lecture 22 fet circuit design techniques for rf ...rf applications and wireless communications in...

31
1 Lecture 22 FET Circuit Design Techniques for RF Applications and Wireless Communications In this lecture you will learn: • Circuits for wireless communications • Signal multipliers and mixers • Single-balanced and double-balanced mixers • CMOS RF Oscillators • Analog to digital converters • Digital to analog converters Signal Transmission in Wireless Communications Sound waves Electrical analog signal ADC 0 1 0 1 bits N Digital Output Low noise Amplifier (LNA) Filter N Digital Coder 1 X 2 X DSP QAM signal constellation Mixer or modulator Antenna E&M Radiation Power amplifier (PA) Filter Electrical analog signal M Constellation size: 2 M Information in bits per point in the constellation: 1 X 2 X

Upload: others

Post on 14-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Lecture 22

    FET Circuit Design Techniques forRF Applications and Wireless Communications

    In this lecture you will learn:

    • Circuits for wireless communications• Signal multipliers and mixers• Single-balanced and double-balanced mixers• CMOS RF Oscillators• Analog to digital converters• Digital to analog converters

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Signal Transmission in Wireless Communications

    Sound waves

    Electrical analog signal

    ADC

    010

    1

    bitsNDigital Output

    Low noise Amplifier (LNA)

    Filter

    N

    DigitalCoder

    1X

    2X

    DSP

    QAM signal constellation

    Mixer or modulator

    Antenna

    E&M Radiation

    Power amplifier (PA)

    Filter

    Electrical analog signal

    M

    Constellation size: 2M

    Information in bits per point in the constellation:

    1X

    2X

  • 2

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Signal Reception in Wireless Communications

    Sound waves

    Electrical analog signal

    DAC

    010

    1

    bitsNDigital input

    PA Filter N

    Digitaldecoder

    1X

    2X

    DSP

    QAM signal constellation

    Mixer or demodulator

    Antenna

    E&M Radiation LNA

    Filter

    Electrical analog signal

    1X

    2X

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    RF Mixer or Modulator/Demodulator tX1

    cos lot

    1 2cos sin

    coslo lo

    lo

    X t t X t t

    A t t t

    QAM RF signalsAntenna

    AntennaLNA

    sin lot++

    tX2

    1 2cos sinlo loX t t X t t tX1

    2cos lot 2 sin lot

    tX2

    LPF

    LPF

    BPF oo

    Mixer or modulator

    Mixer or demodulator

    1cos cos cos 22

    1sin sin cos 221cos sin sin 22

    lo lo lo

    lo lo lo

    lo lo lo

    t t t

    t t t

    t t t

  • 3

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Signal Mixers

    cosrf rfv t

    coslo lov t

    cos cos

    cos2 cos

    rf lo rf lo

    lo rfrf lo

    lo rf

    Av v t t

    tA v vt

    Mixer Function:

    Mixer Conversion Gain:

    22

    rf lolo

    rf

    A v v A vv

    Conversion gain = GC =

    Need a strong LO signal to obtain a good conversion gain

    Need nonlinear components to realize voltage mixers and/or multipliers

    lo rf

    rf lo

    lo

    lo rf

    lo rf

    Sidebands

    1X t

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET is Not a Linear Device

    +

    +

    DDV

    1BIASV v t

    R

    2v t

    D dI i t OUT out DD D dV v t V R I i t

    21 2

    221 2 1 2

    2

    2 2

    D D d

    nBIAS TN

    n nB TN n B TN

    i I i tk V v t v t V

    k kV V v t v t k V V v t v t

    2 21 2 1 22n

    nk v t v t k v t v t

    Rough analysis (assuming operation in saturation and n ≈ 0):

    Product term !!

  • 4

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    A Nonlinear FET Small Signal Model

    + gsv t

    -

    Gate

    Source

    Drain m gsg v t

    or

    outv t

    1v t

    2v t++

    22n

    gsk v t R

    +

    +

    DDV

    1BIASV v t

    R

    2v t

    D dI i t OUT outV v t

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    An LC Tank CircuitL

    2

    1

    1 1

    j Lj Lj CZ

    LCj Lj C

    C

    Z

    Very large impedance at resonance when:

    1LC

  • 5

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Signal Mixer: Square Law Mixer

    2

    22

    cos cos2

    cos cos2 2

    cos cos

    nD B rf RF lo lo TN

    n nB TN rf rf lo lo

    n B TN rf rf lo lo

    ki V v t v t V

    k kV V v t v t

    k V V v t v t

    Rough analysis (assuming n ≈ 0):

    + cosB rf rfV v t BIASI

    DDV

    L C

    + coslo lov t

    RF short

    At resonance the impedance of the LC tank is ideally infinite

    1lo rf LC

    D D di t I i t OUT outV v t

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    2 2 2 2 2cos 2 cos 22 4 4

    cos cos

    cos cos

    n n nD B TN rf lo rf rf lo lo

    n rf lo rf lo

    n B TN rf rf lo lo

    k k ki V V v v v t v t

    k v v t t

    k V V v t v t

    FET Signal Mixer: Square Law Mixer

    Rough analysis (assuming n ≈ 0):

    Product term !!

    + cosB rf rfV v t BIASI

    DDV

    L C

    + coslo lov t

    RF short

    At resonance the impedance of the LC tank is ideally infinite

    1lo rf LC

    D D di t I i t OUT outV v t

  • 6

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Drain

    cosrf rfv t coslo lov t

    L C

    The dominant signal components at the outout near the frequency are:

    FET Signal Mixer: Square Law Mixer

    LO

    2

    2

    2

    Re 1 12

    Re 1 12

    Re 1 1

    lo rf

    lo rf

    lo

    j tnout rf lo

    o

    j tnrf lo

    o

    j tm lo

    o

    k j Cv t v v ej

    LC r C

    k j Cv v ej

    LC r C

    j Cg v ej

    LC r C

    2

    2

    nrf lo o

    rf

    nlo o

    k v v r

    vk v r

    Conversion gain = GC

    Not good

    1lo rf LC

    Dominant term

    + gsv t

    -

    Gate

    Source

    m gsg v tor

    outv t

    +

    +

    22n

    gsk v t

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Would the Following Strategy Work for a Mixer?

    +

    DDV

    1BIASV v t

    R

    D dI i t OUT outV v t

    +

    +

    1 1BIASV v t

    2 2BIASV v t

    DDV

    R

    D dI i t OUT outV v t

    2 1 1 2 2A a BIAS BIASV v t V v t V v t

    ?

    M2

    M1

    Since M1 and M2 must always have the same currents, once can show that:

    So that the current will have no (substantial) product term of the voltages v1 and v2

    BIASI+

    RF short

    2v t 2A aV v t

    D dI i t

    (assuming n ≈ 0)

  • 7

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Signal Mixer/Multiplier: Review of a Diff Amp

    BIASI

    DDV

    R

    DDV

    R

    1IV 2IV

    1DI 2DI1OV 2OV

    n

    BIASIIn

    IIn

    BIASIInOOOd

    Idn

    BIASIdn

    BIASTNGS

    nD

    Idn

    BIASIdn

    BIASTNGS

    nD

    BIASDD

    kIVVRk

    VVk

    IVVRkVVV

    Vk

    IVkIVVkI

    Vk

    IVkIVVkI

    III

    42

    42

    4422

    4422

    21

    221

    2121

    2222

    2211

    21

    RIBIAS

    IdV

    RIBIAS

    OdV

    nBIAS kI2

    nBIAS kI2

    Provided:

    212

    IIn

    BIAS VVkI

    Assume small

    Node voltage does not change in difference mode

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Signal Mixer/Multiplier: Single-Balanced MixerDDV

    R

    1IV1OV 2OV

    IU

    DDV

    R

    2IV

    TNIn

    nIInOOOd VUk

    KVVRkVVV 22

    2121

    n

    BIASIInOOOd k

    IVVRkVVV 42

    2121

    Ma Mb

    McProduct term

    But still not quite what one would want……..

    i) The input voltage UI is not differential…….ii) The two input voltages being multiplied don’t appear symmetrically in

    the final answeriii) There is an additional term proportional only to VI1-VI2 in the output

    nk

    nK

    22 TNIn

    BIAS VUKI

    A single-balanced mixer:

    nkNode voltage does not change in difference mode

  • 8

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    DDV

    1IV

    IU

    DDV

    2IVMa Mb

    Mc

    nk

    nK

    4 ||2Id BIAS

    OUT n on opn

    V IV k r rk

    1DI1DI

    2DI

    22 TNIn

    BIAS VUKI

    ||2n n

    OUT Id I TN on opk KV V U V r r

    FET Signal Mixer/Multiplier: Single-Balanced Mixer

    Much higher conversion gain with PFET current mirror on top!And a single-ended output!

    Product term

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Signal Mixer/Multiplier: Single-Balanced MixerDDV DDV

    Ma

    Mc

    nk

    nK

    Mb

    +BIASU

    +

    cosrf rfv t

    RF short

    R

    +

    +BIASV

    R+

    BIASV

    R

    coslo lov t

    || cos cos2

    || cos2

    n nout on op lo rf rf lo

    n non op BIAS TN lo lo

    k Kv t r r v v t t

    k K r r U V v t

    RF short

    RF short

    1 ||2 2

    1 ||2 2

    n nRF LO on op

    RF

    n nLO on op

    k K v v r r

    v

    k K v r r

    Conversion gain = GC

    Not good

  • 9

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Signal Mixer/Multiplier: A Double-Balanced MixerDDV

    R

    1IV

    2IV

    DaI1OV 2OV

    1IU

    DDV

    R

    1IV

    DbI1OV 2OV

    2IU

    BIASI

    DdI DcI

    1LI 2LI

    Ma Mb Md Mc

    Me Mf

    BIASLL

    LDdDc

    LDbDa

    IIIIIIIII

    21

    2

    1

    nk

    nK nK

    A cross-coupled double-balanced differential pair

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    BIASLL

    LDdDc

    LDbDa

    IIIIIIIII

    21

    2

    1

    2121

    2121

    2121

    21

    222

    222

    112

    112

    2

    22

    442

    4422

    4422

    4422

    4422

    IIIInn

    IIn

    nIIn

    n

    L

    n

    LIIn

    DbDcDdDaOOOd

    n

    LIdn

    LTNGSd

    nDd

    n

    LIdn

    LTNGSc

    nDc

    n

    LIdn

    LTNGSb

    nDb

    n

    LIdn

    LTNGSa

    nDa

    UUVVKkR

    UUkKVVRk

    kI

    kIVVRk

    RIIRIIVVV

    kIVkIVVkI

    kIVkIVVkI

    kIVkIVVkI

    kIVkIVVkI

    Product terms

    A cross-coupled double-balanced differential pair

    21 IIId VVV

    21 IIId UUU

    IdId

    IIIIOdUV

    UUVVV

    21211I

    V

    1IU

    1IV

    2IU

    Exactly what one would want!

    FET Signal Mixer/Multiplier: A Double-Balanced Mixer

  • 10

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Oscillators: Electronic, Photonic, and SpintronicPhotonic Oscillators (Lasers)(2 THz – 2000 THz)

    100 nm

    Plasmonic Nanopatch Spasers(Cornell, UCB)

    ~ 1 m

    100 nm

    Metal

    Semiconductor layers

    Fiber lasers (Cornell)

    Electron Spin Oscillators (Cornell)(100 MHz – 2000 GHz)

    Semiconductor lasers (Cornell)

    CMOS THz Oscillators(Cornell)(100 GHz – 500 GHz)

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Electrical Oscillators: A Phenomenological Introduction Consider the following circuit with positive feedback:

    A 0inv t outv t+

    +

    K

    One can have a non-zero output at frequency , with no input, if at that frequency:

    1 01 0

    11 and 2 0,1,2...

    outKA v

    KAA K

    A K A K n n

    For steady state oscillation, the loop gain must equal unity

    Loop gain: A K

    1out inA

    v vKA

    In steady state operation (when one can use phasors):

    1 out inKA v A v

  • 11

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Electrical Oscillators: A Phenomenological Introduction Consider the following circuit with positive feedback:

    A outv t+

    +

    K

    Add a bandwidth limiting element in the loop – a narrow bandpass filter:

    A outv t++

    K

    The unity loop gain condition could be met (or almost met) at many different frequencies at the same time!

    1A K

    o

    F

    Now the condition for steady state oscillation at the frequency becomes:

    1A F K Will favor oscillation at frequency o

    1 0outKF A v

    Loop gain: A F K

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Electrical Oscillators: A Phenomenological Introduction A outv t+

    +

    K

    o

    F

    Now the condition for steady state oscillation at the frequency o is: 1o oA F K

    But is the oscillation going to be stable?

    1o oA F K Q: What if the loop gain is slightly larger than unity:

    The oscillations will build up to infinity (phasor analysis not valid anymore because there is no steady state)

    1o oA F K Q: What if the loop gain is slightly smaller than unity:

    The oscillations might never build up

  • 12

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Electrical Oscillators: A Phenomenological Introduction A outv t+

    +

    K

    o

    F

    What if the gain A() is a non-linear decreasing function of the input signal power:

    A outu inu

    A

    2inu

    221

    in

    aA

    u

    2

    a

    Then the condition for stable steady state oscillation becomes:

    22

    1

    1

    1

    o o

    oo

    in o

    A F K

    aF K

    u

    The signal looping around in the oscillator will adjust its magnitude automatically such that the unity gain condition is met…..!!!

    Stable provided:

    1o oa F K

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Electrical Oscillators: A Phenomenological Introduction A outv t+

    +

    K

    o

    F

    Conditions necessary (but not sufficient) for stable steady state oscillations:

    1) The complex loop gain must equal unity

    2) There must be a bandwidth limiting element (or a filter) in the loop

    3) The magnitude of the loop gain must be a decreasing function of the loop signal power (this is called gain saturation)

  • 13

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Oscillators: Gain Saturation in a CS Amplifier

    IN inV v t

    DDV

    BIASI

    D dV v t

    Ideal

    INV

    DV

    Things to note:

    ● The small-signal output is 180 degrees out of phase with the small-signal input

    ● The magnitude of the gain can be pretty large (typically between 10-100)

    ● Gain decreases when the magnitude of the small signal input becomes large (this is gain saturation!!)

    DC bias pointDDV

    TNV

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Oscillators: The Clapp Oscillator

    IN inV v t

    DDV

    BIASI

    R1C2C

    L D dV v t

    Ideal Z

    1

    1 2 2 1 2 21 2

    1 2 1 2 1 2

    11 1|| ||11

    R j C R j LZ R j L

    j C j C C C C Lj C C R L jC C j C C R C C R

    ||d m o in m inv g Z r v g Z v

    Resonance at: 1 21 2

    1o

    C CC C L

    At resonance |Z()| becomes large! And the gain is large too!

    Gain:

  • 14

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    IN inV v t

    DDV

    BIASI

    R1C2C

    L D dV v t

    Ideal Z

    1 1

    1 1

    2 1 2 21 2

    1 2 1 2 1 2

    1 1|| ||

    1 1|| ||

    11

    out d m in

    min

    R Rj C j C

    v v g Z vR j L R j L

    j C j Cg R v

    C C C Lj C C R L jC C j C C R C C R

    OUT outV v t

    At resonance: 12

    out o m in oCv g R vC

    1 2

    1 2

    1o

    C CC C L

    FET Oscillators: The Clapp Oscillator

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    IN inV v t

    DDV

    BIASI

    R1C2C

    L D dV v t

    Ideal Z

    OUT outV v t

    What if we close the loop!? Would things work out?

    A outv t++

    K

    o

    F inv t

    At resonance:

    12

    out o m in oCv g R vC

    1o oA F K

    0

    Condition for oscillation:1

    21m

    Cg RC

    Therefore, when loop is closed:

    12

    1 0m out oCg R vC

    Compare with:

    FET Oscillators: The Clapp OscillatorCAREFUL ABOUT DC BIASING

    out o in ov v

  • 15

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    IN inV v t

    DDV

    BIASI

    R1C2C

    L D dV v t

    Ideal Z

    2 1 2 2

    1 21 2 1 2 1 2

    11

    mout in

    g Rv vC C C Lj C C R L j

    C C j C C R C C R

    OUT outV v t

    FET Oscillators: The Clapp Oscillator

    Therefore, when loop is closed, and we have a stable oscillation: out inv v

    2 1 2 21 2

    1 2 1 2 1 2

    2 21 21 2 2

    1 2

    11

    1 1 0

    mout out

    m out

    g Rv vC C C Lj C C R L j

    C C j C C R C C R

    C Cj C C R L C L g R vC C

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    IN inV v t

    DDV

    BIASI

    R1C2C

    L D dV v t

    Ideal Z

    OUT outV v t

    FET Oscillators: The Clapp Oscillator

    2 21 21 2 21 2

    1 1 0m outC Cj C C R L C L g R v

    C C

    Imaginary part Real part

    1 2

    1 2

    1C CC C L

    12

    1mCg RC

  • 16

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Oscillators: Gain Saturation in a CG Amplifier

    +

    IN inV v

    BIASv

    +

    DDV

    R

    OUT outV v

    OUTV

    INV

    DDV

    BIAS TNV V

    Bias point

    As the input small signal increase increases in strength, the gain experienced by it will decrease

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    FET Oscillators: The Colpitts Oscillator

    +

    BIASI

    DDV

    L

    BIASv1C

    2C

    RParasitic resistor

    A common gate FET stage connected in a positive feedback loop used can be used to realize an oscillator

  • 17

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    +

    BIASI

    DDV

    L

    BIASv1C

    2C

    R

    Gain

    Filter + Gain

    Filter + Feedback path

    A common gate FET stage connected in a positive feedback loop used can be used to realize an oscillator

    FET Oscillators: The Colpitts Oscillator

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    The Colpitts Oscillator: Small Signal Model

    +gsv-

    Gate

    Source

    Drainm gsg vor

    L1C

    2C sv

    outv Assume the capacitors internal to the FET, Cgs and Cgd, are open at the frequencies of interest

    1 0out out sm s out so

    v v vg v j C v v

    j L R r

    (1)

    (2)

    KCL at (1):

    KCL at (2):

    2 1 0out ss m s out so

    v vj C v g v j C v v

    r

    2out sv

    j C vj L R

    R

    These give:

  • 18

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    The Colpitts Oscillator: Small Signal Model

    +gsv-

    Gate

    Source

    Drainm gsg vor

    L1C

    2C sv

    outv

    21 2 2 21 21 2

    1 0m outo o

    R g Lj L R vC C j C r C rC CjC C

    R

    Compare with:

    1 0outKA v

    small small

    Note: The ignored quantities need not be small

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    The Colpitts Oscillator: Small Signal Model

    21 2 1 21 2

    1 0mgj L RC C C CjC C

    1 21 2

    1 0

    1eq

    j L C CjC C

    LC

    This implies: and:

    1 2

    1 2eq

    C CCC C

    21 21 2

    mm

    g LR gC CC C

    The above implies that the FET gain (proportional to gm) must balance the dissipation due to the resistor R

  • 19

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Electrical Oscillators: Another Viewpoint

    Consider the following LCR circuit:

    L

    RC

    1G

    outv

    A negative resistance element (A gain element)

    Doing KCL at node (1) gives:

    (1)

    1 0outGR Lj L R G v

    j C j C C

    1 0

    1

    j Lj C

    LC

    This implies: and:

    LR GC

    The above implies that the gain must balance the dissipation due to the resistor R

    small

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    A Differential Pair Negative Resistance Element

    BIASI

    DDVConsider the following cross-connected differential pair:

    A B

    Suppose we find the small signal resistance looking into the terminals A and B ………..

    2BIASI 2BIASI

  • 20

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    A Differential Pair Negative Resistance Element

    BIASI

    DDV

    tv+

    ti

    RF shortRF short

    M1 M21di 2di

    1 2gs gs t idv v v v

    1

    2

    2

    2

    td m

    td m

    vi g

    vi g

    We have:

    Therefore:

    And KCL gives at (1) and (2):

    1

    2

    00

    d t

    d t

    i ii i

    Therefore:

    2tt m

    vi g

    Small signal ground

    Negative !!

    ti

    1ov 2ov(1) (2)

    2 1o o tv v v

    _

    Forget the output conductance of the FETs for now

    2BIASI 2BIASI

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    tv+

    ti

    RF shortRF short

    2mg

    Resistance = BIASI

    DDV

    tv+

    ti

    RF shortRF short

    M1 M2

    A Differential Pair Negative Resistance Element

    Small signal

    Equivalent small signal model

    2tt m

    vi g

    2BIASI 2BIASI

  • 21

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    A Differential Pair Negative Resistance Element

    ti

    1m gsg v or+

    1gsv-

    2m gsg vor 2gsv+

    -

    tv+ _

    ocrsv1 2gs gs t idv v v v

    1ov 2ov

    2 1o o tv v v

    1di 2di

    1 1

    2 2

    0

    0m gs o o s t

    m gs o o s t

    g v g v v i

    g v g v v i

    ti

    titi

    KCL gives:

    Subtracting the two gives:

    2 0m t o t tg v g v i

    2 02 2 || 2

    m t o t t

    to

    t m o m

    g v g v i

    v ri g g g

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    tv+

    ti

    RF shortRF short

    2mg

    Resistance =

    A Differential Pair Negative Resistance Element

    oror

    Small signal

    Now with FET output conductance included

    Equivalent small signal model

    2 22 ||t ot m m

    v ri g g

    BIASI

    DDV

    tv+

    ti

    RF shortRF short

    M1 M2

    2BIASI 2BIASI

  • 22

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    A Differential Pair Oscillator

    BIASI

    DDVConsider the following cross-connected differential pair:

    2L

    C

    2L

    2R

    2R

    Parasitic

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    A Differential Pair Oscillator

    BIASI

    DDVConsider the following cross-connected differential pair:

    2L

    C

    2L 2

    L

    2R

    2L

    oror

    2mg

    outv 2R

    1 02 2m m

    outg R g Lj L R v

    j C j C C

    small

    1 0

    1

    j Lj C

    LC

    2mg LR

    C

    2R

    2R

    C

    Parasitic

    1m og r

  • 23

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    A Higher Gain CMOS Differential Pair Oscillator

    BIASI

    DDV

    C

    L

    onr

    2mng

    outv

    C

    onr

    L

    opr opr2mpg

    R

    1 0

    1

    j Lj C

    LC

    2mn mpg g LR

    C

    R

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Analog-to-Digital Converters(ADCs) and Digital-to-Analog Converters (DACs)

    ADC

    DAC

    INV

    010

    1

    bitsN

    Resolution:

    MAXINMIN VVV

    12

    NMINMAX VV Dynamic Range:

    MIN

    MAXVV

    10log20

    Analog input Digital Output

    010

    1

    bitsN

    Digital InputAnalog output

  • 24

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Analog-to-Digital Converters (ADCs)

    ADC tVIN

    010

    1

    bitsNAnalog input

    Digital Output

    0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1

    Most significant bit (MSB) Least significant bit (LSB)

    01

    12

    22

    21

    1 22.......2212

    BBBBBVVV NN

    NN

    NMINMAX

    MIN

    0B1B2B1NB

    Analog value, corresponding to a digital value, is:

    Logical 0 ↔ VLOWLogical 1 ↔ VHIGH

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Sample and Hold in Analog-to-Digital Converters (ADCs)

    ADC tVIN

    010

    1

    bitsNAnalog input

    Digital OutputSample and hold

    CLK

    time

    tVIN

    Sampling times

    time

    CLK

    Sample the input waveform periodically and hold the sampled value in place till the next sampling event

    tVSAnti-aliasing filter

  • 25

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Anti-Aliasing Filter in Analog-to-Digital Converters (ADCs)

    ADC tVIN

    010

    1

    bitsNAnalog input

    Digital OutputSample and hold

    CLK

    tVSAnti-aliasing filter

    INV

    Frequency ()W

    SV

    W s s

    2s2 s

    noisenoise

    Noise outside the signal band gets “aliased” into the signal band upon sampling

    INV

    noisenoise

    Anti-aliasing filter

    Sampling rate = s2

    Signal

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Sample and Hold in Analog-to-Digital Converters (ADCs)

    ADC tVIN

    010

    1

    bitsNAnalog input

    Digital OutputSample and hold

    CLK

    time

    tVIN

    Sampling times

    time

    CLK

    tVIN+-

    tVS

    CLK

    tVS

    1) Input impedance not large enough2) Output could have an offset3) Capacitor can take a long time to charge/discharge

    C

    Anti-aliasing filter

  • 26

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    tVIN+- tVS

    CLK

    A Better Sample and Hold Circuit

    +-

    A1 A2

    Large input impedanceOutput offset problem solved

    Suppose when the CLK is HIGH the current through the FET is (assuming linear region):

    INSI VVAV 1

    tVI

    n

    IITNCLKnDS

    DSTNGSnD R

    VVVVkVVVVkI

    2

    tID

    Then:

    tCR

    A

    INt

    CRA

    SS

    INn

    Sn

    S

    n

    INS

    n

    ID

    S

    nn eVeVtV

    VCR

    AVCR

    Adt

    dVR

    VVARVI

    dtVdC

    11

    10

    0

    11

    1

    ~0

    VS is pulled to VIN and VIis pulled to ~0 V within a very short time after CLK goes HIGH

    C

    CLK

    small

    This FET keeps node grounded when not sampling

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Flash Analog-to-Digital Converters (ADCs)

    SVMAXV

    MINV

    12

    NMINMAX VVV

    3-bit Flash ADC

    V

    Voltage resolution:

    Voltage comparators

    Pros:Very high speed architectureCons:Component intensive (requires 2N-1 comparators)

    Voltage comparators are essentially diff amps that have very low voltage offset errors; the input voltage offset error needs to be much less than the resolution of the ADC

    bits3 Digital Output

    V TimeAnalog input

    Equivalent digital output

    Voltage

  • 27

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Successive Approximation Register (SAR) Analog-to-Digital Converters (ADCs)

    SV Digital Output

    Internal register keeps updating the stored digital value, compares the resulting analog value obtained from this digital value to the input analog value, until the stored value matches the input value

    And then the stored value is placed in the output register

    Out

    put

    Stored digital value

    Error

    Diff amp(Comparator)

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Successive Approximation Register (SAR) Analog-to-Digital Converters (ADCs)

    Consider a 4-bit SAR-ADC with a 0-3 V input range

    0000 => 0 Volts 1111 => 3 Volts

    Resolution = 0.2 Volt

    Suppose the input is 1.70 Volts

    Start

    SAR = 1000 DAC = 1.60 V Error = +1 Stored value is smaller

    SAR = 1111 DAC = 3.00 V Error = -1 Stored value is larger

    SAR = 1100 DAC = 2.40 V Error = +1 Stored value is larger

    SAR = 1010 DAC = 2.00 V Error = +1 Stored value is larger

    SAR = 1001 DAC = 1.80 V Error = +1 Stored value is larger

    Produce output

    Pros: Scalable to high resolutions Cons: Slower than flash

  • 28

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Pipelined Analog-to-Digital Converters (ADCs)

    Main Idea: Use features of the flash architecture but scale to higher resolutions

    Example: Build a 6-bit pipelined ADC from two 3-bit Flash ADCs

    3-bit ADC tVS

    3-bit DAC

    t

    +- tVA

    VS(t)

    VA(t)

    3-bit ADC tVE

    Output registerMSB LSB

    6-bit digital output

    t

    VS(t)

    VA(t)

    VE(t)

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Pipelined Analog-to-Digital Converters (ADCs)

    tVS

    Output register3 MSB Next-3 MSB

    N-bit digital output

    Can easily generalize:

    Pros: Scalable to high resolutionsFast

    Cons:Large power dissipation

  • 29

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Walt Kester, Analog devices (2005)William Klein, Texas Instruments (2007)

    Analog-to-Digital Converters (ADCs): State of the Art

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    R/2R Ladder Digital-to-Analog Converters (DACs)

    R2

    R2

    R2

    R

    R2

    R

    R2

    R+-

    0BVHIGH 1BVHIGH 2BVHIGH 1NHIGHBV

    OUTV

    0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1

    NNN

    NNNHIGHC

    BBBBBBVV222

    .........842

    01

    12

    2321

    ACV

    HIGH

    N

    NMINMAX

    VVVA 212

    +

    MINV

    If:

    R need not be preciseOnly R and 2R need to be in the ratio of 1:2

    Then the output will be the desired analog output:

    011

    22

    22

    11 22.......22

    12BBBBBVVVV N

    NN

    NN

    MINMAXMINOUT

  • 30

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Thermometer Code Digital-to-Analog Converters (DACs)

    +

    -

    CV

    R

    REFV

    22 NDVHIGH

    REFV REFV

    N bits (B)Coder

    2N-1 bits (D)

    012212 ............ DDDDIRV NNC

    NI 1NI 0I

    kk DII

    011222211 22.......22 BBBBBIRV NNNNC

    OUTVA +

    MINV

    12

    NMINMAX

    IRVVA

    01

    12

    22

    21

    1 22.......2212

    BBBBBVVVV NN

    NN

    NMINMAX

    MINOUT

    12 NDVHIGH 0DVHIGH

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University

    Wireless Communications

    Sound waves

    Electrical analog signal

    DAC

    010

    1

    bitsNDigital input

    PA Filter N

    Digitaldecoder

    1X

    2X

    DSP

    QAM signal constellation

    Mixer or demodulator

    Antenna

    E&M Radiation LNA

    Filter

    Electrical analog signal

    1X

    2X

  • 31

    ECE 315 – Spring 2005 – Farhan Rana – Cornell University