lecture_3_p

Upload: hmalrizzo469

Post on 03-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 lecture_3_p

    1/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Lecture 3: Position Vector and Coordinate Systems (cont.); Vectors: ScalarProduct; Vector Product; Dyadic Product

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 42 / 77

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    2/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    MFEFT - Lecture 3

    1 Introduction

    2 Vector and Tensor Algebra

    3 Position Vector and Coordinate SystemsCartesian CoordinatesEinsteins Summation ConventionDifferentiation of the Position Vector; Kronecker Symbol (Kronecker Delta)Cylinder Coordinate SystemOrthogonal Curvilinear Coordinate System

    Spherical Coordinate SystemDupin Coordinates

    4 Vectors: Scalar Product; Vector Product; Dyadic ProductScalar Product

    5 Vector and Tensor Analysis

    6 Distributions7 Complex Analysis

    8 Special Functions

    9 Fourier Transform

    10 Laplace Transform

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 43 / 77

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    3/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    The explicit request of a NEW Orthonormal Coordinate System according to

    eiek

    = ik (110)

    transfers this requirement into

    ijexj

    klexl

    = ik (111)

    ijkl exj exl = jl

    = ik (112)

    and further to

    ijkj = ik on the left-hand sidesum over j from 1 to 3 (113)with the definition

    exjexl

    = jl . (114)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 44 / 77

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    4/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthonormal Relation; Transformation Dyad

    Orthonormal Relation; Transformation Dyad

    The Orthonormal Relation (see Eq. (113))

    exjexl

    = jl (115)

    says, that the Transposed T

    of the Dyada)

    is equal to the Inverse, i.e., the dot product

    T is equal to the unit dyadic I:

    T = I (116)

    = 1 (117)

    is an Orthogonal Dyad.a)Compared to with the elements ij has

    T the elements ji .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 45 / 77

    P i i V d C di S O h l C ili C di S

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    5/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    Uniqueness of the Transformation Formulas

    Via the computation of the products ei exj we can illustrate the meaning of ij ; it follows

    with the application of the orthonormal property ofexj

    eiexj

    = ilexl exj (118)

    = illj (119)

    = ij (120)

    = cos(ei , exj ) . (121)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 46 / 77

    Position Vecto and Coo dinate S stems O thogonal C ilinea Coo dinate S stem

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    6/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    The ij are

    ij = cos(ei ,exj ) (122)

    the so-called Direction Cosines of the NEW orthonormal tripoda vectors relative to the OLDCartesian Coordinate System. The ij are determine the Local Rotation of the NEWorthonormal tripod at every point in space. If this rotation is independent of position, then thecoordinate transformation in Eq. (96) is a simple rotation of a cartesian coordinate system.

    aTripod is a word generally used to refer to a three-legged object, generally one used as a platform of some sort, and comesfrom the Greek tripous, meaning three feet.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 47 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    7/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Handiness of the Coordinate SystemThe Handiness of the NEw Coordinate System compared to the OLD one is given by the

    Determinant of. With the properties detI

    = 1 and det

    T

    = det

    it follows

    det

    ( T)

    = det

    det

    T

    = 1 . (123)and

    (det

    )2 = 1 (124)

    and

    det

    = 1 (125)

    =

    +1 the tripod e1 , e2 ,e3 is right-handed

    1 the tripod e1 , e2 ,e3 is left-handed(126)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 48 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    8/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    If the OLD Coordinate System is not a Cartesian Coordinate System, but also CurvilinearOrthogonal, than we have the Transformation j i, and Eq. (109) reads for this general case:

    ij =hj

    hi

    j

    i

    =h

    i

    hj

    ij

    . (127)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 49 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    9/25

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients hi

    Illustration of the Meaning of the MetricCoefficients hi

    Like the ij we can illustrate the meaning of themetric coefficients hi . h has been alreadydiscussed. We define a Line Element ds as the

    magnitude of the differential change dR of theposition vector, i. e., a change ofR to R+ dR(see Fig. 3):

    ds2 = dR dR . (128)

    In order the compute ds in the orthogonal

    curvilinear coordinates we build the total differentialofR with regard to the dependence of 1, 2, 3

    dR =R

    1d1 +

    R

    2d2 +

    R

    3d3 (129)

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ...

    ................................................................................................................................................................................................................................................................................................................. ................

    ................................................................................................................................................................................................................................................................................................................................................................................................................

    ................

    O

    R

    R+ dR

    dR, |dR| = ds

    Figure 3: Definition of the Line Elements

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 50 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    10/25

    y g y

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients hi

    Illustration of the Meaning of the Metric Coefficients hi

    We multiply and make use of the summation convention

    ds2

    =

    R

    i di

    R

    j dj (130)

    = dihi ei ej = ij

    hj dj (131)

    = h2j d2j (132)

    = h21d21 + h22d22 + h23d23 . (133)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 51 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    11/25

    y g y

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients hi

    Illustration of the Meaning of the Metric Coefficients hi

    Because of the invariance of the Scalar Line Element ds when the Coordinate System ischanging, we can use Eq. (133)

    ds2 = h21d21 + h

    22

    d22 + h23

    d23

    to interpret the Metric Coefficients:In the Cartesian Coordinate System ds read

    ds2 = dx2 + dy2 + dz2 [m2] (134)

    this means ds2 is given by the Theorem of Pythagoras by adding the squares of the threeMetric Differential Changes dx, dy, dz in the direction of the Coordinate Lines.

    In an arbitrary Orthogonal Curvilinear Coordinate System the hi determine the Metric ofthe Coordinate Lines (in meter).

    The di can represent as d in cylinder coordinates and d in spherical coordinates aChange in Angle Direction.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 52 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    12/25

    Illustration of the Meaning of the Metric Coefficients hiDifferential Volume Element

    Differential Volume Element

    This interpretation of the hi makes clear, that a Differential Volume Element dV in CartesianCoordinate System

    dV = dx dy dz (135)

    can be generalized to a Differential Volume Element of an arbitrary Curvilinear CoordinateSystem

    dV = h1 d1 h2 d2 h3 d3 (136)

    = h1 h2 h3 d1 d2 d3 (137)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 53 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    13/25

    Spherical Coordinate SystemCoordinates; Unit Vectors, Magnitude of the Position Vector

    Spherical Coordinates; Unit Vectors,Magnitude of the Position Vector

    Cartesisan Coordinates: R,, in thelimits 0 R < , 0 ,0 < 2

    : polar angle; : azimuth angleOrthonormal Unit Vectors: eR,e, ewith |eR| = |e| = |e| = 1a andeR e ebThe straight line from the coordinateorigin O to the (observation) point P is

    illustrating the position vector R of Pthe magnitude of the position vector is|R| = R =

    R2

    a|| stands for the magnitude of the argumentb stands for perpendicular

    R e

    q

    (q,j)

    e (j)j

    y

    R

    z

    j

    x

    O

    P R,( )jq,

    eR(q,j)

    q

    Figure 4: Spherical Coordinates of the spatialpoint P and the related position vector

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 54 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    14/25

    Spherical Coordinate SystemCoordinates; Unit Vectors, Magnitude of the Position Vector

    Coordinate Transformation Formulas

    The Transformation Formulas are following from Fig. 4:

    x = R sin cos (138)

    y = R sin sin (139)

    z = R cos (140)

    Cartesian Position Vector as a Funtion of the Spherical Coordinates

    The representation of the Position Vector in the Cartesian Coordinate System as a function ofthe Spherical Coordinates is:

    R = xR sin cos

    ex + yR sin sin

    ey + zR cos

    ez (141)

    = R sin cos ex + R sin sin ey + R cos ez (142)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 55 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    15/25

    Spherical Coordinate SystemMetric Coeffecients; Orthonormal Unit Vectors

    Metric Coefficients

    The three Metric Coefficients of the Spherical Coordinate System are

    hR = 1 (143)

    h = R (144)

    h = R sin . (145)

    Orthonormal Unit Vectors

    The Orthonormal Unit Vectors of the Spherical Coordinate System in form of the VectorDecomposition in the Cartesian Coordinate System as a function of the Spherical Coordinates read

    eR (, ) = sin cos ex + sin sin ey + cos ez (146)

    e (, ) = cos cos ex + cos sin ey sin ez (147)e () = sin ex + cos ey . (148)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 56 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    16/25

    Spherical Coordinate SystemPosition Vector in the Spherical Coordinate System

    Position Vector in the Spherical Coordinate System

    The Position Vector in the Spherical Coordinate System can be found via CoordinateTransformation from the Cartesian Coordinate to the Spherical Coordinate System. The result is:

    R = R eR (, ) . (149)

    The position vector in the spherical coordinate system has only ONE vector componentR eR (, ) with the scalar vector component R. The dependencies of the angles and arehidden in the unit vector eR (, ).

    Position Vector in the Spherical Coordinate System

    For Unit Position Vector it follows then

    R =R

    R=

    R eR (, )

    R= eR (, ) . (150)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 57 / 77

    Position Vector and Coordinate Systems Dupin Coordinates

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    17/25

    Dupin Coorindates

    Dupin Coorindates

    The (Circular)Cylindrical and SphericalCoodinate System are Special Cases ofthe so-called general Dupin CoordinateSystem [Tai, 1992], which are veryimportant in the Vector and TensorAnalysis of Surfaces.

    The Transition and BoundaryConditions for electromagnetic fieldsfrom Maxwells equations are typicallyderived using Dupin Coordinates.

    Dupin Coordinates are orthogonalcurvilinear coordinates 1, 2, 3 with

    the unit vectors e1 , e2 , n, i. e. e3 isthe unit normal vector n of the surfacegiven by e1 and e2 . The relatedmetric coefficient h3 is h3 = 1. Thecoordinate system is right handed, ifn = e1e2 .

    Figure 5: Dupin Coordinates of the surface =

    12 plane with the unit normal vectorn = e1

    e2

    .................................................................................................................................................................................. ................

    ................

    ............................................................................................................................................

    ....................

    ..

    ..

    ..

    .

    ................

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ...

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..................

    ................

    .............................................................................

    ................

    ...................................................................

    ...

    .............

    O

    1

    2

    n

    e1

    e2

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 58 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    18/25

    MFEFT - Lecture 3

    1 Introduction

    2 Vector and Tensor Algebra

    3 Position Vector and Coordinate SystemsCartesian CoordinatesEinsteins Summation ConventionDifferentiation of the Position Vector; Kronecker Symbol (Kronecker Delta)Cylinder Coordinate SystemOrthogonal Curvilinear Coordinate System

    Spherical Coordinate SystemDupin Coordinates

    4 Vectors: Scalar Product; Vector Product; Dyadic ProductScalar Product

    5 Vector and Tensor Analysis

    6

    Distributions7 Complex Analysis

    8 Special Functions

    9 Fourier Transform

    10 Laplace Transform

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 59 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    19/25

    Vectors: Scalar Product; Vector Product; Dyadic Product

    The Scalar, Vector, and Dyadic Product

    Scalar Product (Dot Product)Example:

    A B = C = Scalar! (151)

    Vector Product (Cross Product)Example:

    AB = C = Vector! (152)

    Dyadic ProductExample:

    AB = D = Dyad! (153)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 60 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    20/25

    Scalar Product

    Scalar ProductFig. 6 shows a vector A, which is projected to a unitvector e, the result is given by the Scalar Product

    A e = A cos , (154)

    where determines the enclosed angle between A

    and e.

    Replacing e by a vector B with the magnitude Byields the general form of Eq. (154), theCommutative scalar product A B (say: A dot B):

    A B = B A (155)

    = A B cos . (156)

    Obviously is A B = 0, ifA and B areperpendicular, A B, to each other; this meansone can define two orthogonal vectors by avanishing scalar product between both.

    .....................................................................................................................................................................................................................................................................................................................................................................................................................

    ....................... .................................................................................................................................................................................................................................................................................................................................................................................................

    ....................

    .......................

    ............

    ............

    ............

    ............

    .......

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..................

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    .................

    ..

    ..

    ..

    .

    ..

    ..

    ..

    ..

    ..

    ..

    .

    ..

    ..

    ..

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    ............. ............. ............. .............

    .............

    .............

    .............

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ....................................

    ..

    .........

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ........................................................

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    .........................................................

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    .........................

    .......................

    ........................................................................................................................................................................................................................................................

    .......................

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    .......................................................

    ...

    ...

    ...

    .

    .....

    ...

    ...

    ...

    ...

    ...

    ..........................

    ...............

    ........

    A

    e

    A e

    Figure 6: Illustration des Skalarprodukts

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 61 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    21/25

    Scalar Product

    Scalar Product: Orthonormal Tripod

    The orthonormal tripod of a the cartesian coordinate system is charachterized byexi

    exj= ij fur i, j = 1, 2, 3 . (157)

    Scalar Product: Scalar Vector Components

    Further, we can use the scalar sroduct to determine the scalar vector components of a vector A,

    i. e. in the Cartesian Coordinate System we find

    Ax = A ex

    Ay = A ey (158)

    Az = A ez .

    We compute for the scalar product in components form ofA and B

    A B = (Ax ex + Ay ey + Az ez) (Bx ex + By ey + Bz ez) (159)

    and find by formal multiplication and the use of Eq. (157)

    A B = AxBx + AyBy + AzBz . (160)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 62 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    22/25

    Scalar Product

    Enclosed Angle between two General Vectors A and B

    The Enclosed Angle between the vector A and B is if A= 0 and B

    = 0:

    cos =A B

    A B

    =AxBx + AyBy + AzBz

    A2x + A2y + A

    2z

    B2x + B

    2y + B

    2z

    . (161)

    Magnitude of a General Vector A

    The Magnitude A of the Vector A is defined by the scalar product A A:

    A =

    A A =

    A2x + A

    2y + A

    2z ; (162)

    Unit Vector of a General Vector A

    Then, the Unit Vector of the Vector A can be computed by

    A =A

    A A=A

    A=

    Ax

    Aex +

    Ay

    Aey +

    Az

    Aez . (163)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 63 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    23/25

    Scalar Product

    Scalar Product: More Short-Hand Notations

    We are going to cite two other short-hand notation of the scalar product. With Eq. ( 158) innumbered form we find

    Axi = A exi fur i = 1, 2, 3 (164)

    and for B we obtain instead Eq. (159)

    A B =

    3i=1

    AxiBxi (165)

    or applying the summation convention

    A B = Axi

    Bxi

    .(166)

    Obviously, this proves that the scalar product is commutative, i.e.,

    A B = B A . (167)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 64 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    24/25

    Scalar Product

    Scalar Product: Independence of the Coordinate System

    In generalization of Eq. (164) we define for the components of a vector in orthogonal curvilinearcoordinates bya)

    Ai = A ei , (168)

    and obtain by applying the summation convention

    A = Ai ei= Ai ij exj

    = Axj exj (169)

    with

    Axj = ij Ai , (170)

    by applying the transformation formulas in Eq. (108).

    a)At the point in space R(1, 2, 3) we project the general position dependent vector A(1, 2, 3) onto the positiondependent unit vectors ei

    (1, 2, 3).

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 65 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    S l P d

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_p

    25/25

    Scalar Product

    Scalar Product: Independence of the Coordinate System

    On the other hand, by inserting the cartesian components form A = Axiexi in

    Aj = A=Axiexi

    ej

    = Axiexi ej

    = Axi exi ej = ji

    (171)

    = ji Axi . (172)

    Number triples, which are transformed from the cartesian to an orthonormal curvilinearcoordinate system with Eq. (170) or Eq. (172) are in the mathematical sense (scalar) componentsof vectors. Because of the inverse of is equal to the transpose, Eq. (172), Aj = ji Axi can

    be derived from Eq. (170), Axj = ij Ai , via inversion and vice versa. The vector A as adirected physical value is independent of the coordinate system (it is koordinatenfrei), simply themathematical representation is coordinate dependent.

    The values of the Scalar Product of two Vectors is Independent of the Coordinate System:

    A B = Axi Bxi = Ai Bi . (173)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 66 / 77

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-