lecture29 actual

Upload: heamin-yung

Post on 05-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Lecture29 Actual

    1/27

    Lecture 29 - Reinforced Columns

    April 1, 2002

    CVEN 444

  • 7/31/2019 Lecture29 Actual

    2/27

    Lecture Goals

    ColumnsLong Column Design

  • 7/31/2019 Lecture29 Actual

    3/27

    Columns

    Long with a relatively high slenderness ratiowhere lateral or shear walls are required

    Long with a medium slenderness ration that will

    cause a reduction in strength Short where the slenderness ratio is small

    Slenderness ratio =

    r

    Klu

  • 7/31/2019 Lecture29 Actual

    4/27

    Long ColumnsSlender Columns

    Column with a significant reduction in

    axial load capacity due to moments

    resulting from lateral deflections of the

    column (ACI Code: significant

    reduction 5%)

    Slender =

    Column

  • 7/31/2019 Lecture29 Actual

    5/27

    Long Columns

    Less than 10 % of columns in braced or non-swayframes and less than half of columns in unbraced or

    sway frames would be classified as slenderfollowing ACI Code Procedure.

  • 7/31/2019 Lecture29 Actual

    6/27

    Effective Length

    The effective length - Klu

    lu

    - It measures the clear distance between floors.

    K - a factor, which represents the ratio of the distance

    between points of zero moments in the columns

  • 7/31/2019 Lecture29 Actual

    7/27

    H s K

    beamsof/

    columnsof/

    u

    u

    lEI

    lEI

    YA v YBl cc h s top and bottom factors cact . Vi u khp Yl v hn (infinite) hoc l 10

    v u c nh Y l zero hay 1

  • 7/31/2019 Lecture29 Actual

    8/27

    H s KCc gi thit tng qut l

    - Kt cu gm cc khung ch nht i xng

    - The girder moment at a joint is distributed to columnsaccording to their relative stiffness

    - All columns reach their critical loads at the same time

  • 7/31/2019 Lecture29 Actual

    9/27

    General Formulation

    Modulus of Elasticity

    Reinforced Moment (ACI 10.11.1)c

    c

    5.1

    c

    57000

    33

    f

    fwE

    columnafor70.0

    beamafor35.0

    g

    g

    II

    II

  • 7/31/2019 Lecture29 Actual

    10/27

    General Formulation

    Area

    Moment of inertia shall be divided by (1 + bd)

    with sustain lateral loads

    gAA

    bd = Max. factored sustain lateral loadMax. factored axial load

  • 7/31/2019 Lecture29 Actual

    11/27

    K Factor

    Use the Y values to

    obtain the K factors

    for the columns.

  • 7/31/2019 Lecture29 Actual

    12/27

    Long Column

    Lateral deflection -

    increases moment

    Eccentrically loaded pin-ended column.

    M = P*( e + D )

  • 7/31/2019 Lecture29 Actual

    13/27

    Long Column

    OA - curve for end moment

    OB - curve for maximumcolumn moment @ mid-height)

    Eccentrically loaded pin-ended column.

    Axial capacity is reduced from A

    to B due to increase in maximummoment due to Ds (slendernesseffects)

  • 7/31/2019 Lecture29 Actual

    14/27

    Long Columns

    From ACI Sec. 12.10.2 , the slenderness effects maybe neglected if

    k = effective length factor (function of end restraints)

    Non-sway frames

    Sway frames

    2

    1

    ratiosslendernes

    u 1234

    M

    M

    r

    kL

    k

    k

    0.1

    0.15.0

  • 7/31/2019 Lecture29 Actual

    15/27

    Long Column - Slenderness Ratio

    Slenderness Ratio forcolumns

    Pinned-PinnedConnection

    Fixed-Fixed

    Connection

    (a)

    (b)

  • 7/31/2019 Lecture29 Actual

    16/27

    Long Column - Slenderness Ratio

    Slenderness Ratio forcolumns

    Fixed-PinnedConnection

    Partial restrained

    Connection

    (c)

    (d)

  • 7/31/2019 Lecture29 Actual

    17/27

    Long Column - Slenderness Ratio

    Slenderness Ratio for columns in frames

  • 7/31/2019 Lecture29 Actual

    18/27

    Long Column - Slenderness Ratio

    Slenderness Ratio for columns in frames

  • 7/31/2019 Lecture29 Actual

    19/27

    Long Column

    Unsupported height of column from top of

    floor to bottom of beams or slab in floor

    Radius of gyration

    = 0.3* overall depth of rectangular columns= 0.25* overall depth of circular

    columns

    lu =

    r =

    A

    I

  • 7/31/2019 Lecture29 Actual

    20/27

    Long Column

    singular curvature double curvature

    Ratio of moments at two column ends, where

    M2 > M1 (-1 to 1 range)

    M1

    /M2

    =

    0

    2

    1 M

    M0

    2

    1 M

    M

  • 7/31/2019 Lecture29 Actual

    21/27

    Long Columns

    M1/M2 = Ratio of moments at two column endswhere M2 > M1 (-1.0 to 1.0 range)

    - single curvature

    - double curvature

    1.0kand

    5.0

    2

    1

    M

    M

    is typically conservative

    (non-sway frames)

    Note Code (10.12.2) M1/M2 -0.5 non-sway frames

  • 7/31/2019 Lecture29 Actual

    22/27

    Long Column

    From MacGregor

    framessway-nonveconservatitypicallyis

    0.1and

    5.0

    2

    1

    k

    M

    M

    (non-sway frames)Note: Code 10.12.2 5.0

    2

    1 M

    M

    Possible range of = 22 to 40

    r

    ukl

  • 7/31/2019 Lecture29 Actual

    23/27

    Design of Short Columns

    Design a short square tied column to carry adesign load of Pu of 640 kips and a design

    moment of 330 kip-ft. Place the reinforcing

    uniformly in the four faces. Design the ties.

    Use a 1.5 in. cover with an unsupported length

    is 11 ft. and fc = 4000 psi and fy = 60 ksi.

  • 7/31/2019 Lecture29 Actual

    24/27

    Problem Steps

    Determine eccentricity.

    Estimate column size

    required base on axial load. Determine e/h and requiredfPn/Ag

    Determine which chart touse.

    Select steel sizes.

    Design ties by ACI code

    Design sketch

  • 7/31/2019 Lecture29 Actual

    25/27

  • 7/31/2019 Lecture29 Actual

    26/27

  • 7/31/2019 Lecture29 Actual

    27/27

    Design Summary