lecture 22 - section 11.2 the integral test; comparison...

124
Integral Test Lecture 22 Section 11.2 The Integral Test; Comparison Tests Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 X k=1 f (k ) converges iff Z 1 f (x )dx converges Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 1 / 17

Upload: others

Post on 19-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test

Lecture 22Section 11.2 The Integral Test; Comparison Tests

Jiwen He

Department of Mathematics, University of Houston

[email protected]://math.uh.edu/∼jiwenhe/Math1432

∞Xk=1

f (k) converges iff

Z ∞1

f (x)dx converges

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 1 / 17

Page 2: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 3: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 4: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 5: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 6: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 7: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 8: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 9: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 10: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test

Let ak = f (k), where f is continuous, decreasing and positive on[1,∞), then

∞∑k=1

ak converges iff

∫ ∞

1f (x)dx converges

Since f decreases on [1,∞)n∑

k=2

ak <

∫ n

1f (x)dx <

n−1∑k=1

ak .

Since f is positive on [1,∞),∞∑

k=2

ak ≤∫ ∞

1f (x)dx ≤

∞∑k=1

ak .

Therefore, either both converge or both diverge.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 2 / 17

Page 11: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The p-Sereis

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Proof.∞∑

k=1

1

kpconverges iff

∫ ∞

1

1

xpdx converges.

We know that ∫ ∞

1

1

xpdx converges iff p > 1.

It follows that∞∑

k=1

1

kpconverges iff p > 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 3 / 17

Page 12: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The p-Sereis

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Proof.∞∑

k=1

1

kpconverges iff

∫ ∞

1

1

xpdx converges.

We know that ∫ ∞

1

1

xpdx converges iff p > 1.

It follows that∞∑

k=1

1

kpconverges iff p > 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 3 / 17

Page 13: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The p-Sereis

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Proof.∞∑

k=1

1

kpconverges iff

∫ ∞

1

1

xpdx converges.

We know that ∫ ∞

1

1

xpdx converges iff p > 1.

It follows that∞∑

k=1

1

kpconverges iff p > 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 3 / 17

Page 14: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The p-Sereis

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Proof.∞∑

k=1

1

kpconverges iff

∫ ∞

1

1

xpdx converges.

We know that ∫ ∞

1

1

xpdx converges iff p > 1.

It follows that∞∑

k=1

1

kpconverges iff p > 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 3 / 17

Page 15: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The p-Sereis

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Proof.∞∑

k=1

1

kpconverges iff

∫ ∞

1

1

xpdx converges.

We know that ∫ ∞

1

1

xpdx converges iff p > 1.

It follows that∞∑

k=1

1

kpconverges iff p > 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 3 / 17

Page 16: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 1): Harmonic Series

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

∞∑k=1

1

k= 1 +

1

2+

1

3+ · · · ,

and the related improper integral is∫ ∞

1

1

xdx = ln x

∣∣∞1

= limx→∞

ln x = ∞.

Since this impproper integral diverges, so does the harmonic series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 4 / 17

Page 17: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 1): Harmonic Series

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

∞∑k=1

1

k= 1 +

1

2+

1

3+ · · · ,

and the related improper integral is∫ ∞

1

1

xdx = ln x

∣∣∞1

= limx→∞

ln x = ∞.

Since this impproper integral diverges, so does the harmonic series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 4 / 17

Page 18: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 1): Harmonic Series

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

∞∑k=1

1

k= 1 +

1

2+

1

3+ · · · ,

and the related improper integral is∫ ∞

1

1

xdx = ln x

∣∣∞1

= limx→∞

ln x = ∞.

Since this impproper integral diverges, so does the harmonic series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 4 / 17

Page 19: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 1): Harmonic Series

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

∞∑k=1

1

k= 1 +

1

2+

1

3+ · · · ,

and the related improper integral is∫ ∞

1

1

xdx = ln x

∣∣∞1

= limx→∞

ln x = ∞.

Since this impproper integral diverges, so does the harmonic series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 4 / 17

Page 20: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 1): Harmonic Series

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

∞∑k=1

1

k= 1 +

1

2+

1

3+ · · · ,

and the related improper integral is∫ ∞

1

1

xdx = ln x

∣∣∞1

= limx→∞

ln x = ∞.

Since this impproper integral diverges, so does the harmonic series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 4 / 17

Page 21: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 1): Harmonic Series

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

∞∑k=1

1

k= 1 +

1

2+

1

3+ · · · ,

and the related improper integral is∫ ∞

1

1

xdx = ln x

∣∣∞1

= limx→∞

ln x = ∞.

Since this impproper integral diverges, so does the harmonic series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 4 / 17

Page 22: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 1): Harmonic Series

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

∞∑k=1

1

k= 1 +

1

2+

1

3+ · · · ,

and the related improper integral is∫ ∞

1

1

xdx = ln x

∣∣∞1

= limx→∞

ln x = ∞.

Since this impproper integral diverges, so does the harmonic series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 4 / 17

Page 23: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 2)

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

(p = 2)

When p = 2, this is∞∑

k=1

1

k2= 1 +

1

22+

1

32+ · · · ,

and the related improper integral is∫ ∞

1

1

x2dx = −x−1

∣∣∞1

= 1− limx→∞

x−1 = 1.

By the integral test,∞∑

k=1

1

k2= 1 +

∞∑k=2

1

k2≤ 1 +

∫ ∞

1

1

x2dx = 2

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 5 / 17

Page 24: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 2)

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

(p = 2)

When p = 2, this is∞∑

k=1

1

k2= 1 +

1

22+

1

32+ · · · ,

and the related improper integral is∫ ∞

1

1

x2dx = −x−1

∣∣∞1

= 1− limx→∞

x−1 = 1.

By the integral test,∞∑

k=1

1

k2= 1 +

∞∑k=2

1

k2≤ 1 +

∫ ∞

1

1

x2dx = 2

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 5 / 17

Page 25: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 2)

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

(p = 2)

When p = 2, this is∞∑

k=1

1

k2= 1 +

1

22+

1

32+ · · · ,

and the related improper integral is∫ ∞

1

1

x2dx = −x−1

∣∣∞1

= 1− limx→∞

x−1 = 1.

By the integral test,∞∑

k=1

1

k2= 1 +

∞∑k=2

1

k2≤ 1 +

∫ ∞

1

1

x2dx = 2

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 5 / 17

Page 26: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 2)

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

(p = 2)

When p = 2, this is∞∑

k=1

1

k2= 1 +

1

22+

1

32+ · · · ,

and the related improper integral is∫ ∞

1

1

x2dx = −x−1

∣∣∞1

= 1− limx→∞

x−1 = 1.

By the integral test,∞∑

k=1

1

k2= 1 +

∞∑k=2

1

k2≤ 1 +

∫ ∞

1

1

x2dx = 2

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 5 / 17

Page 27: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 2)

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

(p = 2)

When p = 2, this is∞∑

k=1

1

k2= 1 +

1

22+

1

32+ · · · ,

and the related improper integral is∫ ∞

1

1

x2dx = −x−1

∣∣∞1

= 1− limx→∞

x−1 = 1.

By the integral test,∞∑

k=1

1

k2= 1 +

∞∑k=2

1

k2≤ 1 +

∫ ∞

1

1

x2dx = 2

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 5 / 17

Page 28: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 2)

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

(p = 2)

When p = 2, this is∞∑

k=1

1

k2= 1 +

1

22+

1

32+ · · · ,

and the related improper integral is∫ ∞

1

1

x2dx = −x−1

∣∣∞1

= 1− limx→∞

x−1 = 1.

By the integral test,∞∑

k=1

1

k2= 1 +

∞∑k=2

1

k2≤ 1 +

∫ ∞

1

1

x2dx = 2

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 5 / 17

Page 29: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example (p = 2)

(The p-Sereis)

∞∑k=1

1

kp= 1 +

1

2p+

1

3p+ · · · converges iff p > 1.

(p = 2)

When p = 2, this is∞∑

k=1

1

k2= 1 +

1

22+

1

32+ · · · ,

and the related improper integral is∫ ∞

1

1

x2dx = −x−1

∣∣∞1

= 1− limx→∞

x−1 = 1.

By the integral test,∞∑

k=1

1

k2= 1 +

∞∑k=2

1

k2≤ 1 +

∫ ∞

1

1

x2dx = 2

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 5 / 17

Page 30: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 31: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 32: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 33: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 34: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 35: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 36: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 37: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 38: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 39: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 40: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 41: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 42: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 43: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Show that∞∑

k=2

1

k ln kdiverges.

The related improper integral is∫ ∞

2

1

x ln xdx =

∫ ∞

ln 2

1

udu = ln u

∣∣∞ln 2

= limx→∞

ln x − ln ln 2 = ∞.

Since this impproper integral diverges, so does the infinite series.

Show that∞∑

k=2

1

k(ln k)2converges.

The related improper integral is∫ ∞

2

1

x(ln x)2dx =

∫ ∞

ln 2

1

u2du = −u−1

∣∣∞ln 2

=1

ln 2− lim

x→∞x−1 =

1

ln 2.

Since this impproper integral diverges, so does the infinite series.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 6 / 17

Page 44: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent. Its nth remainder is defined as

Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak =∞∑

k=1

ak − sn

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 45: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent. Its nth remainder is defined as

Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak =∞∑

k=1

ak − sn

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 46: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent. Its nth remainder is defined as

Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak =∞∑

k=1

ak − sn

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 47: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent. Its nth remainder is defined as

Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak =∞∑

k=1

ak − sn

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 48: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent. Its nth remainder is defined as

Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak =∞∑

k=1

ak − sn

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 49: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent. Its nth remainder is defined as

Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak =∞∑

k=1

ak − sn

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 50: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent. Its nth remainder is defined as

Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak =∞∑

k=1

ak − sn

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 51: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent, so do∫∞1 f (x)dx . Then, ∀ε > 0, ∃N

s.t. for n > N,∫∞n f (x)dx < ε, and

0 < Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak < ε

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 52: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

The Integral Test for the nth Remainder∑∞

k=n+1 ak , n ≥ 1

Let ak = f (k), where f is continuous, decreasing and positive on[n,∞), then ∞∑

k=n+1

ak ≤∫ ∞

nf (x)dx ≤ an +

∞∑k=n+1

ak

or equivalently∫ ∞

n+1f (x)dx ≤

∞∑k=n+1

ak ≤∫ ∞

nf (x)dx

Let∑∞

k=1 ak be convergent, so do∫∞1 f (x)dx . Then, ∀ε > 0, ∃N

s.t. for n > N,∫∞n f (x)dx < ε, and

0 < Rn =∞∑

k=n+1

ak =∞∑

k=1

ak −n∑

k=1

ak < ε

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 7 / 17

Page 53: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 54: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 55: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 56: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 57: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 58: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 59: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 60: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 61: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

Use a partial sum to approximate∞∑

k=1

1

k2 + 1with an error < 0.01

Estimating the nth remainder of the series

Rn =∞∑

k=1

1

k2 + 1−

n∑k=1

1

k2 + 1<

∫ ∞

n

1

x2 + 1dx

= tan−1 x∣∣∞n

2− tan−1 n.

For π2 − tan−1 n < 0.01, we need n ≥ tan(π

2 − 0.01) ≈ 100.

sn =n∑

k=1

1

k2 + 1=

1

2+

1

5+

1

10+ · · · 1

10001= 1.066 . . .

Therefore1.066 . . . <

∞∑k=1

1

k2 + 1< 1.076 . . .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 8 / 17

Page 62: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 63: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 64: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 65: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 66: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 67: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 68: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 69: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 70: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 71: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 72: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 73: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Series that Converge or Diverge

∞∑k=1

ak converges iff∞∑

k=j

ak converges, ∀j ≥ 1.

In determining whether a series converges, it does not matter wherethe summation begins. Thus, we will omit it and write

∑ak .

Basic Series that Converge

Geometric series:∑

xk , if |x | < 1

p-series:∑ 1

kp, if p > 1

Basic Series that Diverge

Any series∑

ak for which limk→∞

ak 6= 0

p-series:∑ 1

kp, if p ≤ 1

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 9 / 17

Page 74: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Comparison Test

Basic Comparison Test

Suppose that 0 ≤ ak ≤ bk for sufficiently large k.

If∑

bk converges, then so does∑

ak .

If∑

ak diverges, then so does∑

bk .

Comparison with p-Series∑ak converges if 0 ≤ ak ≤

c

kp, p > 1.∑

ak diverges if 0 ≤ c

kp≤ ak , p ≤ 1.

Comparison with Geometric Series∑ak converges if 0 ≤ ak ≤ c xk , |x | < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 10 / 17

Page 75: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Comparison Test

Basic Comparison Test

Suppose that 0 ≤ ak ≤ bk for sufficiently large k.

If∑

bk converges, then so does∑

ak .

If∑

ak diverges, then so does∑

bk .

Comparison with p-Series∑ak converges if 0 ≤ ak ≤

c

kp, p > 1.∑

ak diverges if 0 ≤ c

kp≤ ak , p ≤ 1.

Comparison with Geometric Series∑ak converges if 0 ≤ ak ≤ c xk , |x | < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 10 / 17

Page 76: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Comparison Test

Basic Comparison Test

Suppose that 0 ≤ ak ≤ bk for sufficiently large k.

If∑

bk converges, then so does∑

ak .

If∑

ak diverges, then so does∑

bk .

Comparison with p-Series∑ak converges if 0 ≤ ak ≤

c

kp, p > 1.∑

ak diverges if 0 ≤ c

kp≤ ak , p ≤ 1.

Comparison with Geometric Series∑ak converges if 0 ≤ ak ≤ c xk , |x | < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 10 / 17

Page 77: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Comparison Test

Basic Comparison Test

Suppose that 0 ≤ ak ≤ bk for sufficiently large k.

If∑

bk converges, then so does∑

ak .

If∑

ak diverges, then so does∑

bk .

Comparison with p-Series∑ak converges if 0 ≤ ak ≤

c

kp, p > 1.∑

ak diverges if 0 ≤ c

kp≤ ak , p ≤ 1.

Comparison with Geometric Series∑ak converges if 0 ≤ ak ≤ c xk , |x | < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 10 / 17

Page 78: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Comparison Test

Basic Comparison Test

Suppose that 0 ≤ ak ≤ bk for sufficiently large k.

If∑

bk converges, then so does∑

ak .

If∑

ak diverges, then so does∑

bk .

Comparison with p-Series∑ak converges if 0 ≤ ak ≤

c

kp, p > 1.∑

ak diverges if 0 ≤ c

kp≤ ak , p ≤ 1.

Comparison with Geometric Series∑ak converges if 0 ≤ ak ≤ c xk , |x | < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 10 / 17

Page 79: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Comparison Test

Basic Comparison Test

Suppose that 0 ≤ ak ≤ bk for sufficiently large k.

If∑

bk converges, then so does∑

ak .

If∑

ak diverges, then so does∑

bk .

Comparison with p-Series∑ak converges if 0 ≤ ak ≤

c

kp, p > 1.∑

ak diverges if 0 ≤ c

kp≤ ak , p ≤ 1.

Comparison with Geometric Series∑ak converges if 0 ≤ ak ≤ c xk , |x | < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 10 / 17

Page 80: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Basic Comparison Test

Basic Comparison Test

Suppose that 0 ≤ ak ≤ bk for sufficiently large k.

If∑

bk converges, then so does∑

ak .

If∑

ak diverges, then so does∑

bk .

Comparison with p-Series∑ak converges if 0 ≤ ak ≤

c

kp, p > 1.∑

ak diverges if 0 ≤ c

kp≤ ak , p ≤ 1.

Comparison with Geometric Series∑ak converges if 0 ≤ ak ≤ c xk , |x | < 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 10 / 17

Page 81: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 82: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 83: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 84: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 85: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 86: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 87: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 88: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 89: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 90: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

2k3 + 1converges by comparison with

∑ 1

k3

1

2k3 + 1<

1

k3and

∑ 1

k3converges.

∑ k3

k5 + 4k4 + 7converges by comparison with

∑ 1

k2

k3

k5 + 4k4 + 7<

k3

k5=

1

k2and

∑ 1

k2converges.

∑ 1

k3 − k2converges by comparison with

∑ 2

k3

1

k3 − k2<

1

k3 − k3/2=

2

k3, k ≥ 2, and

∑ 2

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 11 / 17

Page 91: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 92: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 93: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 94: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 95: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 96: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 97: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 98: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 99: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Examples

∑ 1

3k + 1diverges by comparison with

∑ 1

3(k + 1)1

3k + 1>

1

3(k + 1)and

1

3

∑ 1

k + 1diverges.

∑ 1

ln(k + 6)diverges by comparison with

∑ 1

k + 6

ln(k + 6)

k + 6→ 0 as k →∞, ln(k + 6) < k + 6 for k large

1

ln(k + 6)>

1

k + 6for k large and

∑ 1

k + 6diverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 12 / 17

Page 100: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 101: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 102: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 103: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 104: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 105: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 106: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 107: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 108: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Limit Comparison Test

Basic Comparison Test

Suppose that ak > 0 and bk > 0 for sufficiently large k, and that

limk→∞

ak

bk= L for some L > 0.∑

ak converges iff∑

bk converges.

limk→∞

ak

bk= L means that ak ≈ Lbk for large k

If limk→∞

ak

bk= 0, and

if∑

bk converges, then∑

ak converges.

If limk→∞

ak

bk= ∞, and

if∑

ak converges, then∑

bk converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 13 / 17

Page 109: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 1

k3 − 1converges by comparison with

∑ 1

k3.

For large k,1

k3 − 1differs little from

1

k3.

1

k3 − 1÷ 1

k3=

k3

k3 − 1→ 1 as k →∞

and ∑ 1

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 14 / 17

Page 110: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 1

k3 − 1converges by comparison with

∑ 1

k3.

For large k,1

k3 − 1differs little from

1

k3.

1

k3 − 1÷ 1

k3=

k3

k3 − 1→ 1 as k →∞

and ∑ 1

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 14 / 17

Page 111: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 1

k3 − 1converges by comparison with

∑ 1

k3.

For large k,1

k3 − 1differs little from

1

k3.

1

k3 − 1÷ 1

k3=

k3

k3 − 1→ 1 as k →∞

and ∑ 1

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 14 / 17

Page 112: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 1

k3 − 1converges by comparison with

∑ 1

k3.

For large k,1

k3 − 1differs little from

1

k3.

1

k3 − 1÷ 1

k3=

k3

k3 − 1→ 1 as k →∞

and ∑ 1

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 14 / 17

Page 113: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 1

k3 − 1converges by comparison with

∑ 1

k3.

For large k,1

k3 − 1differs little from

1

k3.

1

k3 − 1÷ 1

k3=

k3

k3 − 1→ 1 as k →∞

and ∑ 1

k3converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 14 / 17

Page 114: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 3k2 + 2k + 1

k3 + 1diverges by comparison with

∑ 3

k

For large k,3k2 + 2k + 1

k3 + 1differs little from

3k2

k3=

3

k.

3k2 + 2k + 1

k3 + 1÷ 3

k=

3k3 + 2k2 + k

3k3 + 3→ 1 as k →∞

and ∑ 3

kdiverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 15 / 17

Page 115: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 3k2 + 2k + 1

k3 + 1diverges by comparison with

∑ 3

k

For large k,3k2 + 2k + 1

k3 + 1differs little from

3k2

k3=

3

k.

3k2 + 2k + 1

k3 + 1÷ 3

k=

3k3 + 2k2 + k

3k3 + 3→ 1 as k →∞

and ∑ 3

kdiverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 15 / 17

Page 116: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 3k2 + 2k + 1

k3 + 1diverges by comparison with

∑ 3

k

For large k,3k2 + 2k + 1

k3 + 1differs little from

3k2

k3=

3

k.

3k2 + 2k + 1

k3 + 1÷ 3

k=

3k3 + 2k2 + k

3k3 + 3→ 1 as k →∞

and ∑ 3

kdiverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 15 / 17

Page 117: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 3k2 + 2k + 1

k3 + 1diverges by comparison with

∑ 3

k

For large k,3k2 + 2k + 1

k3 + 1differs little from

3k2

k3=

3

k.

3k2 + 2k + 1

k3 + 1÷ 3

k=

3k3 + 2k2 + k

3k3 + 3→ 1 as k →∞

and ∑ 3

kdiverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 15 / 17

Page 118: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 3k2 + 2k + 1

k3 + 1diverges by comparison with

∑ 3

k

For large k,3k2 + 2k + 1

k3 + 1differs little from

3k2

k3=

3

k.

3k2 + 2k + 1

k3 + 1÷ 3

k=

3k3 + 2k2 + k

3k3 + 3→ 1 as k →∞

and ∑ 3

kdiverges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 15 / 17

Page 119: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 5√

k + 100

2k2√

k − 9√

kconverges by comparison with

∑ 5

2k2

For large k,5√

k + 100

2k2√

k − 9√

kdiffers little from

5√

k

2k2√

k=

5

2k2.

5√

k + 100

2k2√

k − 9√

k÷ 5

2k2=

10k2√

k + 200k2

10k2√

k − 45√

k→ 1 as k →∞

and ∑ 5

2k2converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 16 / 17

Page 120: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 5√

k + 100

2k2√

k − 9√

kconverges by comparison with

∑ 5

2k2

For large k,5√

k + 100

2k2√

k − 9√

kdiffers little from

5√

k

2k2√

k=

5

2k2.

5√

k + 100

2k2√

k − 9√

k÷ 5

2k2=

10k2√

k + 200k2

10k2√

k − 45√

k→ 1 as k →∞

and ∑ 5

2k2converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 16 / 17

Page 121: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 5√

k + 100

2k2√

k − 9√

kconverges by comparison with

∑ 5

2k2

For large k,5√

k + 100

2k2√

k − 9√

kdiffers little from

5√

k

2k2√

k=

5

2k2.

5√

k + 100

2k2√

k − 9√

k÷ 5

2k2=

10k2√

k + 200k2

10k2√

k − 45√

k→ 1 as k →∞

and ∑ 5

2k2converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 16 / 17

Page 122: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 5√

k + 100

2k2√

k − 9√

kconverges by comparison with

∑ 5

2k2

For large k,5√

k + 100

2k2√

k − 9√

kdiffers little from

5√

k

2k2√

k=

5

2k2.

5√

k + 100

2k2√

k − 9√

k÷ 5

2k2=

10k2√

k + 200k2

10k2√

k − 45√

k→ 1 as k →∞

and ∑ 5

2k2converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 16 / 17

Page 123: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Example

∑ 5√

k + 100

2k2√

k − 9√

kconverges by comparison with

∑ 5

2k2

For large k,5√

k + 100

2k2√

k − 9√

kdiffers little from

5√

k

2k2√

k=

5

2k2.

5√

k + 100

2k2√

k − 9√

k÷ 5

2k2=

10k2√

k + 200k2

10k2√

k − 45√

k→ 1 as k →∞

and ∑ 5

2k2converges.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 16 / 17

Page 124: Lecture 22 - Section 11.2 The Integral Test; Comparison Testsjiwenhe/Math1432/lectures/lecture22.pdf · nX−1 k=1 a k. Since f is positive on [1,∞), X∞ k=2 a k ≤ Z ∞ 1 f(x)dx

Integral Test Integral Test Application Comparison Tests

Outline

The Integral TestThe Integral TestApplying the Integral TestComparison Tests

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 22 April 3, 2008 17 / 17