lecture 18, y23 distribution

11
Slide 1 of 11 Today’s lecture Y  23 distribution Literature: G. Dissertori, M. Schmelling, Phys. Lett. B 361 (1995) 167-178 A. Banfi, G. Salam, G. Zanderighi, JHEP 01 (2 002) 018 A.Heister et al., Eur.Phys.J. C35 (2004) 457 G.Abbiendi at al., Eur. Phys. J. C40 (2005) 287 B. Adeva et al., Z. Phys C55 (1992) 39 | 1|7/25/11

Upload: grisha

Post on 07-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 1/11

Slide 1 of 11

Today’s lecture

Y  23 distribution

Literature:

G. Dissertori, M. Schmelling, Phys. Lett. B 361 (1995) 167-178

A. Banfi, G. Salam, G. Zanderighi, JHEP 01 (2002) 018

A.Heister et al., Eur.Phys.J. C35 (2004) 457

G.Abbiendi at al., Eur. Phys. J. C40 (2005) 287

B. Adeva et al., Z. Phys C55 (1992) 39

|

1|7/25/11

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 2/11

Slide 2 of 11

Y  23 distribution. Shifting NLL result 

f  Hu 0L = 0, u 0 =32

u  = ln1 y 

f  Hu L = - y „ R I y M

„  y ,or alternatively one can introduce the logarithmic distribution:

but let's consider the tree-level kinematic constrain: y  = H1 - x 1L x 2

 x 3for odered energy fractions: x i   =

2 E i  

t , x 1 > x 2 > x 3

for the symmetric point  x i   =23 , y  =

13 thus u min = ln3 º 1.1 < u 0

Let's simply shift the distribution in order to have the correct zero position: f  èHu L = f u - ln3 +

32

.

Usual prescription to take into account kinematic constrans is slightly different. Let's

imagine we have an event shape "y" andthe NLL cumulative distribution R(a,L), where L=ln1/y is the "large log", but  y  < y max (for 

example, thrust 1-T<1/2), then:

R I y M = ADq I y ME2 = expC-2 C F  ‡ yt 

t  d m2

 m2

as I m2M2 p

lnt 

 m2 -32

G -„ R I M

„  y = C F  

as I y t Mp y 

ln1 y 

-32

R I y M,the differential distribution is

L Ø ln1 y 

-1

 y max+ 1 so that all radiative corrections disappear at  y  = y max

|

2|7/25/11

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 3/11

Slide 3 of 11

Y  23 distribution. NLL accuracy

2 4 6 8 10

0.00

0.05 

0.10

0.15 

0.20

-lnH y 23L

    y     2     3

       d    s           ê       d    y     2     3

BSZ result 

CKKW numeric

CKKW analytic

 Analytic shifted

as  in "Z pole scheme"

|

3|7/25/11

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 4/11

Slide 4 of 11

Y  23 distribution. First nontrivial corrections

2 p

as  C F  

ds

sH0L dy = -7 + 12 b -

3 y  + 16 y -

I1 - y M I12 y - 12 b y - 5 y 2MI2 - 2 b - y M2 +

6 - 8 y + 2 y 2

1 - b + y 

+b 2 + 2 b y + 4 y 2

1 - y -

4 y 

1 - y LogC1 + y 

1 - y G -

1

 y 

1 + y 

1 - y LogC2 - 2 b - y 

2 - 2 b + y G

+

2

 y  LogCy  - 1 + b 

 y  + 1 - b G + 2

1 + y 

1 - y  LogC1 - y 

2 G +

2 + y 

 y  LogC21 - y 

2 - b G

+6 - 10 y + 8 y 2

1 - y LogC2 2 - 2 b - y 

1 - y G -

4 y I1 - y M LogC y 

1 - b G

-1 + y 

1- y 

LogA2 b y  - y E + I8 - 4 y MLogC 2 y 

1-

b +

 y 

G,

b  = 1 + y 

4-

 y 

2+

 y 2

16

ds

sH0L dy=

as  C F  

2 p‡ dx1 dx2

 x 12

+ x 22

H1 - x 1L H1 - x 2L dI y - y H x i  LM, y  = H1 - x 1L x 2

 x 3for odered energy fractions: x i   =

2 E i  

t , x 1 > x 2 > x 3

six sectors

|

4|7/25/11

|

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 5/11

Slide 5 of 11

Y  23 distribution. Numerical test 

|

5|7/25/11

|

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 6/11

Slide 6 of 11

Y  23 distribution. log-R matching

R I y M = I1 + C m am M S a, ln

1 y 

+ D Ia, y M,

lnR = ln S + R H1L -IG 12 aL2+ G 11 aLM,

SHa, L L = exp ‚n =1

‚m =1

n +1

G nm an L m 

D Ia, y M = ‚i  

ai  D i  I y M, so that   D i  H0L = 0.

resummation factor 

perturbative (power) correction

lnR = ln S - ‚n =1

2

‚m =1

n +1

G nm an L m 

+ R H1L + R H2L -12@R H1LD2,

hence R  = 1 + R H1LI y M + O Ia2M

hence R  = 1 + R H1LI y M + R H2LI y M + O Ia3M

Instead of finding C m  and D, one can use the following log-R matching

or alternatively (R-matching): R I y M = A1 + C m am 

+ D Ia, y ME S a, ln1 y 

=A1 + R H1L - IG 12 aL2+ G 11 aLME S a, ln

1 y 

,

|

6|7/25/11

|

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 7/11

Slide 7 of 11

Y  23 distribution. log-R matching

|

7|7/25/11

| / /

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 8/11

Slide 8 of 11

L3 and OPAL data at Z pole

0.00 0.05 0.10 0.15 0.20 0.25 0.300.01

0.1

1

10

100

 y 23

       d    s           ê       d    y     2     3

L3 1992

OPAL 2005 

NLO+NLL

|

8|7/25/11

| /2 /11

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 9/11

Slide 9 of 11

ALEPH data in Z-pole

2 4 6 8 10-0.05 

0.00

0.05 

0.10

0.15 

0.20

0.25 

0.30

0.35 

-lnH y 23L

    y     2     3

       d    s           ê       d    y     2     3

BSZ result 

logHRL-matching as =0.1176

|

9|7/25/11

10|7/25/11

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 10/11

Slide 10 of 11

ALEPH data all energies

|

10|7/25/11

11|7/25/11

8/6/2019 Lecture 18, Y23 distribution

http://slidepdf.com/reader/full/lecture-18-y23-distribution 11/11

Slide 11 of 11

Analytic result for different energies

0 2 4 6 8 10

0.00

0.05 

0.10

0.15 

0.20

0.25 

-lnH y 23L

    y     2     3

       d    s           ê       d    y     2     3

91.2 133 161 172

183 189 200 206

|

11|7/25/11