lecture 16 pvd

Upload: nikhilkn

Post on 14-Apr-2018

228 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 Lecture 16 PVD

    1/14

  • 7/27/2019 Lecture 16 PVD

    2/14

    2

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16

    Physical Vapor Deposition I

    Definition for Physical Vapor Deposition (PVD)

    -molecules are removed from a source, transported in vacuum, anddeposited on substrate (physi-sorption)

    - in contrast chemical vapor deposition (CVD) involves chemical reaction

    - need vacuum: the pressure usually < 10-2 Torr. (760 Torr = 1 atm)

    At 1 atm : P = 760Torr Lm=

    5 103

    760 6.6 10

    6cm 66nm

    At 1 mTorr : Lm=

    5 103

    103

    = 5cm

    At 10-5Torr : L

    m=

    5 103

    105

    = 500cm = 5 meters!

    Lmcm( ) =

    5 103

    P,

    P = Pressure in Torr

    Need vacuum in order to:

    - prevent incorporation of background molecules (oxygen, etc.)

    - minimize intermolecular collision (mean free path, Lm) so that moleculescombine only when they reach the substrate

    moleculeor atom

    source

    d < Lm substrate

  • 7/27/2019 Lecture 16 PVD

    3/14

    3

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16

    Physical Vapor Deposition I

    How is low pressure achieved?

    1 atm = 760 Torr.

    Mechanical pump (~10-3 Torr)

    TurboMolecular Pump (~10-6 Torr)

    Cryogenic Pump (~10-9 Torr)

    >50,000 rpm!

    liquid He cooled

    down to ~ 10K!

  • 7/27/2019 Lecture 16 PVD

    4/14

    4

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16PVD Techniques

    A.Evaporation

    - evaporation (from solid) or sublimation (solid)

    - material held in a boat or crucible

    - heat: direct electric current through resistor

    indirect high current e-beam

    local heating by e-beam less contamination

    B.Molecular Beam Epitaxy (MBE)

    - specially designed effusion cell (thermal evap)

    - can also use plasma and low-pressure gases

    - deposit material with atomic control (layer-by-layer)

    C.Plasma-Assisted Deposition

    - DC or RF sputtering

    reactive sputtering

    magnetron sputtering

  • 7/27/2019 Lecture 16 PVD

    5/14

    5

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16Vapor Pressure

    Fig. 12-1 Vapor pressure curves for selected materials.

    W

    Ta

    MoNi

    Cr

    Au

    Melting Pt.

    typical requiredvapor pressure

    Al

    use

    evaporation

    usesputtering

  • 7/27/2019 Lecture 16 PVD

    6/14

    6

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16Thermal Evaporation

    Crucible Basket Coated Boat

    Conical BasketCoils

    Note angulardependence ofevaporated material fromvarious sources

    /s

    90 1800

    material material

    0

    90

    180

    substratebad designnon-uniform film better approach

  • 7/27/2019 Lecture 16 PVD

    7/14

    7

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16e-Beam Evaporation

    Bent Beam Approaches:Bent Beam Approaches:

    -no back-deposition from crucible to e-gun minimize contamination

    - also more compact

    Indirectly Heated:Indirectly Heated:local heating by electron beam less contamination

    - e-beam current (usually in hundred mA), electron energy ~1-3 keV

    InlineInline ApproachApproach

    Target material

  • 7/27/2019 Lecture 16 PVD

    8/14

    8

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16Molecular Beam Epitaxy

    Fig. 12-6

    A basic MBE

    deposition system.

    Dinger [13].

    Molecular beam epitaxy (MBE) uses evaporation but

    - low pressure (

  • 7/27/2019 Lecture 16 PVD

    9/14

    9

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16MBE Systems

    Veeco MBE Systems

    thermally isolatedeffusion cell

    (allow high temperature)

    Crucibles - conical evap. profile

    production: 4x4 wafersR&D machine

  • 7/27/2019 Lecture 16 PVD

    10/14

    10

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16Sputter Deposition

    Physical bombardment of heavy and inert atoms (Ar) causes atoms or

    molecules at target to be removed

    example:RFsputtering Ar Ar+ e-

    substrate

    target

    chamberwall

    ~

    C

    1) RF voltage creates a plasma ofAr+ and e-

    2) target:plasma capacitance has less

    area that wall:plasma capacitance

    3) therefore plasma (voltage drop)

    occurs near the target

    ~10 mTorr

    substrate

    target

    chamberwall

    ~

    C

    4) e- smaller mass than Ar+ move quicklyenough in RF (MHz) field to reach the target

    5) these electrons build up -DC voltage on

    target (~100s V)

    6) negative voltage causes Ar+ acceleration

    toward target and sputtering of material

    deposited material

  • 7/27/2019 Lecture 16 PVD

    11/14

    11

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16Sputter Deposition Equipment

    3 sputtertargets

    RF matching network

    Loadlock

    power/controls

  • 7/27/2019 Lecture 16 PVD

    12/14

    12

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16Sputtering Techniques

    (A) Sputter Deposition Ar gas: easy to achieve plasma (i.e. breakdown) & high mass (~40

    AMU)

    DC or RF power can generate plasma

    DC only for conductive target, RF for both conductive & insulatingtargets

    Efficient: no major differences for conductive target material

    (B) Reactive Sputtering

    If compound or alloy not available, it can be formed by chemical reaction

    Examples: Si target + reactive gas N* (N2) Si3N4

    (C) Planar Magnetron Sputtering (electron cyclotron)

    Permanent magnet increases the plasma density

    100 to 500 gauss

    High deposition rate (> sputtering or evaporation)

  • 7/27/2019 Lecture 16 PVD

    13/14

    13

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16Sputtering Techniques

    N

    S

    N

    S

    N

    S

    N

    S

    S

    N

    S

    N

    S

    N

    material

    e-

    e-

    magnetic field increases path length for electron- increased ionization of ArAr++ e-

    -increasedflux of Ar+and sputter rate

  • 7/27/2019 Lecture 16 PVD

    14/14

    14

    Copyright A.J. StecklJ.C. Heikenfeld

    All rights reserved2007

    Lecture 16

    Calendar

    Dec. 7Dec. 6

    Final Exam

    8:00AM

    Dec. 5

    WEEK

    Dec. 4

    FINALS

    Dec. 3

    Nov. 29

    Q & A

    899 Rhodes Hall

    Nov. 27

    Physical VaporDeposition

    Lecture 16

    Nov. 22

    No School

    Thanksgiving

    Nov. 20

    Lithography/

    Resist

    Lecture 15

    Nov. 15

    Etching

    Lecture 14

    Nov. 13

    QUIZ #2

    Nov. 8

    Ion Implantation:Dose/Damage

    Lecture 13

    Nov. 6

    Ion Implantation:Mechanisms

    Lecture 12

    Nov. 1

    Diffusion:

    npn BJT

    Lecture 11

    Oct. 30

    Diffusion in Si

    Lecture 10

    FRIDAYTHURSDAYWEDNESDAYTUESDAYMONDAY