production, use, and fate of all plastics ever made. Sci. Adv., 2017Zheng, Suh, "Strategies to reduce the global carbon footprint of plastics." Nature Climate Change (2019)

The potential for CO2–based polyurethanes:

• 20% CO2e reduction= 33 Mt CO2e/year

4017.05.2020

Page 41: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversion: 3. Inverting combustionEnergy

Chemicals (& fuels)

O = C = O

+ H2O

4117.05.2020

Page 42: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2 Utilization in the Chemical Industry

What is the large-scale potential of CCU in the chemical industry ?

20 basic chemicals = 75% of CO2 emissions of chemical industry

ArneKätelhön

RaoulMeys

Sarah Deutz

4217.05.2020

Page 43: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Methodology for determining CO2-Mitigation Potential

• Best Available Fossil Technologies• CO2-based production

(high- and low-TRL*) • Industrially validated database• 160 process with

engineering-level data

Mass & Energy Balances+ CO2 emissions

What is the large-scale potential of CCU in the chemical industry ?

20 basic chemicals = 75% of CO2 emissions of chemical industry

*TRL = Technology Readiness Level

Process Flowsheets

4317.05.2020

Page 44: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Methodology for determining CO2-Mitigation Potential

Superstructure modelwith 160 processes

s.t. Demand for 20 basic chemicals in 2030Given carbon footprint of electricity

min Greenhouse Gas emissions

4417.05.2020

Page 45: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Today: Fossil-based chemical industry

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019https://doi.org/10.1073/pnas.1821029116

4517.05.2020

Page 46: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2-based chemical industry

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

4617.05.2020

Page 47: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

• mass flows x 2.9• need for massive water supply

CO2-based chemical industry

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

4717.05.2020

Page 48: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Life cycle: Fossil-based vs CO2-based chemical industry

4817.05.2020

Page 49: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Life cycle: Fossil-based vs CO2-based chemical industry

• Chemically identical products identical use phase and end-of-life no benefit from temporary storage (!!!) benefit change in raw materials & production

4917.05.2020

Page 50: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2-Mitigation Potential of CCU in the Chemical Industry

• CCU can lead to practically

carbon-neutral chemical industry

• GHG savings require

low-carbon electricity

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

5017.05.2020

Page 51: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2-Mitigation Potential of CCU in the Chemical Industry

• CCU can lead to carbon-neutral

chemical industry

• GHG savings require

low-carbon electricity

additional electricity

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

5117.05.2020

Page 52: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Electricity need for CCU in the Chemical Industry

Cur

rent

glob

al e

lect

ricity

• GHG savings require a lot of

low-carbon electricity

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

5217.05.2020

Page 53: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Thermodynamics of CO2 conversionEnergy

Reactants

minerals

Chemicals & fuels

O = C = O

+ H2O

• CO2 utilization can provide many services • CO2 can reduce GHG emissions

5317.05.2020

Page 54: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

At the end of this lecture, you will be able to …

analyze the thermodynamics of carbon capture & utilization (CCU)

distinguish services offered by CCU

• evaluate CCU pathways based on the functional unit

54

Page 55: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

The functional unit

55

Page 56: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

The functional unit – definition (ISO 14040)

“A system may have a number of possible functionsand the one(s) selected for a study depend(s) on the goal and scope of the LCA.

The functional unit defines the quantification of the identified functions (performance characteristics) of the product. The primary purpose of a functional unit is to provide a reference to which the inputs and outputs are related. This reference is necessary to ensure comparability of LCA results. Comparability of LCA results is particularly critical when different systems are being assessed, to ensure that such comparisons are made on a common basis.”

56

Page 57: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Electricity need for CCU in the Chemical Industry

Cur

rent

glob

al e

lect

ricity

• GHG savings require a lot of

low-carbon electricity

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

Goal & Scope:

use renewable energyto most reduce GHG emissions

Goal & Scope:

produce all chemicalswith minimal environmental impacts

5717.05.2020

Page 58: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Power-to-CCU or Power-to-Something else? Renewable energies = limited resource

Sternberg, Bardow, Energy Environ. Sci., 2015, 8, 389

Which Power-to-X routeuses electricity best?

AndréSternberg

5817.05.2020

Page 59: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

P2X-EfficiencyWhich Power-to-X route uses electricity best?

P2X-Efficiency =

GHGP2X GHGfossil

GHGReduction = GHGfossil − GHGP2X

1 MWh

electricityConventional

processproductPower-to-X (P2X)process

Sternberg and Bardow, Energy Environ. Sci., 2015,8, 389-400.

5917.05.2020

Page 60: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Power-to-Chemicals vs Power-to-X

• GHG savings require a lot of

low-carbon electricity

• Declining efficiency

• Power-to-Chemicals often less efficient

than Power-to-Heatand Power-to-Mobility

• but there are high efficiency opportunities

Sternberg, Bardow, Energy Environ. Sci., 2015, 8, 389Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

6017.05.2020

Page 61: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

Power-to-Chemicals vs Power-to-Cement

• GHG savings require a lot of

low-carbon electricity

• Declining efficiency

• Power-to-Chemicals often less efficient

than Power-to-Heatand Power-to-Mobility

• but there are high efficiency opportunities

Sternberg, Bardow, Energy Environ. Sci., 2015, 8, 389

Kätelhön, Meys, Deutz, Suh, Bardow, PNAS, 2019

6117.05.2020

Page 62: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

• Power-to-Chemicals from CO2 and H2O

intrinsicallyless efficient

than Power-to-CCS

Power-to-Chemicals vs Power-to-CCS

6217.05.2020

Page 63: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

https://www.dbb-nrw.de

https://www.bayika.de https://www.ingenieur.de

https://www.studium-ratgeber.de

Cement sector• Giga-ton potential• Challenge:

The right productfor market uptake

Chemicals• High value opportunities

for economicsand the environment

• Large-scale chemicalsintrinsically inefficient

… BUT:

Steel sector

CO2‘s contribution to defossilization of the material world ?

6317.05.2020

Page 64: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

... is more than clean electricity

... is more than CO2-neutral

The vision: A sustainable world

6417.05.2020

Page 65: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2-based fuels OME1: NOx & soot trade-off

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 100:0

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 35:65 100:0

Deutz, Bongartz, Heuser, Kätelhön, Schulze Langenhorst, Omari, Walters, Klankermayer, Leitner, Mitsos, Pischinger, Bardow, Energy Environ. Sci., 2018, 11, 331

6517.05.2020

Sarah Deutz

Page 66: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

CO2-based fuels OME1: NOx & soot trade-off

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 100:0

Euro 6 NOx level

Filte

r Sm

oke

Num

ber /

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ind. spec. NOx / g/kWh0.0 0.2 0.4 0.6 0.8 1.0

OME1: Diesel (vol. %) 0:100 35:65 100:0

Chemically differing fuel overcomes NOx & soot trade-off

Deutz, Bongartz, Heuser, Kätelhön, Schulze Langenhorst, Omari, Walters, Klankermayer, Leitner, Mitsos, Pischinger, Bardow, Energy Environ. Sci., 2018, 11, 331

6617.05.2020

Sarah Deutz

Page 67: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

||

The vision: A sustainable worldA sustainable world needs:1. clean electricity 2. a lot of clean electrictiy3. seriously, an awful lot of clean electricity

• Invest clean electricity where most efficient

• CO2 use is often not first choice to solve climate changebut CO2 provides a sustainable carbon feedstock with potential climate benefits:

Identify markets for products from CO2 mineralization Identify CO2-based chemicals with high benefits Exploit benefits of CO2-utilization beyond climate change Explore synergies with biomass & other carbon cycles

6717.05.2020

Page 68: Lecture 13: Carbon Capture and Utilization...CO2conversion: Thermodynamics CO2 + CxHyOz H2O Gibbs energy Molecule State / kJ/mol O g 232 H g 203 C (Diamant) s 2,9 H2 g 0 O2 g 0 C (Graphit)

|| 17.05.2020

At the end of this lecture, you will be able to …

analyze the thermodynamics of carbon capture & utilization (CCU)

distinguish services offered by CCU

evaluate CCU pathways based on the functional unit

68