lecture2-2010dmrocke.ucdavis.edu/class/ead115 fall 2010.old/lecture2-2010.pdf · • 1 sign bit •...

65
EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science

Upload: others

Post on 14-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

EAD 115

Numerical Solution of Engineering and Scientific Problems

David M. RockeDepartment of Applied Science

Page 2: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Computer Representation of Numbers

• Counting numbers (unsigned integers) are the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …

• In almost all computers, these numbers are represented in binary (base 2) rather than decimal.

• We count 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, …

Page 3: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and
Page 4: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Fixed length Integers

• Data storage is generally in bytes, where 1 byte = 8 bits.

• With one-byte integers, the smallest integer that can be stored is 0, and the largest is 111111112 = 28 – 1 = 255.

• Internet IP addresses consist of four bytes, so that no part of an IP address exceeds 255 (UC Davis is 168.150.243.2).

Page 5: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

• The IP address 168.150.243.2 looks like this in binary:

10101000

10010110

11110011

00000010

Page 6: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

More Unsigned Integers

• Two-byte or 16 bit short integers can represent any whole number from 0 to 65,535

• Long integers of four bytes or 32 bits can represent any whole number from 0 to 4,294,967,296

• If each disk block has an address of a long integer, and each disk block has 4,196 bytes, then the disk can hold 16TB

Page 7: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Application: Digital Audio

• Uncompressed digital audio can be represented as a sequence of loudness levels

• A pure tone has a sequence that evolve as a sine wave

• The loudness levels can be represented as unsigned integers, giving all possible values

Page 8: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Pure Tone

Page 9: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

6-bit Audio

Page 10: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Sampling Rate

• The sampling rate is the number of times per second that a loudness measure is taken

• CD’s are 44,100 times per second (44.1 kHz)

• Digital recordings are typically 44.1, 48, 96, or 192 kHz

Page 11: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Word Length

• 8-bit audio has loudness levels that exist in 28 = 256 discrete levels. This is crude

• 16-bit audio has 216 = 65,536 loudness levels. This is what is used for CD’s

• Audio is often now recorded in 24-bit audio, which has 16,777,216 levels, and is difficult to distinguish from the smooth original

Page 12: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Loudest Sound

• In 16-bit audio, the loudest sound that can be recorded has a numerical value of 65,536

• If the input in a recording goes over this level, it is still recorded at 65,536

• This leads to distorted sound, which is much more unpleasant than analog overload distortion (as with Jimi Hendrix)

Page 13: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Pure Tone with no Headroom

Page 14: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Signed integers

16 bit signed integers can represent any whole number from -32,767 to 32,767

Page 15: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Integer Overflow

• Suppose we are using one-byte signed integers, which can represent any whole number from -128 to 128.

• What happens when we add 100 and 100? The answer should be 200, but…

• 1100100 + 1100100 = 11001000 which has nine bits, so is probably truncated to 1001000 or 72

Page 16: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Decimal Numbers

• Decimal numbers or floating point (vs. fixed point) are represented in scientific notation.

• 1,437,526 = .1437526×107

• Exponent +7 mantissa +1437526• We represent this in binary on a computer

Page 17: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

• Typical single/double precision:– 1 sign bit– 8/11 exponent bits (one sign)– 23/52 bit mantissa

Page 18: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Hypothetical 7-bit Reals

• 1 sign bit• 3 exponent bits• 3 mantissa bits• Mantissa normalized to be between 0.5

and 1 to avoid wasting bits (we don’t want to use a mantissa of 001 when we could use a mantissa of 100 instead since 100 and 101 (for example) look the same when truncated. (We could omit leading 1.)

Page 19: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and
Page 20: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Smallest Positive Number• Sign 0 (positive)• Exponent sign 1 (negative)• Exponent magnitude 11 (3 in decimal)• Mantissa, smallest normalized is 100 (next

smallest is 011 which has a leading 0).• 100 represents 2-1 = 0.5 in decimal.• Smallest positive number is 0.5 × 2-3 = 2-4 = 1/16• If we divide this by 2 we get 0 (underflow)!

Page 21: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Largest Positive Number

• Sign 0 (positive)• Exponent sign 0 (positive)• Exponent magnitude 11 (3 in decimal)• Mantissa, largest normalized is 111• 1112 = 2-1 + 2-2 + 2-3 =0.875 in decimal.• Largest positive number is 0.875 × 23 = 7• If we multiply this by 2 we get overflow!

Page 22: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Many Numbers Cannot be Represented Exactly

• 1/3 in our 7-bit real has the following representation:

• This is .3125 instead of .3333333 because that is as close as it can get

• When multiplied by 3, the result is 0.9375 instead of 1

• (3)(1/3) = 0.9375!

0 1 0 1 1 0 1

Page 23: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Limitations of Floating Point

• There is a limited range of quantities that can be represented

• There is only a finite number of quantities that can be represented in a given range

• Chopping = truncation or rounding of numbers that cannot be represented exactly

Page 24: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Machine Epsilon

• Machine epsilon is the largest computer number ε such that (1 + ε) - 1 = 0

• Excel uses double precision, which has 52 bit mantissa.

• Machine epsilon is about this size:52 162 10

Page 25: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Some Excel Arithmetic

ε (1 + ε) - 1

1E-13 1E-13

1E-14 0.999E-14

5E-15 5.11E-15

1E-15 0

Page 26: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Precision and Accuracy

• Precision means the variability between estimates

• Accuracy means the amount of deviation between the estimate and the “true value”

Page 27: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and
Page 28: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Errors of approximation• True Value = Approximation + Error• ET = TV – Approx• (True) Relative error is εT = ET / TV

• Absolute (relative) error is the absolute value of the (relative) error

• εA = EA / Approximation• Both the error and the relative error can

matter

Page 29: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Example

• True Value = 20• Approximation = 20.5• ET = TV – Approximation = -0.5• (True) Relative error is εT = ET / TV = -0.5/20 = -0.025 or -2.5%

• EA = | ET| = 0.5• εA = 0.025 or 2.5%

Page 30: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

(Series) truncation error

2 3

2 3

12 3!

12 3!

x

x

x xe x

x xe x

= + + + +

+ + +

Page 31: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Roundoff Error

• Results from the approximate representation of numbers in a computer

• Accumulation over many computations• Addition or subtraction of small and large

numbers

Page 32: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

1

1

2 1 2

1

2 1 2 2

1

2 1 2 1 1 2

1 1

2 1 2 1 2 1 2

1

2 1 2 1 2

1

( 1) ( )

( 1) ( 2 )

( 1) 2( 1) ( 1)

( 1) 2( 1) ( 1)

( 1) ( 1)

n

ii

n

iin

i iin n

i ii in

iin

ii

x n x

s n x x

s n x xx x

s n x n x x n nx

s n x n nx n nx

s n x n nx

-

=

-

=

-

=

- - -

= =

- - -

=

- -

=

=

= - -

= - - +

= - - - + -

= - - - + -

= - - -

å

å

å

å å

å

å

Page 33: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Shortcut or Mistake?

• The variance of the data set {1,2,3,4,5} is 2.5.

• The variance of the data set (100,000,001, 100,000,002, …) is the same because the spacing has not changed

• The shortcut formula gives 2 for the variance in Excel

• If the sequence starts 1,000,000,001, the variance by the shortcut is 0!

Page 34: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Taylor’s Theorem

• Can often approximate a function by a polynomial

• The error in the approximation is related to the first omitted term

• There are several forms for the error• We will use this kind of analysis

extensively in this course

Page 35: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

( )2

( 1)

1( 1)

''( ) ( )( ) ( ) '( )( ) ( ) ( )2! !

( ) ( )!

( ) ( )( 1)!

is between and

nn

n

x nn

na

nn

f a f af x f a f a x a x a x a Rn

x tR f t dtn

x aR fn

x a

x

x

+

++

= + - + - + + - +

-=

-=

+

ò

( )2

1( 1)

''( ) ( )( ) ( ) '( )2! !

( )( 1)!

nn

n

nn

f x f xf x h f x f x h h h Rn

hR fn

x+

+

+ = + + + + +

=+

Page 36: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Series Truncation Error

• In general, the more terms in a Taylor series, the smaller the error

• In general, the smaller the step size h, the smaller the error

• Error is O(hn+1), so halving the step size should result in a reduction of error that is on the order of 2n+1

• In general, the smoother the function, the smaller the the error

Page 37: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and
Page 38: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Taylor Series Approximation of a Polynomial

4 3 2

0

1

2

2

( ) 0.1 0.15 0.5 0.25 1.2(0) 1.2(1) 0.2(1) 1.2'(0) 0.25(1) (0) 0.25(1) 1.2 .25 0.95''(0) 1

(1)(1) 1.2 .25 1 0.95 0.5 0.452!

f x x x x xfffff ff

f

=- - - - +===

=-= - = - =

=-

= - - = - =

Page 39: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

4 3 2

( )

2

3 4

22

22

( ) 0.1 0.15 0.5 0.25 1.2

(0) 1.2; '(0) 0.25; ''(0) 1; '''(0) 0.9

''''(0) 2.4; (0) 0, 4

( ) 1.2 0.25( ) ( 1/ 2)( )( 0.9 / 6)( ) ( 2.4 / 24)( )

( ) 1.2 0.25( ) ( 1/ 2)( )

( ) 0.5 0

n

f x x x x x

f f f f

f f n

f x x xx x

f x x x

f x x

=- - - - +

= =- =- =-

=- = >

= - + - +

- + -

= - + -

=- - .25 1.2x+

Page 40: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

4 3 2

( )

2

3 4

22

( ) 0.1 0.15 0.5 0.25 1.2

(1) 0.2; '(1) 0.25; ''(1) 2.2; '''(1) 3.3

''''(1) 2.4; (1) 0, 4

( ) 0.2 0.25( 1) ( 2.2 / 2)( 1)( 3.3 / 6)( 1) ( 2.4 / 24)( 1)

( ) 0.2 .25 .25 1.1 2.2

n

f x x x x x

f f f f

f f n

f x x xx x

f x x x x

=- - - - +

= =- =- =-

=- = >

= - - + - - +

- - + - -

= - + - + -2

2

1.1

( ) 1.1 0.95 0.65f x x x=- + -

Page 41: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Approximating Polynomials

• Any fourth degree polynomial has a fifth derivative that is identically zero

• The remainder term for the order four Taylor series contains the fourth derivative at a point.

• Thus the order four Taylor series approximation is exact; that is, it is the polynomial itself.

Page 42: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

• The Taylor approximation of order n to a function f(x) at a point a is the best polynomial approximation to f() at a in the following sense:– It is a polynomial– It is of order n or less (no terms higher than xn

– It matches the value and first n derivatives of f() at a.

);(ˆ axfn

Page 43: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Taylor Series and Euler’s Method

2 3

2

''( ) '''( )( ) ( ) '( )2! 3!

'( ) ( )

''( ) '( ) ( )

dv cg vdt m

v x v xv x h v x v x h h h

cv x g v xm

c gc cv x v x v xm m m

= -

+ = + + + +

= -

æ ö÷ç=- =- + ÷ç ÷çè ø

Page 44: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

( )

( )

( )

1 1 1

1 1

2 2 21 1

( ) ( )

( ) ( ) ( )

''( ) ''( ) ( )2! 2

i i i i

i i i i i

i i

dv cg vdt m

dvv t v t t t Rdt

cv t v t g v t t tm

v vR t t h O hx x

+ +

+ +

+

= -

= + - +

æ ö÷ç+ - -÷ç ÷çè ø

= - = =

Page 45: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Nonlinearity and Step Size

• For the first-order Taylor approximation, the more nearly linear the function is, the better the approximation

• The smaller the step size, the better the approximation

Page 46: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

1

12

2 21

( )'( )( ) ( ) '( )

''( ) ( 1)2! 2!

m

m

m

f x xf x mxf x h f x f x h R

f m mR h hx x

-

-

=

=+ = + +

-= =

Page 47: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and
Page 48: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Numerical Differentiation2

1 1 1

21 1 1

11

1

( ) ( ) '( )( ) ( )

'( )( ) ( ) ( ) ( )

( ) ( )'( ) ( )

( )

'( ) ( )

i i i i i i i

i i i i i i i

i ii i i

i i

ii

f x f x f x x x O x x

f x x x f x f x O x x

f x f xf x O x x

x xff x O h

h

+ + +

+ + +

++

+

é ù= + - + -ê úë ûé ù- = - + -ê úë û

- é ù= + -ë û-

D= +

First Forward Difference

Page 49: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

21

1

( ) ( ) '( ) ( )( ) ( )'( ) ( )

'( ) ( )

i i i

i ii

ii

f x f x f x h O hf x f xf x O h

hff x O h

h

-

-

= - +

-= +

= +

First Backward Difference

Page 50: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

2 31

2 31

31 1

21 1

21 1

( ) ( ) '( ) 0.5 ''( ) ( )

( ) ( ) '( ) 0.5 ''( ) ( )

( ) ( ) 2 '( ) ( )( ) ( )

'( ) ( )2

( ) ( )'( ) ( )

2

i i i i

i i i i

i i i

i ii

i ii

f x f x f x h f x h O h

f x f x f x h f x h O h

f x f x f x h O hf x f x

f x O hhf x f x

f x O hh

+

-

+ -

+ -

+ -

= + + +

= - + +

- = +

-= +

-= +

First Centered Difference

Page 51: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and
Page 52: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

4 3 2( ) 0.1 0.15 0.5 0.25 1.20.5; 0.5

(0.5) .925; '(0.5) .9125(0) 1.2; (1) 0.2'(0.5) (0.2 .925) / .5 1.45

( .9125 1.45) / .9125 .589'(0.5) (.925 1.2) / .5 .55

( .9125 .55) / .9125 .397'(0.5)

i

f x x x x xh xf ff ff

f

f

e

e

=- - - - += =

= =-= =

- =-

= - + =

- =-

= - + =

(0.2 1.2) / (2)(.5) 1.00( .9125 1.00) / .9125 .096

e

- =-

= - + =

Page 53: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

4 3 2( ) 0.1 0.15 0.5 0.25 1.20.25; 0.5

(0.5) .925; '(0.5) .9125(.25) 1.10351563; (.75) 0.63632813'(0.5) (0.63632813 .925) / .5 1.155

( .9125 1.155) / .9125 .265'(0.5) (.925 1.10351563) / .5

i

f x x x x xh xf ff ff

fe

=- - - - += =

= =-= =

- =-

= - + =

- =-

.714( .9125 .714) / .9125 .217

'(0.5) (0.63632813 1.10351563) / .5 0.934( .9125 .934) / .9125 .024

fe

e

= - + =

- =-

= - + =

Page 54: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Summary of Exampleh = 0.5 h = 0.25

Forward 0.589 .265

Backward 0.397 0.217

Centered 0.096 0.024

Relative Error

Page 55: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Second Differences

( )( ) ( )

2 2 21

22 1 1

22 1

''( ) ( ) / ( ) ( )

''( ) ( ) ( ) ( ) ( )

''( ) ( ) 2 ( ) ( )

i i i i

i i i i i

i i i i

f x f x h h f x f x

f x h f x f x f x f x

f x h f x f x f x

-+

-+ + +

-+ +

D = D -

é ù- - -ê úë ûé ù- +ë û

Page 56: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

1

1

1

2 2 2 2 2

( )( )( ) 2 2

i i i

i i

i i

i i i

f f fIf fFf fF I f f f

F IF I F FI I F F I

+

+

+

D = -

=

=

- = -

D= -

D = - = - + = - +

Page 57: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

12 2 2

21 2

2 2

2 2

1 1

2 2 2 2

22 2

( )

( ) ( 2 )

2

( 2 ) ( 2 )( 2 ) ( 2 )

( )

( ) ( 2 )

2

i i i i

i i i

i i i i

i i i i

i i i

i i i i

f f f I B f

f I B f I B B f

f f f f

B F F I B F I BF I B B F F I B

f f f F B f

f F B f F FB B f

f f f f

-

- -

+ -

+ -

= - = -

= - = - +

= - +

D = - + = - +

= - + = - +

= - = -

= - = - +

= - +

Page 58: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Second Derivatives2 3

2

2 31

2 31

2 32 1

2 1

( ) ( ) '( )(2 ) 0.5 ''( )(2 ) ( )

( ) ( ) '( )( ) 0.5 ''( )( ) ( )

2 ( ) 2 ( ) 2 '( )( ) ''( )( ) ( )

( ) 2 ( ) ( ) ''( )( ) ( )( ) 2 ( )

''( )

i i i i

i i i i

i i i i

i i i i

i ii

f x f x f x h f x h O h

f x f x f x h f x h O h

f x f x f x h f x h O h

f x f x f x f x h O hf x f x

f x

+

+

+

+ +

+ +

= + + +

= + + +

= + + +

- =- + +

- += 2

2

2

( )( )

''( ) ( )

i

ii

f xO h

hff x O h

h

+

D= +

Second Forward Difference

Page 59: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Second Derivatives

1 22

2

2

( ) 2 ( ) ( )''( ) ( )

''( ) ( )

i i ii

ii

f x f x f xf x O hh

ff x O hh

- -- += +

= +

Second Backward Difference

Page 60: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Second Derivatives

1 12

22

( ) 2 ( ) ( )''( ) ( )

''( ) ( )

i i ii

ii

f x f x f xf x O h

hff x O h

h

+ -- += +

= +

Second Centered Difference

Page 61: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Propagation of Error

• Suppose that we have an approximation of the quantity x, and we then transform the value of x by a function f(x).

• How is the error in f(x) related to the error in x?

• How can we determine this if f is a function of several inputs?

Page 62: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

2

''( )( ) ( ) '( )2!

( ) ( ) '( )If the error is bounded

( ) ( ) '( )If the error is random with standard deviation

( )( ( )) '( )

x x x xf xf x f x f x

f x f x f x

B f x f x f x B

SD xSD f x f x

e

e e

e

e

ss

s

= +

= + + +

-

< - <

=

Page 63: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

1 1 1 1 1

2 2 2 2 2

1 2 1 2 1 1 2 1 2 1 2 2

1 2 1 2 1 1 2 1 2 1 2 2

1 2 1 2 1 1 2 1 2 1 2

( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , )

If the errors are bounded

( , ) ( , ) ( , ) ( ,i i

x x x xx x x xf x x f x x f x x f x xf x x f x x f x x f x x

B

f x x f x x f x x B f x x

ee

e ee e

e

= +

= +

= + + +

- +

<

- < +

2) B

Page 64: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

Stability and Condition

• If small changes in the input produce large changes in the answer, the problem is said to be ill conditioned or unstable

• Numerical methods should be able to cope with ill conditioned problems

• Naïve methods may not meet this requirement

• The condition number is the ratio of the output error to the input error

Page 65: Lecture2-2010dmrocke.ucdavis.edu/Class/EAD115 Fall 2010.old/Lecture2-2010.pdf · • 1 sign bit • 3 exponent bits • 3 mantissa bits • Mantissa normalized to be between 0.5 and

The error of the input is ./ / is the relative error of the input.

The error of the output is( ) ( ) '( )

and the relative error of the output is( ) ( ) '( ) '( )

( ) ( )

x xx x

f x f x f x

f x f x f x f xf x f x f

e ee e

e

e e

= +

-

-( )

The ratio of the output RE to the input RE is( ) ( ) '( ) '( ) '( )

( / ) ( ) ( / ) ( ) ( ) ( )

x

f x f x f x xf x xf xx f x x f x f x f x

e

e e-

=