lecture 6: nuclear structure in continuum strong...

36
Hadron Phenomenology and QCDs DSEs Lecture 6: Nuclear Structure in Continuum Strong QCD Ian Clo ¨ et University of Adelaide & Argonne National Laboratory Collaborators Wolfgang Bentz – Tokai University Craig Roberts – Argonne National Laboratory Anthony Thomas – University of Adelaide David Wilson – Argonne National Laboratory USC Summer Academy on Non-Perturbative Physics, July–August 2012

Upload: others

Post on 27-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Hadron Phenomenology and QCDs DSEs

Lecture 6: Nuclear Structure in Continuum Strong QCD

Ian Cloet

University of Adelaide & Argonne National Laboratory

Collaborators

Wolfgang Bentz – Tokai University

Craig Roberts – Argonne National Laboratory

Anthony Thomas – University of Adelaide

David Wilson – Argonne National Laboratory

USC Summer Academy on Non-Perturbative Physics, July–August 2012

Page 2: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Why Nuclear Targets

frontpage table of contents appendices 2 /36

● One of the greatest challenges confronting nuclear physics is to

understand how quarks and gluons give rise to nucleons and nuclei

✦ need a deeper understanding than traditional nuclear physics

● What do we know?

✦ no macroscopic coloured objects – quarks in nuclei seem to cluster

within colour singlet objects

✦ effective description in terms of bound nucleons and mesons works

fairly well

✦ “nucleons” held apart by short-range repulsion:

■ ds ∼ 1.8 fm & rp ∼ 0.8 fm

● Many open questions, for example:

✦ what is the role of gluons in nuclei

✦ when do non-nucleonic dof play an important role e.g. ∆’s

✦ are off-shell effects important, etc . . .

Page 3: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

EMC effect

frontpage table of contents appendices 3 /36

56Fe

0.6

0.7

0.8

0.9

1

1.1

1.2

FFe

2/F

D 2

0 0.2 0.4 0.6 0.8 1

x

q

P

A

k

k′ F2(x,Q2)

PX

X

θ

● Fundamentally challenged our understanding of nuclear structure

● Immediate parton model interpretation:

✦ valence quarks in nucleus carry less momentum than in nucleon

● What is the mechanism? After almost 30 years still no consensus

● nuclear structure, pion excess, SR correlations, medium modification

● Understanding EMC effect critical for QCD based description of nuclei

[J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983)]

Page 4: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

EMC effect

frontpage table of contents appendices 4 /36

56Fe

0.6

0.7

0.8

0.9

1

1.1

1.2

FFe

2/F

D 2

0 0.2 0.4 0.6 0.8 1x

EMC effect

Before EMC experiment

Experiment (Gomez 1994)

q

P

A

k

k′ F2(x,Q2)

PX

X

θ

● Fundamentally challenged our understanding of nuclear structure

● Immediate parton model interpretation:

✦ valence quarks in nucleus carry less momentum than in nucleon

● What is the mechanism? After almost 30 years still no consensus

● nuclear structure, pion excess, SR correlations, medium modification

● Understanding EMC effect critical for QCD based description of nuclei

[J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983)]

Page 5: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

EMC effect

frontpage table of contents appendices 5 /36

56Fe

0.6

0.7

0.8

0.9

1

1.1

1.2

FFe

2/F

D 2

0 0.2 0.4 0.6 0.8 1x

EMC effect

Before EMC experiment

Experiment (Gomez 1994)

q

P

A

k

k′ F2(x,Q2)

PX

X

θ

● Need new experiments accessing different aspects of the EMC effect

● Important near term measurements

✦ flavour decomposition – SIDIS, PVDIS, Drell-Yan

✦ spin-dependent nuclear PDFs – polarized DIS

✦ in-medium form factors, response functions – quasi-elastic scattering

● To increase our understanding of the EMC effect, model builders should

make robust predictions that can be tested in future experiments

[J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983)]

Page 6: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Medium Modification

frontpage table of contents appendices 6 /36

● 50 years of traditional nuclear physics tells us that the nucleus is

composed of nucleon-like objects

● However if a nucleon property is not protected by a symmetry its value

may change in medium – e.g.

✦ mass, magnetic moment, size

✦ quark distributions, form factors, GPDs, etc

● There must be medium modification:

✦ nucleon propagator is changed in medium

✦ off-shell effects (p2 6=M2)

✦ Lorentz covariance implies bound nucleon has 12 EM form factors

〈Jµ〉 =∑

α, β=+,−Λα(p′)

[

γµ fαβ1 + 12M iσµνqν f

αβ2 + qµ fαβ3

]

Λβ(p)

● Need to understand these effects as first step toward QCD based

understanding of nuclei

Page 7: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Medium Modification

frontpage table of contents appendices 7 /36

● 50 years of traditional nuclear physics tells us that the nucleus is

composed of nucleon-like objects

● However if a nucleon property is not protected by a symmetry its value

may change in medium – for example:

✦ mass, magnetic moment, size

✦ quark distributions, form factors, GPDs, etc

● There must be medium modification:

✦ nucleon propagator is changed in medium

✦ off-shell effects (p2 6=M2)

✦ Becomes two form factors for on-shell nucleon

〈Jµ〉 = u(p′)[

γµ F1(Q2) + 1

2M iσµνqν F2(Q2)]

u(p)

● Need to understand these effects as first step toward QCD based

understanding of nuclei

Page 8: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

EMC effect in light nuclei

frontpage table of contents appendices 8 /36

● For theory to confront these results

need sophisticated few & many body

techniques

● Size of EMC effect determined by the

local density not the average density or

A: RHe ≃ RBe ≃ RC

[J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009)]

Page 9: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Anti-quarks in nuclei and Drell-Yan

frontpage table of contents appendices 9 /36

A

P, S

PXX

A′

P ′, S ′

PX′

X ′

γq

qµ+

µ−

● Pions play a fundamental role in traditional nuclear physics

✦ expect pion (anti-quark) enhancement in nuclei compared to nucleon

● Drell-Yan experiment set up to probe anti-quarks in target nucleus

✦ qq → µ+µ− – E906: running FNAL, [E772: Alde et al., PRL. 64, 2479 (1990).]

✦ no anti-quark enhancement compared to free nucleon was observed

● Important to understand anti-quarks in nuclei: Drell-Yan & PV DIS

Page 10: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Lattice QCD and nuclear physics

frontpage table of contents appendices 10 /36

● Lattice QCD is beginning to make

inroads into nuclear physics

✦ primarily binding energies

● Calculations require huge

computational resources & 10yrs

● S. R. Beane, et al., Prog. Part. Nucl. Phys. 66, 1-40 (2011).

● Quenched, mπ ∼ 800MeV

● PACS-CS Collaboration, Phys. Rev. D81, 111504 (2010).

Page 11: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

DIS on Nuclear Targets

frontpage table of contents appendices 11 /36

● Why nuclear targets?

✦ only targets with J > 12 are nuclei

✦ study QCD and nucleon structure at finite density

● Hadronic Tensor: in Bjorken limit & Callen-Gross (F2 = 2xF1)

✦ For J = 12 target

Wµν =(

gµνp·qq2

+pµpνp·q

)

F2(x,Q2) +

iεµνλσqλpσ

p·q g1(x,Q2)

✦ For arbitrary J : −J 6 H 6 J [2J + 1 DIS structure functions]

WHµν =

(

gµνp·qq2

+pµpνp·q

)

FH2A(xA, Q

2) +iεµνλσq

λpσ

p·q gH1A(xA, Q2)

● Parton model expressions [2J + 1 quark distributions]

gH1A(xA) =12

qe2q

[

∆qHA (xA) + ∆qHA (xA)]

; parity =⇒ gH1A = −g−H1A

Page 12: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Finite nuclei quark distributions

frontpage table of contents appendices 12 /36

● Definition of finite nuclei quark distributions

∆qHA (xA) =P+

A

dξ−

2πeiP

+ xA ξ−/A〈A,P,H|ψq(0) γ+γ5 ψq(ξ

−)|A,P,H〉

● Approximate using a modified convolution formalism

∆qHA (xA) =∑

α,κ,m

dyA

dx δ(xA − yA x)∆f(H)α,κ,m(yA) ∆qα,κ(x)

protonsneutrons

s1/2 (κ = −1)4He

p3/2 (κ = −2)12C

p1/2 (κ = 1)16O

d5/2 (κ = −3)28Si

Page 13: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Finite nuclei quark distributions

frontpage table of contents appendices 13 /36

● Definition of finite nuclei quark distributions

∆qHA (xA) =P+

A

dξ−

2πeiP

+ xA ξ−/A〈A,P,H|ψq(0) γ+γ5 ψq(ξ

−)|A,P,H〉

● Approximate using a modified convolution formalism

∆qHA (xA) =∑

α,κ,m

dyA

dx δ(xA − yA x)∆f(H)α,κ,m(yA) ∆qα,κ(x)

● Convolution formalism diagrammatically:

p

P

k

k + q

k

p

PA − 1

k

k + q

k

Page 14: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Convolution Formalism: implications

frontpage table of contents appendices 14 /36

● Assume all spin is carried by the valence nucleons

✦ if A & 8 and for example if: J = 32 =⇒ F

3/22A ≃ F

1/22A

● Basically a model independent result within the convolution formalism

● Introduce multipole quark distributions

q(K)(x) ≡∑

H(−1)J−H

√2K + 1

(

J J KH −H 0

)

qH(x), K = 0, 2, . . . , 2J

● J = 32 −→ q(0) = q

3

2 + q1

2 q(2) = q3

2 − q1

2

● Higher multipoles encapsulate difference between helicity distributions

Page 15: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Multipole quark distributions results

frontpage table of contents appendices 15 /36

27Al

0

0.4

0.8

1.2

1.6

2.0

2.4

x Au

(0)

A(x

A)/

A

0 0.2 0.4 0.6 0.8 1.0 1.2xA

27Al

xA ∆u(1)A

xA ∆d(1)A−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

x A∆

q(1)

A(x

A)

0 0.2 0.4 0.6 0.8 1.0 1.2xA

27Al

−0.002

−0.001

0

0.001

0.002

0.003

0.004

x Au

(2)

A(x

A)/

A

0 0.2 0.4 0.6 0.8 1.0 1.2xA

27Al

xA ∆u(3)A

xA ∆d(3)A

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

x A∆

q(3)

A(x

A)

0 0.2 0.4 0.6 0.8 1.0 1.2xA

● Large K > 1 multipole PDFs would be very surprising

✦ =⇒ large off-shell effects &/or non-nucleon components, etc

Page 16: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

New Sum Rules

frontpage table of contents appendices 16 /36

● Sum rules for multipole quark distributions

dxxn−1 q(K)(x) = 0, K, n even, 2 6 n < K,∫

dxxn−1∆q(K)(x) = 0, K, n odd, 1 6 n < K.

● Examples:

J = 32 =⇒

∆q(3)(x)⟩

= 0

J = 2 =⇒⟨

q(4)(x)⟩

=⟨

∆q(3)(x)⟩

= 0

J = 52 =⇒

q(4)(x)⟩

=⟨

∆q(3)(x)⟩

=⟨

∆q(5)(x)⟩

=⟨

x2∆q(5)(x)⟩

= 0

● Sum rules place tight constraints on multipole PDFs

● Jaffe and Manohar, DIS from arbitrary spin targets, Nucl. Phys. B 321, 343 (1989).

Page 17: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Nambu–Jona-Lasinio Model

frontpage table of contents appendices 17 /36

● A low energy chiral effective

theory of QCD

Z(k2)

k2

➞ G Θ(k2−Λ2)

L = ψq

(

i/∂ −m)

ψq +G(

ψq Γψq

)2

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)

0

10

20

30

40

50

αeff

(k2)/k

2(G

eV−

2)

0 0.5 1.0 1.5 2.0

k2 (GeV2)

ω = 0.4

ω = 0.5

αs(k2)/k2

● Dynamically generated quark

masses ⇔ 〈ψψ〉 6= 0 ⇔ DCSB

● Proper-time regularization:

ΛIR & ΛUV =⇒ Confinement

● For example: quark propagator

1

/p−m+ iε➞

Z(p2)

/p−M + iε

✦on mass-shell: Z(p2 =M2) = 0

0

50

100

150

200

250

300

350

400

Dynam

ical

Quar

kM

ass

(MeV

)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

G/Gcrit

mq = 0 MeV

mq = 5 MeV

mq = 50 MeV

−1=

−1+

Page 18: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Nucleon quark distributions

frontpage table of contents appendices 18 /36

● Nucleon = quark+diquark

P

12P + k

12P − k

=P

12P + k

12P − k

● PDFs given by Feynman diagrams: 〈γ+〉

P P

+

P P

● Covariant, correct support; satisfies sum rules, Soffer bound & positivity

〈q(x)− q(x)〉 = Nq, 〈xu(x) + x d(x) + . . .〉 = 1, |∆q(x)| , |∆T q(x)| 6 q(x)

● q(x): probability strike quark of favor q with momentum fraction x of target

0

0.4

0.8

1.2

1.6

xd

v(x

)an

dx

uv(x

)

0 0.2 0.4 0.6 0.8 1x

Q2

0= 0.16 GeV2

Q2 = 5.0 GeV2

MRST (5.0 GeV2)

−0.2

0

0.2

0.4

0.6

0.8

x∆

dv(x

)an

dx

∆u

v(x

)

0 0.2 0.4 0.6 0.8 1

x

Q2

0= 0.16 GeV2

Q2 = 5.0 GeV2

AAC

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 621, 246 (2005).]

Page 19: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Asymmetric nuclear matter

frontpage table of contents appendices 19 /36

● Finite density Lagrangian: qq interaction in σ, ω, ρ channels

L = ψq (i 6∂ −M∗− 6Vq)ψq + L′I [W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)]

Fundamental idea:

mean-fields couple to

quarks in bound

nucleons

● Quark propagator: S−1 = /k −M + iε ➞ S−1q = /k −M∗ − /Vq + iε

● Hadronization + mean–field =⇒ effective potential

Vu(d) = ω0 ± ρ0, ω0 = 6Gω (ρp + ρn) , ρ0 = 2Gρ (ρp − ρn)

✦ Gω ⇐⇒ Z = N saturation & Gρ ⇐⇒ symmetry energy

Page 20: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Nuclear matter results

frontpage table of contents appendices 20 /36

0

0.2

0.4

0.6

0.8

1.0

1.2M

asse

s[G

eV]

0 0.1 0.2 0.3 0.4 0.5 0.6

ρ [fm−3]

M

Ms

Ma

MN

−16

−12

−8

−4

0

4

8

12

EB/A

[MeV

]

0 0.1 0.2 0.3 0.4 0.5

ρ [fm−3]

Z/N = 0

Z/N = 0.1

Z/N = 0.2

Z/N = 0.5

Z/N = 1

● Constituent mass: M∗ = m− 2Gπ〈ψψ〉∗

✦ small restoration of chiral symmetry: |〈ψψ〉∗| < |〈ψψ〉|

● Curvature [“scalar polarizability”] important for saturation

✦ prevents chiral collapse

● Hadronization ➞ effective potential: E = EV − ω20

4Gω− ρ2

0

4Gρ+ Ep + En

✦ EV : vacuum energy

✦ Ep(n): energy of nucleons moving in σ, ω, ρ mean-fields

Page 21: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Nuclear matter PDFs

frontpage table of contents appendices 21 /36

Z/N = 1

0

0.2

0.4

0.6

0.8

1.0

1.2x A

u A(x

A)/

A

0 0.2 0.4 0.6 0.8 1.0 1.2xA

free

scalar

+ Fermi

+ vector

Z/N = 0.6

0

0.2

0.4

0.6

0.8

1.0

1.2

x Au A

(xA)/

A

0 0.2 0.4 0.6 0.8 1.0 1.2xA

free

scalar

+ Fermi

+ vector

Z/N = 1

0

0.2

0.4

0.6

0.8

1.0

1.2

x Ad A

(xA)/

A

0 0.2 0.4 0.6 0.8 1.0 1.2xA

free

scalar

+ Fermi

+ vector

Z/N = 0.6

0

0.2

0.4

0.6

0.8

1.0

1.2

x Ad A

(xA)/

A0 0.2 0.4 0.6 0.8 1.0 1.2

xA

free

scalar

+ Fermi

+ vector

● ρp + ρn = fixed – Differences arise from:

✦ naive: different number protons and neutrons

✦ medium: p & n Fermi motion and Vu(d) differ ➞ up(x) 6= dn(x), . . .

Page 22: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Isovector EMC effect

frontpage table of contents appendices 22 /36

ρ = ρp + ρn = 0.16 fm−30.6

0.7

0.8

0.9

1

1.1

1.2

EM

Cra

tios

0 0.2 0.4 0.6 0.8 1

x

Z/N = 1.0

Z/N = 1/0.6

Z/N = 1/0.4

Z/N = 1/0.2

Z/N = ∞ ρ = ρp + ρn = 0.16 fm−30.6

0.7

0.8

0.9

1

1.1

1.2

EM

Cra

tios

0 0.2 0.4 0.6 0.8 1

x

Z/N = 0

Z/N = 0.2

Z/N = 0.4

Z/N = 0.6

Z/N = 1.0

● EMC ratio: R =F2A

F2A,naive=

F2A

Z F2p +N F2n≃ 4 uA(x) + dA(x)

4 uf (x) + df (x)

● Density is fixed only changing Z/N ratio [therefore only ρ0 is changing]

● EMC effect essentially a consequence of binding at the quark level

● proton excess: u-quarks feel more repulsion than d-quarks (Vu > Vd)

● neutron excess: d-quarks feel more repulsion than u-quarks (Vd > Vu)

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009).]

Page 23: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Weak mixing angle and the NuTeV anomaly

frontpage table of contents appendices 23 /36

APV(Cs)

SLAC E158 NuTeV

Z-pole

CDF

D0

Møller [JLab]

Qweak [JLab]

PV-DIS [JLab]

0.225

0.230

0.235

0.240

0.245

0.250si

n2θM

SW

0.001 0.01 0.1 1 10 100 1000 10000

Q (GeV)

Standard ModelCompleted ExperimentsFuture Experiments

Fermilab press conference

“The predicted value was 0.2227. The value we

found was 0.2277, a difference of 0.0050. It might

not sound like much, but the room full of physicists

fell silent when we first revealed the result”

“99.75% probability that the neutrinos are not

behaving like other particles . . . only 1 in 400

chance that our measurement is consistent with

prediction”

● NuTeV: sin2 θW = 0.2277± 0.0013(stat)± 0.0009(syst)

[G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002)]

● Standard Model: sin2 θW = 0.2227± 0.0004 ⇔ 3σ =⇒ “NuTeV anomaly”

● Huge amount of experimental & theoretical interest [500+ citations]

● No universally accepted complete explanation

● Z-pole (LEP & SLC) e+e− → X, D0 & CDF at Fermilab: pp→ e+e−

Page 24: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Weak mixing angle and the NuTeV anomaly

frontpage table of contents appendices 24 /36

APV(Cs)

SLAC E158 NuTeV

Z-pole

CDF

D0

Møller [JLab]

Qweak [JLab]

PV-DIS [JLab]

0.225

0.230

0.235

0.240

0.245

0.250

sin

2θM

SW

0.001 0.01 0.1 1 10 100 1000 10000

Q (GeV)

Standard ModelCompleted ExperimentsFuture Experiments

● NuTeV: sin2 θW = 0.2277± 0.0016

[G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002).]

● SM: sin2 θW = 0.2227± 0.0004

● Evidence for physics beyond the

Standard Model?

● Paschos-Wolfenstein ratio motivated NuTeV study:

RPW =σν ANC−σν A

NC

σν ACC−σν A

CC

N∼Z= 1

2 − sin2 θW +(

1− 73 sin

2 θW) 〈xu−

A−x d−A〉

〈xu−

A+x d−A〉

● NuTeV used a steel target – Z/N ≃ 26/30

✦ correct for neutron excess ⇐⇒ flavour dependent EMC effect

● Use our medium modified Iron quark distributions

∆RPW = ∆RnaivePW +∆REMC effect

PW = − (0.0107 + 0.0032) .

● Flavour dependent of EMC effect explains up to 65% of anomaly

Page 25: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Reassessment of the NuTeV anomaly

frontpage table of contents appendices 25 /36

● Also include corrections:

✦ charge symmetry violation:

mu 6= md & eu 6= ed

✦ strange quarks

● Use NuTeV functionals

● “NuTeV anomaly” is evidence for

medium modification

APV(Cs)

SLAC E158

ν-DIS

Z-pole

CDF

D0

Møller [JLab]

Qweak [JLab]

PV-DIS [JLab]

0.225

0.230

0.235

0.240

0.245

0.250

sin

2θM

SW

0.001 0.01 0.1 1 10 100 1000 10000

Q (GeV)

Standard ModelCompleted ExperimentsFuture Experiments

[ICC, J. T. Londergan et al., Phys. Lett. B 693, 462 (2010).]

● Model dependence?

✦ sign of correction is fixed by nature of vector fields

q(x) = p+

p+−V + q0

(

p+

p+−V + x− V +q

p+−V +

)

, N > Z =⇒ Vd > Vu

✦ ρ0-field shifts momentum from u to d quarks

✦ RPW correction term negative =⇒ sin2 θW decreases

✦ size of correction is constrained by nuclear matter symmetry energy

● ρ0 vector field reduces NuTeV anomaly – model independent!

Page 26: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Parity Violating DIS: Iron & Lead

frontpage table of contents appendices 26 /36

Q2 = 5 GeV2

Z/N = 26/30 (iron)

0.8

0.9

1

1.1

a2(x

A)

0 0.2 0.4 0.6 0.8 1

xA

a2

anaive

2

9

5− 4 sin2 θW Q2 = 5 GeV2

Z/N = 82/126 (lead)

0.8

0.9

1

1.1

a2(x

A)

0 0.2 0.4 0.6 0.8 1

xA

a2

anaive

2

9

5− 4 sin2 θW

● PV DIS – γ Z interference:

APV = dσR−dσL

dσR+dσL∝ a2(x) = − 2geA

F γZ2

F γ2

N∼Z= 9

5 − 4 sin2 θW − 1225

u+

A(x)−d+A(x)

u+

A(x)+d+A(x)

● Same mechanism explains ∼1.5σ of NuTeV result

● Large x dependence of a2(x) ➞ evidence for medium modification

● a2(x) is also a excellent way to measure sin2 θW

● Predictions will be tested at Jefferson Lab

X

γ

ℓ′

A

X

+Z0

ℓ′

A

X2

[ICC et al., submitted to PRL, arXiv:1202.6401 [nucl-th].]

Page 27: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Flavour dependence of EMC effect

frontpage table of contents appendices 27 /36

Q2 = 5.0 GeV2

Z/N = 26/30 (Iron)

0.6

0.7

0.8

0.9

1

1.1

1.2E

MC

rati

os

0 0.2 0.4 0.6 0.8 1

x

RγFe

dA/df

uA/ufQ2 = 5.0 GeV2

Z/N = 82/126 (Lead)

0.6

0.7

0.8

0.9

1

1.1

1.2

EM

Cra

tios

0 0.2 0.4 0.6 0.8 1

x

RγPb

dA/df

uA/uf

● Flavour dependence: F γ2 =

e2q x q+(x), F γZ

2 = 2∑

eq gqV x q

+(x)

● N > Z =⇒ d-quarks feel more repulsion than u-quarks: Vd > Vu

✦ u quarks are more bound than d quarks

✦ ρ0 field shifts momentum from u to d quarks

q(x) = p+

p+−V + q0

(

p+

p+−V + x− V +q

p+−V +

)

● If observed, would be strong evidence for medium modification

[ICC et al., submitted to PRL, arXiv:1202.6401 [nucl-th].]

Page 28: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Polarized EMC effect

frontpage table of contents appendices 28 /36

Q2 = 5 GeV2

ρ = 0.16 fm−30.6

0.7

0.8

0.9

1

1.1

1.2

1.3

EM

Cra

tios

0 0.2 0.4 0.6 0.8 1

x

I. Sick and D. Day, Phys. Lett. B 274, 16 (1992).

EMC effect

polarized EMC effect

● Polarized EMC ratio: ∆R =g1A

gnaive1A

=g1A

Pp g1p + Pn g1n

● Spin-dependent cross-section is suppressed by 1/A

✦ must choose nuclei with A . 27

✦ protons should carry most of the spin e.g. =⇒ 7Li, 11B, . . .

● Ideal nucleus is probably 7Li

✦ from Quantum Monte–Carlo: Pp = 0.86 & Pn = 0.04

● Ratios equal 1 in limit of no nuclear effects

[ICC et al., Phys. Rev. Lett. 95, 052302 (2005)] [J. R. Smith and G. A. Miller, PRC 72, 022203(R) (2005)]

Page 29: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Polarized EMC effect

frontpage table of contents appendices 29 /36

7Li

Q2= 5 GeV

2

0.6

0.7

0.8

0.9

1

1.1

1.2

EM

CR

atio

s

0 0.2 0.4 0.6 0.8 1

x

Experiment: 9Be

Unpolarized EMC effect

Polarized EMC effect

11B

Q2= 5 GeV

2

0.6

0.7

0.8

0.9

1

1.1

1.2

EM

CR

atio

s

0 0.2 0.4 0.6 0.8 1

x

Experiment: 12C

Unpolarized EMC effect

Polarized EMC effect

● Polarized EMC ratio: ∆R =g1A

gnaive1A

=g1A

Pp g1p + Pn g1n

● Spin-dependent cross-section is suppressed by 1/A

✦ must choose nuclei with A . 27

✦ protons should carry most of the spin e.g. =⇒ 7Li, 11B, . . .

● Ideal nucleus is probably 7Li

✦ from Quantum Monte–Carlo: Pp = 0.86 & Pn = 0.04

● Ratios equal 1 in limit of no nuclear effects

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)]

Page 30: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Is there medium modification

frontpage table of contents appendices 30 /36

27Al

Q2= 5 GeV

2

0.6

0.7

0.8

0.9

1

1.1

1.2

EM

CR

atio

sE

MC

Ratio

s

0 0.2 0.4 0.6 0.8 1

xx

Experiment: 27Al

Unpolarized EMC effect

Polarized EMC effect

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)]

Page 31: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Is there medium modification

frontpage table of contents appendices 31 /36

27Al

Q2= 5 GeV

2

0.6

0.7

0.8

0.9

1

1.1

1.2

EM

CR

atio

sE

MC

Ratio

s

0 0.2 0.4 0.6 0.8 1

xx

Experiment: 27Al

Unpolarized EMC effect

Polarized EMC effect

● Medium modification of nucleon has been switched off

● Relativistic effects remain

● Large splitting very difficult without medium modification

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)]

Page 32: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Nuclear spin sum

frontpage table of contents appendices 32 /36

Proton spin states ∆u ∆d Σ gA

p 0.97 -0.30 0.67 1.2677Li 0.91 -0.29 0.62 1.1911B 0.88 -0.28 0.60 1.1615N 0.87 -0.28 0.59 1.1527Al 0.87 -0.28 0.59 1.15

Nuclear Matter 0.79 -0.26 0.53 1.05

● Angular momentum of nucleon: J = 12 = 1

2 ∆Σ+ Lq + Jg

✦ in medium M∗ < M and therefore quarks are more relativistic

✦ lower components of quark wavefunctions are enhanced

✦ quark lower components usually have larger angular momentum

✦ ∆q(x) very sensitive to lower components

● Therefore, in-medium quark spin ➞ orbital angular momentum

Page 33: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Form factors of a bound nucleon

frontpage table of contents appendices 33 /36

[S. Strauch, et al., Phys. Rev. Lett. 91, 052301 (2003)]

[M. Paolone, et al., Phys. Rev. Lett. 105, 072001 (2010)]

Proton

Neutron

0.6

0.8

1.0

1.2

1.4

(G∗ E/G

∗ M)/

(GE/G

M)

0.2 0.4 0.6 0.8 1.0

Q2 (GeV2)

Nambu–Jona-Lasinio

Relativistic light front constituent quark

[ICC et al., Phys. Rev. Lett. 103, 082301 (2009)]

● Reaction 4He (~e, e′~p ) 3H sensitive to GE/GM of bound proton

● Assume bound neutron is almost on-shell & Foldy term[

32M2

N

κn

]

remains

dominate contribution to bound neutron charge radius

R∗

n

Rn≃

(

MN

M∗

N

)2, Rn ≡ GEn/GMn ≃ − 1

µn

16 Q

2 R2En, for Q2 ≪ 1

● An almost model independent result

Page 34: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

In-medium nucleon form factors

frontpage table of contents appendices 34 /36

● Nucleon form factors are modified in-medium

● Free and in-medium nucleon magnetic moments [µN ]

✦ µp = 2.78, µn = −1.81, µ∗p = 2.96, µ∗n = −1.72

● Free and in-medium radii [fm] – ri ≡√

r2i⟩

✦ rCp = 0.858, rCn = −0.336, rMp = 0.835, rMn = 0.861

✦ r∗Cp = 0.926, r∗Cn = −0.324, r∗Mp = 0.878, r∗Mn = 0.891

0

0.5

1.0

1.5

2.0

2.5

pro

ton

form

fact

ors

0 1 2

Q2 (GeV2)

free

nuclear matter

Kelly

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0

neu

tron

form

fact

ors

0 1 2

Q2 (GeV2)

free

nuclear matter

Kelly

Page 35: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Conclusion

frontpage table of contents appendices 35 /36

Hopefully I have demonstrated that the DSEs are apowerful tool with which to study QCD and hadronstructure

Thank you!

Page 36: Lecture 6: Nuclear Structure in Continuum Strong QCDboson.physics.sc.edu/~gothe/summer-school-12/lectures/cloet-6.pdf · Medium Modification frontpage table of contents appendices

Table of Contents

frontpage table of contents appendices 36 /36

❁ why nuclear targets

❁ medium modification

❁ EMC effect in light nuclei

❁ DIS on nuclear targets

❁ finite nuclei quark distributions

❁ NJL model

❁ nucleon quark distributions

❁ asymmetric nuclear matter

❁ nuclear matter results

❁ nuclear matter PDFs

❁ isovector EMC effect

❁ weak mixing angle

❁ weak mixing angle

❁ PVDIS iron & lead

❁ flavour dependence of EMC effect

❁ polarized EMC effect

❁ is there medium modification

❁ nuclear spin sum

❁ form factors bound nucleon

❁ in-medium nucleon FF

❁ conclusion