lecture 13. fatigue and fractureaml883.wdfiles.com/local--files/notes/lecture13.pdfaml 883...

31
 AML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan Email: [email protected] Room No. MS 207/A-3 Phone: 1340

Upload: others

Post on 03-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

AML 883 Properties and selection of engineering materials

LECTURE 13. Fatigue and fracture

M P GururajanEmail: [email protected]

Room No. MS 207/A­3 Phone: 1340

Page 2: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Announcement

Problem sheet 4 (Strengthening mechanisms) is up. One more will also be up in a couple of days – 

For Minor I, all the five problem sheets are included in the syllabus.

Page 3: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

    

Initiation­controlled fatigue: S­N curve and some empirical laws

Page 4: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

High­cycle fatigue: S­N curve● Cyclically stress a component● Mean value           and amplitude of stress   

 are the key parameters● Measure number of cycles (N) to cause fracture 

Nf● Plot             versus Nf (S­N) curve● Most tests vary the stress sinusoidally● Fatigue data typically reported in terms of R 

value (which is the ratio of the minimum to the minimum stress)

m

Page 5: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

High­cycle fatigue: S­N curve

Image courtesy: Wiki

Page 6: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Fatigue on endurance limit

● The stress amplitude about zero mean stress, below which fracture does not occur  at all, or occurs after a very large number of cycles:

● Fatigue­limited design: endurance limit plays the role that is equivalent to the yield strength in plastic design (strength—endurance limit materials property charts, for example)

e

Page 7: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Basquin's law

Nfb=C

1

b ,C1

: constants

Page 8: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Coffin's law

c ,C2

: constants

pl=C

2/N

fc

Page 9: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Fatigue regimes

Basquin slope

Coffin slope

0.5

0.07­0.13

Log 

– st

rain

 am

plitu

de

Log – cycles to failure0 4 10

Low­cycle fatigue High­cycle fatigue

Bulk fo the sample plastic

Bulk fo the sample elastic

Page 10: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Goodman's and Miner's law

● Coffin and Basquin: fatigue failure of uncracked components cycled at constant amplitude about a mean stress zero

● Real loading!

mean

Image courtey: wiki

Varying amplitudes

Page 11: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Goodman's and Miner's laws

[1] Releate the stress range for failure under a mean stress to that for failure at zero mean stress: 

Goodman[2] Relate the numbers of cycles at various 

amplitudes to the life: Miner

Page 12: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

    

Propagation controlled fatigue

Page 13: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Cracks and ascertaining their presence

● Cracks – due to welding, casting, rolling, ...● Non­destructive testing: detection of cracks is 

limited by the resolution achievable● Thus, all you know is that, if the cracks are 

present, they are of less than some size, namely, the resolution limit

● Assume that such cracks exist, and desing accordingly!

Page 14: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Fatigue crack growth

c

Applied

Response (K)

Page 15: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Fatigue crack growth

● Load a specimen of given crack length● Define cyclic stress intensity range: 

● The range increses with time under constant cyclic stress 

● This increase is related to the growth of the crack per cycle

K=c1/2

Page 16: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Fatigue loading of cracked components

● Below threshold – growth rate is zero

● Steady­state regime: Paris law (A, m: constants)

● Accelerated growth rate: finally, loading once is sufficient

dc/dN = A Km

Image courtesy: Key to steel homepage

Page 17: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Material indices for fracture­safe design

● Fracture toughness: material property● Manipulate geometry and loads (See Figure 

10.2 for the effect of geometry and loading on stress intensity factor) 

● Make sure that there are no cracks beyond a given size

● Choose materials with a given fracture toughness

Page 18: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Fracture­safe design

● Rule of thumb: avoid materials with fracture toughness less than 15 M Pa per sq. root metre

Page 19: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Strength­toughness chart

Image courtesy: Cambridge University site

Page 20: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Fracture­safe design

● Most metals and alloys pass (except few like cast iron)

● Ceramics don't● How about polymers?● What is happening?

Page 21: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Design limitations

● Load limited design: structural member will fail if stress exceeds a specific value: K1c is the key

● Energy limited design: Gc (“toughness”, or critical strain energy release rate) is the key (metals, polymers, and many composites pass – ceramics don't)

● Displacement limited design:  (K1c/E) is they key (polymers are the best!)

Page 22: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Testing for toughness

● Tear test● Impact test (Charpy and Izod)

Page 23: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Surface energy

● Surfaces in solids cost energy● Bond breaking model works● Cohesive energy is a good indicator of surface 

energies● Surface energies are of the order of 1 J per 

square metre● Typical materials Gc is larger than twice this 

value – reason is the plasticity

Page 24: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Brittle 'cleavage' fracture

Image courtesy: http://ctho.ath.cx/pics/new/2007­03­28/

Page 25: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Brittle fracture

● Glasses and ceramics● Yield strength is very high● No relief of stresses at the crack tip● Near the tip stress reaches the ideal strength● Atomic bonds are torn● Crack propagates at the velocity of sound in the 

medium● Brittle materials – fail with a bang but with little 

notice! 

Page 26: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Ductile fracture

Image courtey: wiki

Page 27: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Ductile fracture

Image courtesy: wiki

At inclusions

Page 28: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Ductile fracture

● Polymers: crazing● Crazes nucleate, grow and lead to failure● Ductile fracture

Page 29: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

A couple of disasters!

● Aluminium alloy – failed by ductile fracture leading to a cup and cone!

● Image courtesy: wiki

Page 30: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

Challenger disaster

Images courtey: wiki

Page 31: LECTURE 13. Fatigue and fractureaml883.wdfiles.com/local--files/notes/Lecture13.pdfAML 883 Properties and selection of engineering materials LECTURE 13. Fatigue and fracture M P Gururajan

   

A Feynman quote

I took this stuff that I got out of your seal and I put it in ice water, and I discovered that when you put some pressure on it for a while and then undo it, it 

does not stretch back. It stays the same dimension. In other words, for a few seconds at least and more seconds than that, there is no 

resilience in this particular material when it is at a temperature of 32 degrees.

­­ Richard Feynman