lecture 4 - magnets - · pdf file · 2014-03-19lecture 4 - e. wilson –...

21
Lecture 4 - E. Wilson – 25-Feb-08 - Slide 1 Lecture 4 - Magnets ACCELERATOR PHYSICS Melbourne E. J. N. Wilson

Upload: vuduong

Post on 16-Mar-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 1

Lecture 4 - Magnets

ACCELERATOR PHYSICS

Melbourne

E. J. N. Wilson

Page 2: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2

Lecture 4 – Magnets - Contents

Magnet typesMultipole field expansion Taylor series expansionDipole bending magnetDiamond quadrupoleVarious coil and yoke designsPower consumption of a magnetMagnet cost v. fieldCoil design geometryField qualityShims extend the good fieldFlux density in the yokeMagnet ends Superconducting magnetsMagnetic rigidity Bending Magnet Fields and force in a quadrupole

Page 3: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 3

Components of a synchrotron

RING.GIF, Fig. sans nom 1_PULSE, Annexe1C

Page 4: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 4

Dipoles bend the beam

Quadrupoles focus it

Sextupoles correct chromaticity

Magnet types

x

By

x

By

00

Page 5: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 5

Multipole field expansion (polar)

φ (r ,θ)Scalar potential obeys Laplace

∂ 2φ∂x2 +

∂ 2φ∂y2 = 0 or

1r2

∂ 2φ∂θ 2 +

1r

∂∂r

r∂φ∂r

⎛ ⎝ ⎜ ⎞

⎠ ⎟ = 0

whose solution is φ = φn

n=1

∑ r n sin nθ

Example of an octupole whose potentialoscillates like sin 4θ around the circle

Page 6: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 6

Taylor series expansion

φ = φn

n=1

∑ r n sin nθ

Field in polar coordinates:

Br = −

∂φ∂r

, Bθ =1r

∂φ∂θ

Br = φnnr n−1 sinnθ , Bθ = φnnr n−1 cosnθ

Bz = Br sin θ + Bθ cosθ

= −φnnrn−1 cosθ cosnθ + sinθ sin nθ[ ]

= φnnr n−1 cos n −1( )θ = φnnxn−1 (when y = 0)

Taylor series of multipoles

To get vertical field

Fig. cas 1.2c

Octupole Sext Quad Dip.

...!3

12!1

1

......4.3.2.

33

32

2

2

0

34

2320

+∂

∂+

∂∂

+∂

∂+=

++++=

xxBx

xBx

xBB

xxxB

zzz

z φφφφ

Page 7: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 7

Multipole field shapes

Page 8: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 8

Dipole bending magnet

Page 9: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 9

Diamond dipole

Page 10: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 10

Diamond quadrupole

Page 11: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 11

Various coil and yoke designs

''C' Core:Easy access

Less rigid

‘H core’:Symmetric;More rigid;Access problems.

''Window Frame'High quality field;Major access problemsInsulation thickness

μ >>

g

λ

1

NI/2

NI/2

Page 12: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 12

Power consumption of a magnet

σ=

ANR

22l

σμ ABgRIo2

222 2Power l

==

μ >>

g

λ

1

NI/2

NI/2

Bair = μ0 NI / (g + λ/μ);

g, and λ/μ are the 'reluctance' of the gap and iron. A is the coil area, l is the length σ is conductivity

Approximation ignoring iron reluctance (λ/μ << g ):

NI = B g /μ0

Page 13: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 13

Magnet cost v. field

Variation of cost with field B

0

1

2

3

4

5

6

7

8

9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9 2

2.1

Field B (T)

Coil costsRunning costsPole costs

Yoke costsTotal

Pressure from need to save real estateConstraint from saturation or critical current, synchrotron radiation

Page 14: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 14

0.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Current density j

Life

time

cost

running

Coil design geometry

Standard design is rectangular copper (or aluminium) conductor, with cooling water tube. Insulation is glass cloth and epoxy resin.

Amp-turns (NI) are determined, but total copper area (Acopper) and number of turns (N) are two degrees of freedom and need to be decided.

Current density:j = NI/AcopperOptimum j determined from economic criteria.

Page 15: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 15

Field must be flat to 1 part per 10000

Page 16: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 16

Shims extend the good field

To compensate for the non-infinite pole, shims are added at the pole edges. The area and shape of the shims determine the amplitude of error harmonics which will be present.

Shim

A Quadrupole

Page 17: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 17

Flux density in the yoke

Page 18: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 18

Magnet ends

The 'Rogowski' roll-off:y = g/2 +(g/π) exp ((πx/g)-1);

Three dimensional computer calculation

10-1-20

1

2

Page 19: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 19

Bending Magnet

Effect of a uniform bending (dipole) field

If then

Sagitta

θ << π / 2

( )( )ρ

=θBB

222sin ll

( )ρ≈θ

BB

2l

( )( )1616

2cos12

2 θ=

ρθ≈θ−

ρ±

l

Page 20: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 20

Fields and force in a quadrupole

No field on the axisField strongest here

B ∝ x(hence is linear)Force restoresGradient

Normalised:

POWER OF LENS

Defocuses invertical plane

( )

Fig. cas 10.8

1. yBk

B x fρ∂

= − =∂

ll

( )1 . yB

kB xρ

∂= −

xBy

∂∂

Page 21: Lecture 4 - Magnets - · PDF file · 2014-03-19Lecture 4 - E. Wilson – 25-Feb-08 - Slide 2 Lecture 4 – Magnets - Contents Magnet types Multipole field expansion Taylor series

Lecture 4 - E. Wilson – 25-Feb-08 - Slide 21

Summary

Magnet typesMultipole field expansion Taylor series expansionDipole bending magnetDiamond quadrupoleVarious coil and yoke designsPower consumption of a magnetMagnet cost v. fieldCoil design geometryField qualityShims extend the good fieldFlux density in the yokeMagnet ends Superconducting magnetsMagnetic rigidity Bending Magnet Fields and force in a quadrupole