lecture 1a -- maxwell's equations · maxwell’s equations scaling properties of maxwell’s...

18
9/5/2019 1 Advanced Computation: Computational Electromagnetics Maxwell’s Equations Outline Maxwell’s equations Physical Boundary conditions Preparing Maxwell’s equations for CEM Scaling properties of Maxwell’s equations Slide 2 1 2

Upload: others

Post on 09-Apr-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

1

Advanced Computation:

Computational Electromagnetics

Maxwell’s Equations

Outline

• Maxwell’s equations

• Physical Boundary conditions

• Preparing Maxwell’s equations for CEM

• Scaling properties of Maxwell’s equations

Slide 2

1

2

Page 2: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

2

Slide 3

Maxwell’s Equations

Born

Died

June 13,1831Edinburgh, Scotland

November 5, 1879Cambridge, England

James Clerk Maxwell

Sign Conventions for Waves

Slide 4

To describe a wave propagating the positive z direction, we have two choices:

, cosE z t A t kz

, cosE z t A t kz

Most common in engineering

Most common science and physics

Both are correct, but we must choose a convention and be consistent with it.  For time‐harmonic signals, this becomes

expE z A jkz

expE z A jkz

Negative sign convention

Positive sign convention

3

4

Page 3: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

3

Time‐Harmonic Maxwell’s Equations

Slide 5

Time‐Domain

0

v

BD E

t

DB H J

t

Frequency‐Domain(e+jkz convention)

0vD E j B

B H J j D

Frequency‐Domain(e-jkz convention)

0vD E j B

B H J j D

Summary of Sign Conventions

Slide 6

5

6

Page 4: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

4

Lorentz Force Law

Slide 7

F qE qv B

Magnetic ForceElectric Force

One additional equation is needed to completely describe classical electromagnetism...

Gauss’s Law

Slide 8

Electric fields diverge from positive charges and converge on negative charges.

vD

yx zDD D

Dx y z

If there are no charges, electric fields must form loops.

7

8

Page 5: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

5

Gauss’s Law for Magnetism

Slide 9

Magnetic fields always form loops.

0B

yx zBB B

Bx y z

Consequence of Zero Divergence

Slide 10

The divergence theorems force the 𝐷 and 𝐵 fields to be perpendicular to the propagation 

direction 𝑘 of a plane wave.

k D

0

0jk r

D

de

d

no charges

0

0

jk d

k d

k

k

k B

0

0jk r

B

be

b

no charges

0

0

jk b

k b

k

k

9

10

Page 6: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

6

Ampere’s Law with Maxwell’s Correction

Slide 11

DH J

t

ˆ ˆ ˆy yx xz zx y z

H HH HH HH a a a

y z z x x y

Circulating magnetic fields induce currents and/or time varying electric fields.

Currents and/or time varying electric fields induce circulating magnetic fields.

H

DJ

t

Faraday’s Law of Induction

Slide 12

BE

t

ˆ ˆ ˆy yx xz zx y z

E EE EE EE a a a

y z z x x y

Circulating electric fields induce time varying magnetic fields.Time varying magnetic fields induce circulating electric fields.

E

B t

11

12

Page 7: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

7

Consequence of Curl Equations

Slide 13

The curl equations predict electromagnetic waves!!

Electric Field

Magnetic Field

The Constitutive Relations

14

Electric Response

ED

Magnetic Response

HB

• Electric field intensity (V/m)• Initial electric “push.”• Induced electric field.• Electric energy in vacuum.

• Permittivity (F/m)• Measure of how well a material stores electric energy.

• Electric flux density (C/m2)• Pretends as if all electric energy is displaced charge.

• Includes electric energy in vacuum and matter.

• Magnetic field intensity (A/m)• Initial magnetic “push.”• Induced magnetic field.• Magnetic energy in vacuum.

• Permeability (H/m)• Measure of how well a material stores magnetic energy.

• Magnetic flux density (Wb/m2)• Pretends as if all magnetic energy is tilted magnetic dipoles.

• Includes magnetic energy in vacuum and matter.

13

14

Page 8: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

8

Material Classifications

15

Linear, isotropic and non‐dispersive materials:

Dispersive materials:

D t E t

Anisotropic materials:

D t t E t

D t E t

Nonlinear materials:

1 2 32 30 0 0e e eD t E t E t E t

We will use this almost exclusively

A key point is that you can wrap all of the complexities associated with modeling strange materials into this single equation. This will make your code more modular and easier to modify.  It may not be as efficient as it could be though.

All Together Now…

Slide 16

Divergence Equations

0

v

B

D

DH J

t

BE

t

Curl Equations

Constitutive Relations

D t t E t

B t t H t

What produces fields

How fields interact with materials means convolution

means tensor

15

16

Page 9: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

9

Maxwell’s Equations in Cartesian Coordinates (1 of 4)

Slide 17

Vector Terms

ˆ ˆ ˆ

ˆ ˆ ˆ

x x y y z z

x x y y z z

E E a E a E a

D D a D a D a

ˆ ˆ ˆ

ˆ ˆ ˆ

x x y y z z

x x y y z z

H H a H a H a

B B a B a B a

ˆ ˆ ˆx x y y z zJ J a J a J a

Divergence Equations

0

0yx z

D

DD D

x y z

0

0yx z

B

BB B

x y z

Maxwell’s Equations in Cartesian Coordinates (2 of 4)

Slide 18

Constitutive Relations

D E

ˆ ˆˆ ˆˆˆy y yx x xx x xy y xz zz z zx x zy y zx x yyx y z zy zy zzD D a Ea E ED a E E EE aa a E E

y yx x y

z zx x

x xx x xy y xz z

zy y zz z

y y yz zD E E

D E

D E E E

E

E E

B H

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

B H H H

B H H H

B H H H

17

18

Page 10: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

10

Maxwell’s Equations in Cartesian Coordinates (3 of 4)

Slide 19

Curl Equations

BE

t

ˆ ˆ ˆ ˆ ˆ ˆy yx xz zx y z x x y y z z

E EE EE Ea a a B a B a B a

y z z x x y t

ˆ ˆ ˆˆ ˆˆy xzx x

yx zy

y x zz zy

E E Ba a

E BEa

BE Ea a

y z tx tx ya

z t

yzy xy zz xxBE E

z t

E E BE BE

y z t x xt y

Maxwell’s Equations in Cartesian Coordinates (4 of 4)

Slide 20

Curl Equations

DH J

t

y xzx

zyx zy

y xz

DH HJ

z x tz

H H DJ

x

H D

y

HJ

y t t

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆy yx xz zx y z x x y y z z x x y y z z

H HH HH Ha a a J a J a J a D a D a D a

y z z x x y t

ˆ ˆˆ ˆ ˆˆy x zy xzx xz z

zy y y z

yx

xDH H

a J az x t

H DHa J a

y z t

H H Da J a

x y t

19

20

Page 11: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

11

Alternative Form of Maxwell’s Equations in Cartesian Coordinates (1 of 2)

Slide 21

Alternate Curl Equations

EHt

ˆ

ˆ

ˆ

ˆ

ˆ ˆx zy

y

y xz

yx zzx zy zz

y yxz zx xx xy x

x

z x

zyx yy yz y

z

H EEH EH Ha

z x

E

H Ha

x y

EE Ea

t t t

E Ea

a az

t t

y t

t

t t

yx xz zyx yy y

y yx x zzx zy

y yxz zxx

zz

y

z

x xz

EH EH E

z x tH EH E E

x y t

H EEH E

y z

t

t

t

t t t

t

Alternative Form of Maxwell’s Equations in Cartesian Coordinates (2 of 2)

Slide 22

Alternate Curl Equations

HEt

ˆ

ˆˆ ˆ

ˆ

ˆ x y xz

y

y yxz zx xx xy xz

zy

yx zyx yy yz

x zzx zy zz

x

y

z

E EE HHE Ha aa

x y

E

y z t t t

Ea

z x

HH Ha

HH Ha

t t

t

t

t t

yx

y yx

x

y yx x z

z zxx x

zx zy zz

z zyx yy z

y z

y

x

E HE

HE HE H

z x t

H H

x y t t

E HHE

t

H

t

y t t t

t

z

21

22

Page 12: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

12

Slide 23

Physical Boundary Conditions

Physical Boundary Conditions

Slide 24

23

24

Page 13: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

13

Slide 25

Preparing  Maxwell’s Equationsfor CEM

Simplifying Maxwell’s Equations

Slide 26

0

0

B

D

H D t

E B t

D t t E t

B t t H t

1. Assume no charges or current sources: 0, 0v J

0

0

H

E

H j E

E j H

3. Substitute constitutive relations into Maxwell’s equations:

Note: It is useful to retain μ and ε and not replace them with refractive index n.

0

0

B

D

H j D

E j B

D E

B H

2. Transform Maxwell’s equations to frequency‐domain:Convolution becomes simple multiplication

Note: We have chosen to proceed with the negative sign convention.

25

26

Page 14: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

14

Isotropic Materials

Slide 27

xx xy xz xx xy xz

yx yy yz yx yy yz

zx zy zz zx zy zz

For anisotropic materials, the permittivity and permeability terms are tensor quantities. 

For isotropic materials, the tensors reduce to a single scalar quantity.

0 0 0 0

0 0 0 0

0 0 0 0

Maxwell’s equations can then be written as

r

r

0

0

H

E

0 r

0 r

H j E

E j H

0 and 0 dropped from these equations because they are constants and do not vary spatially.

Expand Maxwell’s Equations

Slide 28

Divergence Equations

r

rr r

0

0yx z

H

HH H

x y z

0 r

0 r

0 r

0 r

yzx

x zy

y xz

E j H

EEj H

y z

E Ej H

z xE E

j Hx y

Curl Equations

r

rr r

0

0yx z

E

EE E

x y z

0 r

0 r

0 r

0 r

yzx

x zy

y xz

H j E

HHj E

y z

H Hj E

z xH H

j Ex y

27

28

Page 15: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

15

Normalize the Magnetic Field

Slide 29

0 rE j H

0 rH j E

Standard form of “Maxwell’s Curl Equations”

Normalized Magnetic Field

377E

nH

0

0

H j H

Normalized Maxwell’s Equations

0 rE k H

0 rH k E

0 0 0k Note:

Equalizes E and H amplitudes•Eliminates j•No sign inconsistency• Just have k0

Starting Point for Most CEM

Slide 30

0

0

0

yzxx x

x zyy y

y xzz z

HHk E

y z

H Hk E

z x

H Hk E

x y

0

0

0

yzxx x

x zyy y

y xzz z

EEk H

y z

E Ek H

z xE E

k Hx y

0

0

negative sign convnetion

positive sign convnetion

j HH

j H

We arrive at the following set of equations that are the same regardless of the sign convention used.

The manner in which the magnetic field is normalized does depend on the sign convention chosen.

29

30

Page 16: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

16

Slide 31

Scaling Properties ofMaxwell’s Equations

Scaling Properties of Maxwell’s Equations

Slide 32

There is no fundamental length scale in Maxwell’s equations.

Devices may be scaled to operate at different frequencies just by scaling the mechanical dimensions or material properties in proportion to the change in frequency.

This assumes it is physically possible to scale systems in this manner.  In practice, building larger or smaller features may not be practical.  Further, the properties of the materials may be different at the new operating frequency.

31

32

Page 17: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

17

Scaling Dimensions

Slide 33

We start with the wave equation and write the parameters dependence on position explicitly.

20 0 r

r

1E r r E r

r

Next, we scale the dimensions by a factor a.

20 0 r

r

1a a E r a r a E r a

r a

The scale factors multiplying the operators are moved to multiply the frequency term.

2

0 0 rr

1E r r E r

r a

1 stretch dimensions

1 compress dimensions

a

a

The effect of scaling the dimensions is just a shift in frequency.

rr

a

Visualization of Size Scaling

Slide 34

fc = 500 MHz

a = 1.0

fc = 1000 MHz

a = 0.5

33

34

Page 18: Lecture 1a -- Maxwell's Equations · Maxwell’s Equations Scaling Properties of Maxwell’s Equations Slide 32 There is no fundamental length scale in Maxwell’s equations. Devices

9/5/2019

18

Scaling  and 

Slide 35

We apply separate scaling factors to  and .

20 0 r

r

1E a E

a

The scale factors are moved to multiply the frequency term.

2

0 0 rr

1E a a E

The effect of scaling the material properties is just a factor in frequency.

35