lecture 4 - design of singly reinforced beams [design]

29
1

Upload: howell-tungol

Post on 16-Jan-2016

47 views

Category:

Documents


4 download

DESCRIPTION

Reinforced Concrete DesignDesign of Singly Reinforced Beams based on NSCP 2010

TRANSCRIPT

Page 1: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Page 2: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Page 3: LECTURE 4 - Design of Singly Reinforced Beams [Design]

We are done with the analysis part, now we will discuss the design problem wherein we are given with Mu and we have to design for the specifications.   It probably is clear that the final Mu cannot be determined until the size of the beam section, (self‐weight) is known. This sets up the normal interaction cycle between analysis and design. Analysis of assumed section sizes  followed by member design based on that analysis, then reanalysis based on updated section sizes, and finally, some design modification on the updated analysis  

Page 4: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Page 5: LECTURE 4 - Design of Singly Reinforced Beams [Design]

1. Concrete cracks due to tension and as a result, reinforcement is required where there is tensile stress. 

2. Bar cut‐offs: a. Portion of the steel is extended past the point of inflection to 

account for shifts in the points of inflection due to shear cracking 

b. Cut‐offs are usually based on the available rebar lengths in the market: 6, 7.5, 9.0, 10.5 and 12.0 (m) 

3. Transverse bars (stirrups) are provided for shear forces and to hold layers of bars in place during construction ‐ shear reinforcement 

4. Bars must be anchored into the support ‐ anchorage length 5. Splicing and development length 

 

Page 6: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Trivia: bolsters actually carries a US Patent 

Page 7: LECTURE 4 - Design of Singly Reinforced Beams [Design]

The code also specifies minimum beam and slab depth in the absence of deflection calculation. Note that this table was also based on computed deflection for typical loading and support condition. 

Page 8: LECTURE 4 - Design of Singly Reinforced Beams [Design]

It is general practice to use the distance 2db (radius = half the diameter, 4db) measured from inside the bend to center of the outside longitudinal bars for stirrups 

Page 9: LECTURE 4 - Design of Singly Reinforced Beams [Design]

To bond the reinforcement to the concrete so that the two elements act together (acts like a scotch tape, the thicker, the better bond)  Fire rating: 20mm = 1 hr. fire rating for slab, 40mm = 2 hrs. for beams  Additional cover on top of slabs to protect from abrasion and tear due to traffic that reduce the cover below that required for structural and other purposes (a.k.a wearing course, usually asphalt)    

Page 10: LECTURE 4 - Design of Singly Reinforced Beams [Design]

10 

Page 11: LECTURE 4 - Design of Singly Reinforced Beams [Design]

11 

Page 12: LECTURE 4 - Design of Singly Reinforced Beams [Design]

12 

Page 13: LECTURE 4 - Design of Singly Reinforced Beams [Design]

13 

Page 14: LECTURE 4 - Design of Singly Reinforced Beams [Design]

14 

Page 15: LECTURE 4 - Design of Singly Reinforced Beams [Design]

15 

Page 16: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Important is not to overestimate  , because normal construction practices may lead to smaller values of   than shown on the drawings.  

The beam should be designed that when it is about to crack, the tension steel reinforcement should carry the tensile force. To do this, the minimum moment strength of RC beam section should be equal or greater than the cracking moment strength for plain concrete section. This will prevent sudden failure due to beam cracking 

16 

Page 17: LECTURE 4 - Design of Singly Reinforced Beams [Design]

17 

Page 18: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Since we are computing for dimensions and area of steel reinforcement, and knowing that  /  , it may be good to start the analysis with assuming a target   

Moreover, we select a target   – because the problem is indeterminate – more unknowns (b, h, As) than available equilibrium equations (ΣF, ΣM) – thus infinite solutions 

  Then, we calculate the dimensions using target     Finally, calculate the steel reinforcement,    

18 

Page 19: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Calculating for target  ,  0.005. But use,  0.0075 instead (you'll see later why, anyway if   is increased it will still be within the limit since   is indirectly proportional to  ) 

0.003

0.286

∑ 0; 0.85 0.286 0.85 0.286

*similar form with   ,  so either be confused or be guided 

  Insight: Old practice is to use  0.5 . If given with typical rebar with 

420  

0.85 600600

0.5

0.50.85 600

600 420 4 

19 

Page 20: LECTURE 4 - Design of Singly Reinforced Beams [Design]

Express the strength criteria function in terms of  beam dimensions,   

incorporating  ,thatis,express

∑ 0;2

 

Replacing   and   with functions of   ∑ 0;

0.85                   let,  / 0.85  and substituting  /   

0.85

0.85  

 Going back… 

0.5

/ 0.5 1 0.5

1 0.5 , / 0.85  

20 

Page 21: LECTURE 4 - Design of Singly Reinforced Beams [Design]

21 

Page 22: LECTURE 4 - Design of Singly Reinforced Beams [Design]

22 

Page 23: LECTURE 4 - Design of Singly Reinforced Beams [Design]

23 

Page 24: LECTURE 4 - Design of Singly Reinforced Beams [Design]

24 

Page 25: LECTURE 4 - Design of Singly Reinforced Beams [Design]

25 

Page 26: LECTURE 4 - Design of Singly Reinforced Beams [Design]

26 

Page 27: LECTURE 4 - Design of Singly Reinforced Beams [Design]

27 

Page 28: LECTURE 4 - Design of Singly Reinforced Beams [Design]

28 

Page 29: LECTURE 4 - Design of Singly Reinforced Beams [Design]

29