lecture 6 oms

125
Lecture VI. Carbon-based nanostructures and Superconductors Buckyballs, Nanotubes, Graphene Organic Superconductors

Upload: allenhermann

Post on 20-Jun-2015

61 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: Lecture 6 oms

Lecture VI.

Carbon-based nanostructures and Superconductors Buckyballs, Nanotubes, Graphene

Organic Superconductors

Page 2: Lecture 6 oms

Nanocarbon

C60, CNT’s

Synthesis and e-beam lithography

Graphene (synthesis, relativistic

QM nature, transport)

Page 3: Lecture 6 oms
Page 4: Lecture 6 oms
Page 5: Lecture 6 oms

Aligned Carbon Nanotubes

AAO template CNT array in AAO

CVD @ CAER, Dr. Rodney Andrews Group

Page 6: Lecture 6 oms

TEM of smallest MWNT

AA4 CNT- MWNT with a 2 nm inner diameter

We have fabricated CNT

arrays in AAO template

with varying pore diameter.

Our observations indicate

that, CNT inner core

diameter decreases with

decreasing AAO pore

diameter, while the wall

thickness remains almost

the same.

Page 7: Lecture 6 oms
Page 8: Lecture 6 oms
Page 9: Lecture 6 oms
Page 10: Lecture 6 oms

A carbon nanotube is a honeycomb lattice rolled

up into a cylinder. Although carbon nanotube seems to

have a 3D structure, it can be considered as 1D because of

their small size, which is in size of nano-order. The

specifying of carbon naonotube is very simple.

To define the structure, 2 numbers known as the

chiral index is used. In Fig. 1, 2 unit vectors, a1 and a2, are

defined on the hexagonal lattice. These 2 vectors define

the chiral vector Ch, and equation is shown below.

Ch= n a1+m a2≡ (n, m), (n, m are integers, 0≤|m|≤n)

(n, m) is called the chiral index, or it is just called

chirality. The example of (3, 3) is shown in Fig. 2.

This chirality is important because it tells the

characteristic of a carbon nanotube. For example, if the

difference of n and m is the multiple of 3, then that carbon

nanotube is metal. If not, it is semiconductor.

Page 11: Lecture 6 oms

Figure 1 Two unit vectors

a1

a2

a1

a2

Page 12: Lecture 6 oms
Page 13: Lecture 6 oms
Page 14: Lecture 6 oms

The first two of these, known as “armchair” (top left) and “zig-zag” (middle left) have a high degree of

symmetry. The terms "armchair" and "zig-zag" refer to the arrangement of hexagons around the

circumference. The third class of tube, which in practice is the most common, is known as chiral,

meaning that it can exist in two mirror-related forms. An example of a chiral nanotube is shown at the

bottom left. The structure of a nanotube can be specified by a

vector, (n,m), which defines how the graphene sheet is rolled up. This can be understood with reference to figure on the right. To produce a nanotube with the indices (6,3), say, the sheet is rolled up so that the

atom labelled (0,0) is superimposed on the one labelled (6,3). It can be seen from the figure that m =

0 for all zig-zag tubes, while n = m for all armchair tubes.

Page 15: Lecture 6 oms

Figure 2 Schematic diagram of carbon

nanotube of chirality (3, 3)

Page 16: Lecture 6 oms
Page 17: Lecture 6 oms
Page 18: Lecture 6 oms
Page 19: Lecture 6 oms
Page 20: Lecture 6 oms
Page 21: Lecture 6 oms
Page 22: Lecture 6 oms
Page 23: Lecture 6 oms

Graphene

Page 24: Lecture 6 oms
Page 25: Lecture 6 oms
Page 26: Lecture 6 oms
Page 27: Lecture 6 oms
Page 28: Lecture 6 oms
Page 29: Lecture 6 oms
Page 30: Lecture 6 oms
Page 31: Lecture 6 oms
Page 32: Lecture 6 oms
Page 33: Lecture 6 oms
Page 34: Lecture 6 oms
Page 35: Lecture 6 oms

Obtaining Graphene

• Micromechanical cleavage from bulk graphite (on oxidized Si)

• Thermal decomposition of 4-H SiC (Si terminated surface) in UHV

• Vapor deposition from hydrocarbons (e.g. CVD from xylene as is done for CNT’s)

• Pulsed Laser Deposition

• Exfoliation by Ultasonification of Graphite and Spin-on Coating

• Plasma-enhanced Chemical Vapor Deposition

Page 36: Lecture 6 oms
Page 37: Lecture 6 oms
Page 38: Lecture 6 oms
Page 39: Lecture 6 oms
Page 40: Lecture 6 oms
Page 41: Lecture 6 oms
Page 42: Lecture 6 oms

Graphene Production Goes Industrial

Page 43: Lecture 6 oms
Page 44: Lecture 6 oms
Page 45: Lecture 6 oms
Page 46: Lecture 6 oms
Page 47: Lecture 6 oms
Page 48: Lecture 6 oms
Page 49: Lecture 6 oms
Page 50: Lecture 6 oms
Page 51: Lecture 6 oms
Page 52: Lecture 6 oms
Page 53: Lecture 6 oms
Page 54: Lecture 6 oms

Band Structure of Graphene

Page 55: Lecture 6 oms
Page 56: Lecture 6 oms
Page 57: Lecture 6 oms
Page 58: Lecture 6 oms
Page 59: Lecture 6 oms
Page 60: Lecture 6 oms
Page 61: Lecture 6 oms
Page 62: Lecture 6 oms
Page 63: Lecture 6 oms
Page 64: Lecture 6 oms
Page 65: Lecture 6 oms
Page 66: Lecture 6 oms
Page 67: Lecture 6 oms

Left: Diagram of the Brillouin zone of graphite. Center: Dirac fermions in momentum space near corner H of the Brillouin zone are characterized by

a sharply linear Λ-shaped dispersion relation, similar to that found in graphene. Right: As a result of interlayer interactions, other regions of

momentum space (near corner K) display a parabola-shaped dispersion, signifying the existence of quasiparticles with finite mass whose energy is

quadratically dependent on momentum.

Page 68: Lecture 6 oms
Page 69: Lecture 6 oms
Page 70: Lecture 6 oms
Page 71: Lecture 6 oms
Page 72: Lecture 6 oms
Page 73: Lecture 6 oms
Page 74: Lecture 6 oms
Page 75: Lecture 6 oms
Page 76: Lecture 6 oms
Page 77: Lecture 6 oms
Page 78: Lecture 6 oms
Page 79: Lecture 6 oms

• Magnetoconductance

Page 80: Lecture 6 oms
Page 81: Lecture 6 oms
Page 82: Lecture 6 oms
Page 83: Lecture 6 oms
Page 84: Lecture 6 oms
Page 85: Lecture 6 oms
Page 86: Lecture 6 oms
Page 87: Lecture 6 oms
Page 88: Lecture 6 oms
Page 89: Lecture 6 oms
Page 90: Lecture 6 oms
Page 91: Lecture 6 oms

Other Materials with (Possible) Dirac Fermions

Page 92: Lecture 6 oms
Page 93: Lecture 6 oms

Copyright ©2005 by the National Academy of Sciences

Novoselov, K. S. et al. (2005) Proc. Natl. Acad. Sci. USA 102, 10451-10453

Fig. 3. Electric field effect in single-atomic-sheet crystals

Page 94: Lecture 6 oms
Page 95: Lecture 6 oms
Page 96: Lecture 6 oms
Page 97: Lecture 6 oms

Organic Superconductors

Page 98: Lecture 6 oms
Page 99: Lecture 6 oms
Page 100: Lecture 6 oms
Page 101: Lecture 6 oms
Page 102: Lecture 6 oms
Page 103: Lecture 6 oms
Page 104: Lecture 6 oms
Page 105: Lecture 6 oms
Page 106: Lecture 6 oms
Page 107: Lecture 6 oms
Page 108: Lecture 6 oms
Page 109: Lecture 6 oms
Page 110: Lecture 6 oms
Page 111: Lecture 6 oms
Page 112: Lecture 6 oms
Page 113: Lecture 6 oms
Page 114: Lecture 6 oms
Page 115: Lecture 6 oms
Page 116: Lecture 6 oms
Page 117: Lecture 6 oms
Page 118: Lecture 6 oms
Page 119: Lecture 6 oms
Page 120: Lecture 6 oms
Page 121: Lecture 6 oms
Page 122: Lecture 6 oms
Page 123: Lecture 6 oms
Page 124: Lecture 6 oms
Page 125: Lecture 6 oms