lecture 5. self-amplified spontaneous emission. flash and

56
Lecture 5. Self-amplified spontaneous emission. FLASH and the European XFEL in Hamburg X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich 18 26. June 2017

Upload: others

Post on 15-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 5. Self-amplified spontaneous emission. FLASH and

Lecture 5. Self-amplified spontaneous emission. FLASH and the European XFEL in Hamburg

X-Ray Free Electron Lasers

Igor Zagorodnov

Deutsches Elektronen Synchrotron

TU Darmstadt, Fachbereich 1826. June 2017

Page 2: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 2

Contents

� Motivation

� Shot noise in electron beam

� Current modulation from shot noise

� FEL start up from shot noise

� Statistical properties of SASE radiation

� FEL facilities

� Outlook

Page 3: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 3

Motivation

Electrons produce spontaneous undulators radiation

How to obtain a useful external field ?

SASE

A. Kondratenko, E. Saldin, Part. Accelerators 10, 207 (1980)

R.Bonifacio et al, Opt. Comm.50, 373 (1984)

Page 4: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 4

MotivationLow -energy undulator test line (LEUTL), USA, 530nmSASE FEL operation in the visible and near-ultraviolet range wasaccomplished in 2001 at the low-energy undulator testline LEUTL at ArgonneNational Laboratory near Chicago, USA

Page 5: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 5

MotivationTESLA Test Facility (TTF), Hamburg

In 2001 a successful SASE experiment was carried out at DESY in Hamburg at the vacuum-ultraviolet (VUV) wavelength of 109 nm.

Page 6: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 6

Shot-noise in electron beam

Fluctuations of the electron beam current density serve as the input signal in the SAS EFEL

Laser pulse Spectrum

~ω ρω∆

ω ω∆[ . ]t a u

( )P t ( )P ω

Page 7: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 7

Shot-noise in electron beam

The electron beam current (at the undulator entrance) consists from electrons randomly arriving at time tk

1

( ) ( )N

kk

I t e t tδ=

= −∑The electron beam averaged over an ensemble of bunches

( ) ( )I t eNF t≡The electron beam profile function can be, for example,

[0, ]1

( ) ( )r TF t tT

χ=2

221( )

2T

t

gT

F t e σ

πσ

−=

[0, ]1, 0 ,

( )0, otherwiseT

t Ttχ

≤ ≤=

Page 8: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 8

Shot-noise in electron beam

In frequency domain

1 1

( ) ( ) ( ) kN N

i ti t i tk

k k

I I t e d e e t t d e e ωω ωω ω δ ω∞ ∞

= =−∞ −∞

= = − =∑ ∑∫ ∫It follows from central limit theorem that the real and imaginary parts are normally distributed

The probability density distribution of spectral power is an exponential distribution

( )2

221, Re ( ), or Im ( )

2x

x

x

p x e x I x Iσ ω ωπσ

−= = =

( ) 21, , ( )

x

p x e x x Iλ λ ωλ

−= = =

Page 9: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 9

Shot-noise in electron beamFirst-order correlation function

( )

'* 2

1 1

' '2 2

1

( ) ( ') k n

k k n

N Ni t i t

k n

N Ni t i t i t

k k n

I I e e

e e e e e

ω ω

ω ω ω ω

ω ω −

= =

− −

= ≠

= =

= +

∑∑

∑ ∑

1

1( ) ( ) ( ) k

Ni ti t i t

kk

F F t e d t t e d eN

ωω ωω ω δ ω∞ ∞

=−∞ −∞

= = − =∑∫ ∫

* 2 2 *( ) ( ') ( ') ( 1) ( ) ( ')I I e NF e N N F Fω ω ω ω ω ω= − + −

Page 10: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 10

Shot-noise in electron beamFirst-order correlation function

* 2 2 *( ) ( ') ( ') ( 1) ( ) ( ')I I e NF e N N F Fω ω ω ω ω ω= − + −2 2

2( )T

gF eω σ

ω−

= ( ) ( )( )

sin 0.5( ) sinc 0.5

0.5rT

F TT

ωω ω

ω= =

* 2( ) ( ') ( ')I I e NFω ω ω ω≈ − 2 2( )I e Nω ≈

*( ) ( ') 1, for 1TNF Fω ω ωσ<< >>

Averaged spectral current density (“white noise”)

Page 11: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 11

Current modulation from shot-noiseWe consider a rectangular averaged current

[0, ]1

( ) ( )r TF t tT

χ= [0, ]1, 0 ,

( )0, otherwiseT

t Ttχ

≤ ≤=

( ) ( )rI t eNF t=

( )( ) sinc 0.5rF Tω ω=

( )( ) ( ) sinc 0.5rI eNF eN Tω ω ω= =

Page 12: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 12

Current modulation from shot-noise

2 2

0 0 0

2

0

1 1 1( ) ( ) ( )

1 1( )

T

r

S d I t dt I dT T

F dT

ω ω ω ωπ

ω ωπ

∞ ∞

= = =

=

∫ ∫ ∫

Spectral power density of averaged current

Parseval's theorem

( ) ( ) ( )2

2~ sinc 0.5 0, for 1I

S T TT

ωω ω ω

π= ≈ >>

Page 13: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 13

Current modulation from shot-noise

( ) ( ) 22

( )shot

IIS

T T

ωωω

π π≡ =

We are interested in an averaged spectral power density of shot noise, which by analogy can be written as

2 2( )I e Nω ≈

( ) 22

0( )shot shot

I e N eIS S

T T

ωω

π π π≡ = = =

Page 14: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 14

Current modulation from shot-noise

The amplification takes place in bandwidth ∆ω and we can replace the power of the current in this bandwidth by power of the averaged current with fluctuations at amplitude

1,shot 0 0shotav

b b

SI ej j

A A I

ω ωπ

∆ ∆≡ = =ɶ

2

0

( )av shot shotI S d Sω ω ω∞

= ≈ ∆∫

22 2

0 0 0

1 1( ) ( ) ( )

T

avI I t dt I d S dT T

ω ω ω ωπ

∞ ∞= = =∫ ∫ ∫

0shot

eIS

π=

Let us introduce an averaged current

The current density reads

0

0b

IA

j=

Page 15: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 15

FEL start up from shot-noise

01

[ ]( )

4x zr

cK JJdE z j

dz

µγ

= −ɶ ɶ

2 , 1,2,...n u nd

k n Ndz

ψ η= =

High -gain FEL model with space-charge

2 2 2

( )[ ]( )

2nin z n

xe r r e

d eEeK JJE e

dz m c m c

ψη ψγ γ

== − ℜ −ɶ

( ) ( )( )0

0 1

( ) sgnN

zz n n m n m

m

jE

Nψ π ψ ψ ψ ψ

ωε == − − − −∑

1 01

2m

Ni

z zm

j j eN

ψ−

== ∑ɶ

Page 16: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 16

FEL start up from shot-noise

23 2

ˆ ˆ2 0x x xx

E E Ei iEη η

′′′ ′′ ′+ + − =

ΓΓ Γ

ɶ ɶ ɶɶ

3( )

1

( , ) ( ) j zx j

j

E z c eα ηη η

==∑ɶ 0 0

0 02

γ γ ω ωηγ ω− −= ≈

1

1 2 3 22 2 2

31 2 3

(0)1 1 1

(0)

(0)

x

x

x

Ec

c E

c E

α α α

α α α

′= ′′

ɶ

ɶ

ɶ

11

2

3

(0)

(0)

(0)

x

x

x

Ec

c E

c E

′= ′′

A

ɶ

ɶ

ɶ

ˆηηρ

=

At time t=0

Page 17: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 17

FEL start up from shot-noise

01

[ ](0) (0)

4x zr

cK JJE j

µγ

′ = −ɶ ɶ 01

[ ](0) (0)

4x zr

cK JJE j

µγ

′′ ′= −ɶ ɶ

1 0 01 1

2 22n n

N Ni i

z z n u z nn n

j ij e k ij eN N

ψ ψψ η− −

= =′ ′= − = −∑ ∑ɶ

1 01

2n

Ni

z zn

j j eN

ψ−

== ∑ɶ 2 , 1,2,...n u n

dk n N

dzψ η= =

1 0 1(0) 2 (0)z u zj i k jη′ = −ɶ ɶ0(0) , 1,2,...n n Nη η≡ =

00 1

[ ](0) 2 (0)

4x u zr

cK JJE i k j

µηγ

′′ =ɶ ɶ

Page 18: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 18

FEL start up from shot-noise

11 1 0

2 1

03

(0) 0[ ]

(0) 1 (0)4

2(0)

x

x zr

ux

EccK JJ

c E j

i kc E

µγ

η

− −

′= = −

′′

A A

ɶ

ɶ ɶ

ɶ

11 1

2

3

(0)

(0) 0

0(0)

x in

x

x

E Ec

c E

c E

− −

′= = ′′

A A

ɶ

ɶ

ɶ

Start up from current modulation at t=0

Start up from seed field at t=0

Page 19: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 19

FEL start up from shot-noise

On resonance energy

0r

r

γ γηγ−= ≡ 3

0xx

EiE

′′′− =

Γ

ɶɶ

zxE Aeα=ɶ 3 3iα = Γ

( )1 3 2iα = + Γ

Γ

Imα

Reα

( )2 3 2iα = − Γ3 iα = − Γ

1α2α

3

1

j zx j

j

E c eα

==∑ɶ

*

11 2 32 2 2

1 2 3

1 1 11 1

3 3α α α

α α α

= =

*A A

Page 20: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 20

FEL start up from shot-noise

*11

1 *0 02 1 1 2

*3 3

0[ ] [ ]1

1 (0) (0)4 3 4

0z z

r r

ccK JJ cK JJ

c j j

c

αµ µ α

γ γα

= − = −

A ɶ ɶ

11

2

3

1

0 13

0 1

inin

EcE

c

c

− = =

A

Start up from current modulation

Start up from seed field

0 0, 1, 0 0

[ ] [ ](0)

4 4in shot z shotr r

cK JJ cK JJ eE j j

I

µ µ ωγ γ π

∆= =Γ Γ

ɶ

12ω ρω∆ ≈

Page 21: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 21

FEL start up from shot-noise

b

P

SASE vs. seeded FEL

SASE

seeded

beam energybW − gain parameterΓ −

Page 22: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 22

Statistical properties of SASE radiationInterference

CoherenceCoherence is a property of waves that enables interference.

Temporal coherence is the measure of correlation between the wave and itself delayed. it characterizes how well a wave can interfere with itself at a different time. The delay over which the phase or amplitude wanders by a significant amount is defined as the coherence time

Page 23: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 23

Statistical properties of SASE radiation

Page 24: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 24

Statistical properties of SASE radiationCoherence time

1

1 1~ ~cohτ

ω ω ρ∆

The time-averaged intensity (blue) detected at the output of an interferometer plotted as a function of delay. The interference envelope gives the degree of coherence

Page 25: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 25

Statistical properties of SASE radiation

c cohI

N lce

=

Typical length of one spike

cohl

b b

coh c

L TM

l τ= =

Coherence length

1~coh c

cl cτ

ρω=

Number of cooperative electrons

[µm]s

Laserpuls[GW]P

Number of spikes (longitudinal modes)

Page 26: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 26

6M = 2.6M =

Statistical properties of SASE radiation

1~ 2λ ρλ∆Spikes in spectrum

V. Ayvazyan et al, Eur. Phys.Journ. D 20, 149 (2002)

Spectrum

long bunch (~100fs) short bunch (~40fs)

( )S ω ( )S ω

Page 27: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 27

Statistical properties of SASE radiationFluctuations of SASE pulse energy

radiation energyradU Pdt= −∫rad

rad

Uu

U= 1u = ( )22 u uσ = − 2M σ −=

Page 28: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 28

Statistical properties of SASE radiationFluctuations of SASE pulse energy (linear regime)

1

( )( )

M MMu

MM u

p u eM

−−=

Γrad

rad

Uu

U= 1

0

( ) z tz t e dt∞

− −Γ = ∫Gamma distribution, M – number of modes

Page 29: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 29

Statistical properties of SASE radiationFluctuations of SASE pulse energy (after saturation, 13 nm, FLASH)

Page 30: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 30

0 10 20 30 400

0.5

1

1.5

2

Statistical properties of SASE radiation

b

P

g

z

L

3 3 lnsatc

g

LN

L= +

SASE with

cN

electrons on coherence length

Saturation length (SASE)

Page 31: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 31

electrons

radiation

Statistical properties of SASE radiation

Longitudinal profile with large statical fluctuations

Transverse profile is coherent

Coherence

Page 32: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 32

FEL facilitiesTESLA Test Facility ( until 2002)

Page 33: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 33

FEL facilitiesTESLA Test Facility ( until 2002)

Three undulator modules. Total length 15m

Page 34: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 34

FEL facilitiesTESLA Test Facility ( until 2002)

Page 35: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 35

FEL facilitiesTESLA Test Facility ( until 2002)

Page 36: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 36

FEL facilitiesTESLA Test Facility II ( 2002-2006)

From 2003 on, TTF1 was expandedto TTF2, an FEL user facility for thespectral range of soft x-rays, includinga new tunnel and a new experimentalhall (in the foreground). In April 2006,the facility was renamed FLASH: FELin Hamburg

Page 37: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 37

FEL facilitiesFLASH ( from 2006)

Page 38: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 38

FEL facilitiesFLASH ( from 2005)

Page 39: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 39

FEL facilitiesFLASH ( from 2005)

Page 40: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 40

Phase space linearizationrollover compression vs. linearized compression

~ 1.5 kA

~2.5 kAQ=1 nC

Q=0.5 nC

Page 41: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 41

Phase space linearization

In accelerator modules the energy of the electrons is increased from 5 MeV (gun) to 1200 MeV (undulator).

FLASH

Page 42: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 42

Phase space linearization

In compressors the peak current I is increased from 1.5-50 A (gun) to 2500 A (undulator).

FLASH

Page 43: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 43

Phase space linearization

FLASH

FEL radiation parameters

Wavelength Range 4.1 - 45 nm

Average Single Pulse Energy 10 - 400 µJ

Pulse Duration (FWHM) 50 - 200 fs

Peak Power (from av.) 1 - 3 GW

Average Power (5000 pulses/sec) 400 mW

Spectral Width (FWHM) 0.7 - 2 %

Average Brilliance10^17 - 10^21 photons/s/mrad2/mm2/0.1%bw

Page 44: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 44

FEL facilitiesFLASH 2 ( from 2013)

Page 45: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 45

FEL facilitiesFLASH 2 ( from 2013)

Page 46: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 46

FEL facilitiesFLASH 2

Photon Beam HHG SASE

Wavelength range(fundamental)

10 - 40 nm 4 - 80 nm

Average singlepulse energy

1 – 50 µJ 1 – 500 µJ

Pulse duration(FWHM)

<15 fs 10 – 200 fs

Peak power (fromav.)

1 – 5 GW 1 – 5 GW

Spectral width(FWHM)

0.1 – 1 % 0.5 – 1.5 %

Peak Brilliance*10 - 40 nm

1028 - 10311028 - 1031

Page 47: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 47

FEL facilities

Intensity distrubution

for λ= 0.14 nm

radiation power ~ GW G.Gutt et al, PRL, 108, 024801 (2012)

E= 3.5-14 GeV

pulse length ~30 fs

LCLS

Page 48: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 48

FEL facilitiesLCLS

P. Emma et al, Nature Photon. 4, 641(2010)

radiation power ~ GW

Pulse length ~30 fs

G.Gutt et al, PRL, 108, 024801 (2012)

λ=1.4 �

Page 49: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 49

FEL facilitiesEuropean XFEL

- kürzeste Wellenlänge

- größte Brillanz

Page 50: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 50

FEL facilitiesEuropean XFEL

Page 51: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 51

FEL facilitiesEuropean XFEL

Page 52: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 52

FEL facilitiesEuropean XFEL

Page 53: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 53

FEL facilitiesEuropean XFEL

Parameter Value

SASE 1 SASE 2 SASE 3

photon energy [keV] 12.4 - 4.0 12.4 - 3.1 3.1 - 0.2

wavelength [nm] 0.1 - 0.31 0.1 - 0.4 0.4 - 6.4

peak power [GW] 24 22 100 - 135

average power [W] 72 66 300 - 800

photon beam size (FWHM) [µm] 110 110 65 - 95

photon beam divergence (FWHM) [µrad] 0.8 0.8 3 - 27

bandwidth (FWHM) [%] 0.09 0.08 0.28 - 0.73

coherence time [fs] 0.3 0.3 0.3 - 1.9

pulse duration (FWHM) [fs] 100 100 100

average brillance [x10^25, photons/(s mrad^2 mm^2 0.1% bandwidth)]

1.6 1.6 0.52 - 0.03

Page 54: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 54

Linac Coherent Light Source(LCLS)

Spring-8 Angstrom Compact Laser (SACLA)

European XFEL

Standort USA Japan Deutschland

Start der Inbetriebnahme

2009 2011 2017

Beschleuniger –Technologie

normalleitend normalleitend supraleitend

Anzahl der Lichtblitze pro Sekunde

120 60 27 000

Minimale Wellenlänge

0.15 nm 0.1 nm 0.05 nm

Länge 1500 m 750 m 3400 m

FEL facilities

Page 55: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 55

Outlook

� self-“seeding“

� high harmonics of laser light

Methods for improving of coherence

Monochromator

Page 56: Lecture 5. Self-amplified spontaneous emission. FLASH and

PD Dr. Igor Zagorodnov | X-Ray Free Electron Lasers. Lecture 5 | 26. June 2017 | Seite 56

Outlook“Table-Top -FEL”

M.Fuchs et al, Nature Physics 5, 826(2009)

H.-P. Schlenvoigt et al, Nature Physics 4, 130 (2008)

� λ=740 nm

� λ=17 nmspontaneous undulator radiation with a laser plasma accelerator