lecture_3_s

Upload: hmalrizzo469

Post on 03-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 lecture_3_s

    1/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Lecture 3: Position Vector and Coordinate Systems (cont.); Vectors: ScalarProduct; Vector Product; Dyadic Product

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 42 / 77

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    2/68

  • 7/28/2019 lecture_3_s

    3/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    The explicit request of a NEW Orthonormal Coordinate System according to

    e i e k = ik (110)

    transfers this requirement into

    ij e xj

    kl e xl

    = ik (111)

    ij kl e x j e x l

    = jl= ik (112)

    and further to

    ij kj = ik on the left-hand sidesum over j from 1 to 3 (113)

    with the denition

    e x j e x l = jl . (114)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 44 / 77

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    4/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    The explicit request of a NEW Orthonormal Coordinate System according to

    e i e k = ik (110)

    transfers this requirement into

    ij e xj

    kl e xl

    = ik (111)

    ij kl e x j e x l

    = jl= ik (112)

    and further to

    ij kj = ik on the left-hand sidesum over j from 1 to 3 (113)

    with the denition

    e x j e x l = jl . (114)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 44 / 77

    d d h l l d

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    5/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    The explicit request of a NEW Orthonormal Coordinate System according to

    e i e k = ik (110)

    transfers this requirement into

    ij e xj

    kl e xl

    = ik (111)

    ij kl e x j e x l

    = jl= ik (112)

    and further to

    ij kj = ik on the left-hand sidesum over j from 1 to 3 (113)

    with the denition

    e x j e x l = jl . (114)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 44 / 77

    P iti V t d C di t S t O th l C ili C di t S t

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    6/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    The explicit request of a NEW Orthonormal Coordinate System according to

    e i e k = ik (110)

    transfers this requirement into

    ij e xj

    kl e xl

    = ik (111)

    ij kl e x j e x l

    = jl= ik (112)

    and further to

    ij kj = ik on the left-hand sidesum over j from 1 to 3 (113)

    with the denition

    e x j e x l = jl . (114)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 44 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    7/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthonormal Relation; Transformation Dyad

    Orthonormal Relation; Transformation Dyad

    The Orthonormal Relation (see Eq. ( 113) )

    e x j e x l = jl (115)

    says, that the Transposed T

    of the Dyada)

    is equal to the Inverse , i.e., the dot product T is equal to the unit dyadic I :

    T = I (116)

    = 1 (117)

    is an Orthogonal Dyad .a ) Compared to with the elements ij has T the elements ji .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 45 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    8/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthonormal Relation; Transformation Dyad

    Orthonormal Relation; Transformation Dyad

    The Orthonormal Relation (see Eq. ( 113) )

    e x j e x l = jl (115)

    says, that the Transposed T

    of the Dyada)

    is equal to the Inverse , i.e., the dot product T is equal to the unit dyadic I :

    T = I (116)

    = 1 (117)

    is an Orthogonal Dyad .a ) Compared to with the elements ij has T the elements ji .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 45 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    9/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Orthonormal Relation; Transformation Dyad

    Orthonormal Relation; Transformation Dyad

    The Orthonormal Relation (see Eq. ( 113) )

    e x j e x l = jl (115)

    says, that the Transposed T

    of the Dyada)

    is equal to the Inverse , i.e., the dot product T is equal to the unit dyadic I :

    T = I (116)

    = 1 (117)

    is an Orthogonal Dyad .a ) Compared to with the elements ij has T the elements ji .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 45 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    10/68

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    Uniqueness of the Transformation Formulas

    Via the computation of the products e i e x j we can illustrate the meaning of ij ; it follows

    with the application of the orthonormal property of e x j

    e i e x j = il e x l

    e x j (118)

    = il lj (119)= ij (120)= cos (e i , e x j ) . (121)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 46 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    11/68

    y g y

    Uniqueness of the Transformation Formulas

    Uniqueness of the Transformation Formulas

    Via the computation of the products e i e x j we can illustrate the meaning of ij ; it follows

    with the application of the orthonormal property of e x j

    e i e x j = il e x l

    e x j (118)

    = il lj (119)= ij (120)= cos (e i , e x j ) . (121)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 46 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    12/68

    y g y

    Uniqueness of the Transformation Formulas

    Uniqueness of the Transformation Formulas

    Via the computation of the products e i e x j we can illustrate the meaning of ij ; it follows

    with the application of the orthonormal property of e x j

    e i e x j = il e x l

    e x j (118)

    = il lj (119)= ij (120)= cos (e i , e x j ) . (121)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 46 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    13/68

    Uniqueness of the Transformation Formulas

    Uniqueness of the Transformation Formulas

    Via the computation of the products e i e x j we can illustrate the meaning of ij ; it follows

    with the application of the orthonormal property of e x j

    e i e x j = il e x l

    e x j (118)

    = il lj (119)= ij (120)= cos (e i , e x j ) . (121)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 46 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    14/68

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    The ij are

    ij = cos (e i , e x j ) (122)

    the so-called Direction Cosines of the NEW orthonormal tripod a vectors relative to the OLD Cartesian Coordinate System. The ij are determine the Local Rotation of the NEWorthonormal tripod at every point in space. If this rotation is independent of position, then thecoordinate transformation in Eq. ( 96) is a simple rotation of a cartesian coordinate system.

    a Tripod is a word generally used to refer to a three-legged object, generally one used as a platform of some sort, and comesfrom the Greek tripous, meaning three feet.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 47 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    15/68

    Orthogonal Curvilinear Coordinate System

    Handiness of the Coordinate System

    The Handiness of the NEw Coordinate System compared to the OLD one is given by theDeterminant of . With the properties det I = 1 and det T = det it follows

    det ( T ) = det det T

    = 1 . (123)

    and

    (det )2 = 1 (124)

    and

    det = 1 (125)

    =+1 the tripod e 1 , e 2 , e 3 is right-handed

    1 the tripod e 1 , e 2 , e 3 is left-handed(126)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 48 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    16/68

    Orthogonal Curvilinear Coordinate System

    Handiness of the Coordinate System

    The Handiness of the NEw Coordinate System compared to the OLD one is given by theDeterminant of . With the properties det I = 1 and det T = det it follows

    det ( T ) = det det T

    = 1 . (123)

    and

    (det )2 = 1 (124)

    and

    det = 1 (125)

    =+1 the tripod e 1 , e 2 , e 3 is right-handed

    1 the tripod e 1 , e 2 , e 3 is left-handed(126)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 48 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    17/68

    Orthogonal Curvilinear Coordinate System

    Handiness of the Coordinate System

    The Handiness of the NEw Coordinate System compared to the OLD one is given by theDeterminant of . With the properties det I = 1 and det T = det it follows

    det ( T ) = det det T

    = 1 . (123)

    and

    (det )2 = 1 (124)

    and

    det = 1 (125)

    =+1 the tripod e 1 , e 2 , e 3 is right-handed

    1 the tripod e 1 , e 2 , e 3 is left-handed(126)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 48 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    18/68

    Orthogonal Curvilinear Coordinate System

    Handiness of the Coordinate System

    The Handiness of the NEw Coordinate System compared to the OLD one is given by theDeterminant of . With the properties det I = 1 and det T = det it follows

    det ( T ) = det det T

    = 1 . (123)

    and

    (det )2 = 1 (124)

    and

    det = 1 (125)

    =+1 the tripod e 1 , e 2 , e 3 is right-handed

    1 the tripod e 1 , e 2 , e 3 is left-handed(126)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 48 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    19/68

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    If the OLD Coordinate System is not a Cartesian Coordinate System, but also CurvilinearOrthogonal, than we have the Transformation j i , and Eq. ( 109) reads for this general case:

    ij =h jh i

    j i

    =h ih j

    i j

    . (127)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 49 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    20/68

    Orthogonal Curvilinear Coordinate System

    Uniqueness of the Transformation Formulas

    If the OLD Coordinate System is not a Cartesian Coordinate System, but also CurvilinearOrthogonal, than we have the Transformation j i , and Eq. ( 109) reads for this general case:

    ij =h jh i

    j i

    =h ih j

    i j

    . (127)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 49 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    21/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the MetricCoefficients h iLike the ij we can illustrate the meaning of themetric coefficients h i . h has been alreadydiscussed. We dene a Line Element ds as the

    magnitude of the differential change dR of theposition vector, i. e., a change of R to R + dR(see Fig. 3):

    ds 2 = dR dR . (128)

    In order the compute ds in the orthogonal

    curvilinear coordinates we build the total differentialof R with regard to the dependence of 1 , 2 , 3

    dR = R

    1d1 +

    R

    2d2 +

    R

    3d3 (129)

    .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ................

    .......................................................................................................................................................

    ......................................................................................................................................................

    ...................................................................................................................

    O

    R

    R + dR

    dR , |dR | = d s

    Figure 3: Denition of the Line Elements

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 50 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    22/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the Metric Coefficients h iWe multiply and make use of the summation convention

    ds2

    = R

    i di

    R

    j dj (130)= d i h i e i

    e j

    = ijh j dj (131)

    = h 2 j d2j (132)

    = h 2 1 d21 + h 2 2 d22 + h 2 3 d23 . (133)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 51 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    23/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the Metric Coefficients h iWe multiply and make use of the summation convention

    ds2

    = R

    i di

    R

    j dj (130)= d i h i e i

    e j

    = ijh j dj (131)

    = h 2 j d2j (132)

    = h 2 1 d21 + h 2 2 d22 + h 2 3 d23 . (133)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 51 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    24/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the Metric Coefficients h iWe multiply and make use of the summation convention

    ds2

    =

    R

    i di

    R

    j dj (130)= d i h i e i

    e j

    = ijh j dj (131)

    = h 2 j d2j (132)

    = h2 1 d

    21 + h

    2 2 d

    22 + h

    2 3 d

    23 . (133)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 51 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    25/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the Metric Coefficients h iWe multiply and make use of the summation convention

    ds2

    =

    R

    i di

    R

    j dj (130)= d i h i e i

    e j

    = ijh j dj (131)

    = h 2 j d2j (132)

    = h2 1 d

    21 + h

    2 2 d

    22 + h

    2 3 d

    23 . (133)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 51 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    h l l d

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    26/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the Metric Coefficients h iBecause of the invariance of the Scalar Line Element ds when the Coordinate System ischanging, we can use Eq. ( 133)

    ds 2 = h 2 1 d21 + h

    2 2 d

    22 + h

    2 3 d

    23

    to interpret the Metric Coefficients :In the Cartesian Coordinate System ds read

    ds 2 = d x 2 + d y2 + d z 2 [m2 ] (134)

    this means ds 2 is given by the Theorem of Pythagoras by adding the squares of the threeMetric Differential Changes dx , dy , dz in the direction of the Coordinate Lines .

    In an arbitrary Orthogonal Curvilinear Coordinate System the h i determine the Metric of the Coordinate Lines (in meter).The di can represent as d in cylinder coordinates and d in spherical coordinates aChange in Angle Direction .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 52 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    O h l C ili C di S

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    27/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the Metric Coefficients h iBecause of the invariance of the Scalar Line Element ds when the Coordinate System ischanging, we can use Eq. ( 133)

    ds 2 = h 2 1 d21 + h

    2 2 d

    22 + h

    2 3 d

    23

    to interpret the Metric Coefficients :In the Cartesian Coordinate System ds read

    ds 2 = d x 2 + d y2 + d z 2 [m2 ] (134)

    this means ds 2 is given by the Theorem of Pythagoras by adding the squares of the threeMetric Differential Changes dx , dy , dz in the direction of the Coordinate Lines .

    In an arbitrary Orthogonal Curvilinear Coordinate System the h i determine the Metric of the Coordinate Lines (in meter).The di can represent as d in cylinder coordinates and d in spherical coordinates aChange in Angle Direction .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 52 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    O th l C ili C di t S t

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    28/68

    Orthogonal Curvilinear Coordinate SystemIllustration of the Meaning of the Metric Coefficients h i

    Illustration of the Meaning of the Metric Coefficients h iBecause of the invariance of the Scalar Line Element ds when the Coordinate System ischanging, we can use Eq. ( 133)

    ds 2 = h 2 1 d21 + h

    2 2 d

    22 + h

    2 3 d

    23

    to interpret the Metric Coefficients :In the Cartesian Coordinate System ds read

    ds 2 = d x 2 + d y2 + d z 2 [m2 ] (134)

    this means ds 2 is given by the Theorem of Pythagoras by adding the squares of the threeMetric Differential Changes dx , dy , dz in the direction of the Coordinate Lines .

    In an arbitrary Orthogonal Curvilinear Coordinate System the h i determine the Metric of the Coordinate Lines (in meter).The di can represent as d in cylinder coordinates and d in spherical coordinates aChange in Angle Direction .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 52 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Ill t ti f th M i g f th M t i C ffi i t h

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    29/68

    Illustration of the Meaning of the Metric Coefficientsh iDifferential Volume Element

    Differential Volume Element

    This interpretation of the h i makes clear, that a Differential Volume Element dV in CartesianCoordinate System

    dV = d x dy dz (135)

    can be generalized to a Differential Volume Element of an arbitrary Curvilinear CoordinateSystem

    dV = h 1 d1 h 2 d2 h 3 d3 (136)= h

    1h

    2h

    3d1 d2 d3 (137)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 53 / 77

    Position Vector and Coordinate Systems Orthogonal Curvilinear Coordinate System

    Illustration of the Meaning of the Metric Coefficientsh

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    30/68

    Illustration of the Meaning of the Metric Coefficientsh iDifferential Volume Element

    Differential Volume Element

    This interpretation of the h i makes clear, that a Differential Volume Element dV in CartesianCoordinate System

    dV = d x dy dz (135)

    can be generalized to a Differential Volume Element of an arbitrary Curvilinear CoordinateSystem

    dV = h 1 d1 h 2 d2 h 3 d3 (136)= h

    1h

    2h

    3d1 d2 d3 (137)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 53 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    31/68

    Spherical Coordinate SystemCoordinates; Unit Vectors, Magnitude of the Position Vector

    Spherical Coordinates; Unit Vectors,Magnitude of the Position Vector

    Cartesisan Coordinates: R, , in thelimits 0 R < , 0 ,0 < 2

    : polar angle; : azimuth angleOrthonormal Unit Vectors: e R , e , e with |e R | = |e | = |e | = 1 a ande R

    e

    e

    b

    The straight line from the coordinateorigin O to the (observation) point P is

    illustrating the position vector R of P the magnitude of the position vector is

    |R | = R = R 2a || stands for the magnitude of the argumentb stands for perpendicular

    R eq(q,j)

    e (j)j

    y

    R

    z

    j

    x

    O

    P R,( )jq,

    e R(q,j)

    q

    Figure 4: Spherical Coordinates of the spatialpoint P and the related position vector

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 54 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    32/68

    Spherical Coordinate SystemCoordinates; Unit Vectors, Magnitude of the Position Vector

    Spherical Coordinates; Unit Vectors,Magnitude of the Position Vector

    Cartesisan Coordinates: R, , in thelimits 0 R < , 0 ,0 < 2

    : polar angle; : azimuth angleOrthonormal Unit Vectors: e R , e , e with |e R | = |e | = |e | = 1 a ande R

    e

    e

    b

    The straight line from the coordinateorigin O to the (observation) point P is

    illustrating the position vectorR

    of P the magnitude of the position vector is

    |R | = R = R 2a || stands for the magnitude of the argumentb stands for perpendicular

    R eq(q,j)

    e (j)j

    y

    R

    z

    j

    x

    O

    P R,( )jq,

    e R(q,j)

    q

    Figure 4: Spherical Coordinates of the spatialpoint P and the related position vector

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 54 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    33/68

    Spherical Coordinate SystemCoordinates; Unit Vectors, Magnitude of the Position Vector

    Spherical Coordinates; Unit Vectors,Magnitude of the Position Vector

    Cartesisan Coordinates: R, , in thelimits 0 R < , 0 ,0 < 2

    : polar angle; : azimuth angleOrthonormal Unit Vectors: e R , e , e with |e R | = |e | = |e | = 1 a ande R

    e

    e

    b

    The straight line from the coordinateorigin O to the (observation) point P is

    illustrating the position vectorR

    of P the magnitude of the position vector is

    |R | = R = R 2a || stands for the magnitude of the argumentb stands for perpendicular

    R eq(q,j)

    e (j)j

    y

    R

    z

    j

    x

    O

    P R,( )jq,

    e R(q,j)

    q

    Figure 4: Spherical Coordinates of the spatialpoint P and the related position vector

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 54 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    34/68

    Spherical Coordinate SystemCoordinates; Unit Vectors, Magnitude of the Position Vector

    Spherical Coordinates; Unit Vectors,Magnitude of the Position Vector

    Cartesisan Coordinates: R, , in thelimits 0 R < , 0 ,0 < 2

    : polar angle; : azimuth angleOrthonormal Unit Vectors: e R , e , e with |e R | = |e | = |e | = 1 a ande R

    e

    e

    b

    The straight line from the coordinateorigin O to the (observation) point P is

    illustrating the position vectorR

    of P the magnitude of the position vector is

    |R | = R = R 2a || stands for the magnitude of the argumentb stands for perpendicular

    R eq(q,j)

    e (j)j

    y

    R

    z

    j

    x

    O

    P R,( )jq,

    e R(q,j)

    q

    Figure 4: Spherical Coordinates of the spatialpoint P and the related position vector

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 54 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    35/68

    Spherical Coordinate SystemCoordinates; Unit Vectors, Magnitude of the Position Vector

    Coordinate Transformation FormulasThe Transformation Formulas are following from Fig. 4:

    x = R sin cos (138)y = R sin sin (139)z = R cos (140)

    Cartesian Position Vector as a Funtion of the Spherical Coordinates

    The representation of the Position Vector in the Cartesian Coordinate System as a function of the Spherical Coordinates is:

    R= x R sin cos

    ex + y

    R sin sin e

    y + z R cos e

    z (141)

    = R sin cos e x + R sin sin e y + R cos e z (142)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 55 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    36/68

    Spherical Coordinate SystemMetric Coeffecients; Orthonormal Unit Vectors

    Metric Coefficients

    The three Metric Coefficients of the Spherical Coordinate System are

    h R = 1 (143)h = R (144)h =

    Rsin .

    (145)

    Orthonormal Unit Vectors

    The Orthonormal Unit Vectors of the Spherical Coordinate System in form of the VectorDecomposition in the Cartesian Coordinate System as a function of the Spherical Coordinates read

    e R (, ) = sin cos e x + sin sin e y + cos e z (146)e

    (, ) = cos cos e x + cos sin e y sin e z (147)e () = sin e x + cos e y . (148)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 56 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    37/68

    p yMetric Coeffecients; Orthonormal Unit Vectors

    Metric Coefficients

    The three Metric Coefficients of the Spherical Coordinate System are

    h R = 1 (143)h = R (144)h

    = R sin . (145)

    Orthonormal Unit Vectors

    The Orthonormal Unit Vectors of the Spherical Coordinate System in form of the VectorDecomposition in the Cartesian Coordinate System as a function of the Spherical Coordinates read

    e R (, ) = sin cos e x + sin sin e y + cos e z (146)e

    (, ) = cos cos e x + cos sin e y sin e z (147)e () = sin e x + cos e y . (148)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 56 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    38/68

    p yPosition Vector in the Spherical Coordinate System

    Position Vector in the Spherical Coordinate System

    The Position Vector in the Spherical Coordinate System can be found via CoordinateTransformation from the Cartesian Coordinate to the Spherical Coordinate System. The result is:

    R = R e R (, ) . (149)

    The position vector in the spherical coordinate system has only ONE vector componentR e R (, ) with the scalar vector component R . The dependencies of the angles and arehidden in the unit vector e R (, ) .

    Position Vector in the Spherical Coordinate System

    For Unit Position Vector it follows then

    R =R

    R=

    R e R (, )R

    = e R (, ) . (150)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 57 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    39/68

    p yPosition Vector in the Spherical Coordinate System

    Position Vector in the Spherical Coordinate System

    The Position Vector in the Spherical Coordinate System can be found via CoordinateTransformation from the Cartesian Coordinate to the Spherical Coordinate System. The result is:

    R = R e R (, ) . (149)

    The position vector in the spherical coordinate system has only ONE vector componentR e R (, ) with the scalar vector component R . The dependencies of the angles and arehidden in the unit vector e R (, ) .

    Position Vector in the Spherical Coordinate System

    For Unit Position Vector it follows then

    R =R

    R=

    R e R (, )R

    = e R (, ) . (150)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 57 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    40/68

    p yPosition Vector in the Spherical Coordinate System

    Position Vector in the Spherical Coordinate System

    The Position Vector in the Spherical Coordinate System can be found via CoordinateTransformation from the Cartesian Coordinate to the Spherical Coordinate System. The result is:

    R = R e R (, ) . (149)

    The position vector in the spherical coordinate system has only ONE vector componentR e R (, ) with the scalar vector component R . The dependencies of the angles and arehidden in the unit vector e R (, ) .

    Position Vector in the Spherical Coordinate System

    For Unit Position Vector it follows then

    R =R

    R=

    R e R (, )R

    = e R (, ) . (150)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 57 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    41/68

    Position Vector in the Spherical Coordinate System

    Position Vector in the Spherical Coordinate System

    The Position Vector in the Spherical Coordinate System can be found via CoordinateTransformation from the Cartesian Coordinate to the Spherical Coordinate System. The result is:

    R = R e R (, ) . (149)

    The position vector in the spherical coordinate system has only ONE vector componentR e R (, ) with the scalar vector component R . The dependencies of the angles and arehidden in the unit vector e R (, ) .

    Position Vector in the Spherical Coordinate System

    For Unit Position Vector it follows then

    R =R

    R=

    R e R (, )R

    = e R (, ) . (150)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 57 / 77

    Position Vector and Coordinate Systems Spherical Coordinate System

    Spherical Coordinate System

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    42/68

    Position Vector in the Spherical Coordinate System

    Position Vector in the Spherical Coordinate System

    The Position Vector in the Spherical Coordinate System can be found via CoordinateTransformation from the Cartesian Coordinate to the Spherical Coordinate System. The result is:

    R = R e R (, ) . (149)

    The position vector in the spherical coordinate system has only ONE vector componentR e R (, ) with the scalar vector component R . The dependencies of the angles and arehidden in the unit vector e R (, ) .

    Position Vector in the Spherical Coordinate System

    For Unit Position Vector it follows then

    R =R

    R=

    R e R (, )R

    = e R (, ) . (150)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 57 / 77

    Position Vector and Coordinate Systems Dupin Coordinates

    Dupin Coorindates

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    43/68

    Dupin Coorindates

    The (Circular)Cylindrical and SphericalCoodinate System are Special Cases of the so-called general Dupin CoordinateSystem [Tai , 1992], which are veryimportant in the Vector and TensorAnalysis of Surfaces .

    The Transition and BoundaryConditions for electromagnetic eldsfrom Maxwells equations are typicallyderived using Dupin Coordinates.Dupin Coordinates are orthogonalcurvilinear coordinates 1 , 2 , 3 with

    the unit vectorse

    1 ,e

    2 ,n

    , i. e.e

    3 isthe unit normal vector n of the surfacegiven by e 1 and e 2 . The relatedmetric coefficient h 3 is h 3 = 1 . Thecoordinate system is right handed, if n = e 1 e 2 .

    Figure 5: Dupin Coordinates of the surface = 1 2 plane with the unit normal vectorn = e

    1 e

    2

    .................................................................................................................................................................................. ................ .......................................................................................................................................................................................................

    ............................

    ............................

    .....................................

    ................................................................................................................................................................................O

    1

    2

    n

    e 1

    e 2

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 58 / 77

    Position Vector and Coordinate Systems Dupin Coordinates

    Dupin Coorindates

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    44/68

    Dupin Coorindates

    The (Circular)Cylindrical and SphericalCoodinate System are Special Cases of the so-called general Dupin CoordinateSystem [Tai , 1992], which are veryimportant in the Vector and TensorAnalysis of Surfaces .

    The Transition and BoundaryConditions for electromagnetic eldsfrom Maxwells equations are typicallyderived using Dupin Coordinates.Dupin Coordinates are orthogonalcurvilinear coordinates 1 , 2 , 3 with

    the unit vectorse

    1 ,e

    2 ,n

    , i. e.e

    3 isthe unit normal vector n of the surfacegiven by e 1 and e 2 . The relatedmetric coefficient h 3 is h 3 = 1 . Thecoordinate system is right handed, if n = e 1 e 2 .

    Figure 5: Dupin Coordinates of the surface = 1 2 plane with the unit normal vectorn = e

    1 e

    2

    .................................................................................................................................................................................. ................ .......................................................................................................................................................................................................

    ............................

    ............................

    .....................................

    ................................................................................................................................................................................O

    1

    2

    n

    e 1

    e 2

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 58 / 77

    Position Vector and Coordinate Systems Dupin Coordinates

    Dupin Coorindates

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    45/68

    Dupin Coorindates

    The (Circular)Cylindrical and SphericalCoodinate System are Special Cases of the so-called general Dupin CoordinateSystem [Tai , 1992], which are veryimportant in the Vector and TensorAnalysis of Surfaces .

    The Transition and BoundaryConditions for electromagnetic eldsfrom Maxwells equations are typicallyderived using Dupin Coordinates.Dupin Coordinates are orthogonalcurvilinear coordinates 1 , 2 , 3 with

    the unit vectorse

    1 ,e

    2 ,n

    , i. e.e

    3 isthe unit normal vector n of the surfacegiven by e 1 and e 2 . The relatedmetric coefficient h 3 is h 3 = 1 . Thecoordinate system is right handed, if n = e 1 e 2 .

    Figure 5: Dupin Coordinates of the surface = 1 2 plane with the unit normal vectorn = e

    1 e

    2

    .................................................................................................................................................................................. ................ .......................................................................................................................................................................................................

    ............................

    ............................

    .....................................

    ................................................................................................................................................................................O

    1

    2

    n

    e 1

    e 2

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 58 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product

    MFEFT - Lecture 3

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    46/68

    1 Introduction2 Vector and Tensor Algebra

    3 Position Vector and Coordinate SystemsCartesian CoordinatesEinsteins Summation ConventionDifferentiation of the Position Vector; Kronecker Symbol (Kronecker Delta)Cylinder Coordinate SystemOrthogonal Curvilinear Coordinate SystemSpherical Coordinate SystemDupin Coordinates

    4 Vectors: Scalar Product; Vector Product; Dyadic ProductScalar Product

    5 Vector and Tensor Analysis6 Distributions7 Complex Analysis8 Special Functions9 Fourier Transform

    10 Laplace Transform

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 59 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product

    Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    47/68

    The Scalar, Vector, and Dyadic ProductScalar Product (Dot Product)Example:

    A B = C = Scalar! (151)Vector Product (Cross Product)Example:

    A B = C = Vector! (152)Dyadic ProductExample:

    A B = D = Dyad! (153)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 60 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product

    Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    48/68

    The Scalar, Vector, and Dyadic ProductScalar Product (Dot Product)Example:

    A B = C = Scalar! (151)Vector Product (Cross Product)Example:

    A B = C = Vector! (152)Dyadic ProductExample:

    A B = D = Dyad! (153)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 60 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product

    Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    49/68

    The Scalar, Vector, and Dyadic ProductScalar Product (Dot Product)Example:

    A B = C = Scalar! (151)Vector Product (Cross Product)Example:

    A B = C = Vector! (152)Dyadic ProductExample:

    A B = D = Dyad! (153)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 60 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    50/68

    Scalar Product

    Fig. 6 shows a vector A , which is projected to a unitvector e , the result is given by the Scalar Product

    A e = A cos , (154)

    where determines the enclosed angle between Aand e .

    Replacing e by a vector B with the magnitude Byields the general form of Eq. ( 154), theCommutative scalar product A B (say: A dot B ):

    A B = B A (155)= A B cos . (156)

    Obviously is A B = 0 , if A and B areperpendicular, A

    B , to each other; this meansone can dene two orthogonal vectors by avanishing scalar product between both.

    ...............................................................................................................

    ..............................................................................................................

    ...............................................................................................................

    ......................................................................... ....................... ............................................................................................................................................................................................................................................................................................................................................................................................................................................

    .........................................................

    .......................................

    ..........................

    ..........................

    ..........................

    .......................................

    ..........................

    ......

    ............. ............. ............. ............. ............

    . ............. .......................... ............. ............. ............. .............

    ............. ............. ............. ............. .............

    ........................................................................

    .......

    ......................................................................................................................

    ........................................................................

    ........................................................................

    ...................................................................................................................

    ........................................................................

    .....................................................

    ........................................................................................................................................................................................................................................................ .......................................................................

    ....................................................................................................

    A

    e

    A

    e

    Figure 6: Illustration des Skalarprodukts

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 61 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    51/68

    Scalar Product

    Fig. 6 shows a vector A , which is projected to a unitvector e , the result is given by the Scalar Product

    A e = A cos , (154)

    where determines the enclosed angle between Aand e .

    Replacing e by a vector B with the magnitude Byields the general form of Eq. ( 154), theCommutative scalar product A B (say: A dot B ):

    A B = B A (155)= A B cos . (156)

    Obviously is A B = 0 , if A and B areperpendicular, A

    B , to each other; this meansone can dene two orthogonal vectors by avanishing scalar product between both.

    ...............................................................................................................

    ..............................................................................................................

    ...............................................................................................................

    ......................................................................... ....................... ............................................................................................................................................................................................................................................................................................................................................................................................................................................

    .........................................................

    .......................................

    ..........................

    ..........................

    ..........................

    .......................................

    ..........................

    ......

    ............. ............. ............. ............. ............

    . ............. .......................... ............. ............. ............. .............

    ............. ............. ............. ............. .............

    .......................................................................

    ........

    .....................................................................................................................

    ........................................................................

    ........................................................................

    ....................................................................................................................

    ........................................................................

    .....................................................

    ........................................................................................................................................................................................................................................................ .......................................................................

    ....................................................................................................

    A

    e

    A

    e

    Figure 6: Illustration des Skalarprodukts

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 61 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    52/68

    Scalar Product

    Fig. 6 shows a vector A , which is projected to a unitvector e , the result is given by the Scalar Product

    A e = A cos , (154)

    where determines the enclosed angle between Aand e .

    Replacing e by a vector B with the magnitude Byields the general form of Eq. ( 154), theCommutative scalar product A B (say: A dot B ):

    A B = B A (155)= A B cos . (156)

    Obviously is A B = 0 , if A and B areperpendicular, A

    B , to each other; this meansone can dene two orthogonal vectors by avanishing scalar product between both.

    ...............................................................................................................

    ..............................................................................................................

    ...............................................................................................................

    ......................................................................... ....................... ............................................................................................................................................................................................................................................................................................................................................................................................................................................

    .........................................................

    .......................................

    ..........................

    ..........................

    ..........................

    .......................................

    ..........................

    ......

    ............. ............. ............. ............. ............

    . ............. .......................... ............. ............. ............. ...........

    .. ............. .......................... ............. .....

    ........

    ......................................................................

    .........

    .....................................................................................................................

    ........................................................................

    ........................................................................

    ...................................................................................................................

    ........................................................................

    ......................................................

    ........................................................................................................................................................................................................................................................ ......................................................................

    .....................................................................................................

    A

    e

    A

    e

    Figure 6: Illustration des Skalarprodukts

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 61 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    53/68

    Scalar Product: Orthonormal Tripod

    The orthonormal tripod of a the cartesian coordinate system is charachterized by

    e x i e x j = ij fur i, j = 1 , 2, 3 . (157)

    Scalar Product: Scalar Vector Components

    Further, we can use the scalar sroduct to determine the scalar vector components of a vector A ,

    i. e. in the Cartesian Coordinate System we ndAx = A e xAy = A e y (158)Az = A e z .

    We compute for the scalar product in components form of A and B

    A B = (A x e x + A y e y + A z e z ) (B x e x + B y e y + B z e z ) (159)

    and nd by formal multiplication and the use of Eq. ( 157)

    A B = A x Bx + A y By + A z Bz . (160)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 62 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    54/68

    Scalar Product: Orthonormal Tripod

    The orthonormal tripod of a the cartesian coordinate system is charachterized by

    e x i e x j = ij fur i, j = 1 , 2, 3 . (157)

    Scalar Product: Scalar Vector Components

    Further, we can use the scalar sroduct to determine the scalar vector components of a vector A ,

    i. e. in the Cartesian Coordinate System we ndAx = A e xAy = A e y (158)Az = A e z .

    We compute for the scalar product in components form of A and B

    A B = (A x e x + A y e y + A z e z ) (B x e x + B y e y + B z e z ) (159)

    and nd by formal multiplication and the use of Eq. ( 157)

    A B = A x Bx + A y By + A z Bz . (160)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 62 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    55/68

    Scalar Product: Orthonormal Tripod

    The orthonormal tripod of a the cartesian coordinate system is charachterized by

    e x i e x j = ij fur i, j = 1 , 2, 3 . (157)

    Scalar Product: Scalar Vector Components

    Further, we can use the scalar sroduct to determine the scalar vector components of a vector A ,

    i. e. in the Cartesian Coordinate System we ndAx = A e xAy = A e y (158)Az = A e z .

    We compute for the scalar product in components form of A and B

    A B = (A x e x + A y e y + A z e z ) (B x e x + B y e y + B z e z ) (159)

    and nd by formal multiplication and the use of Eq. ( 157)

    A B = A x Bx + A y By + A z Bz . (160)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 62 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    56/68

    Scalar Product: Orthonormal Tripod

    The orthonormal tripod of a the cartesian coordinate system is charachterized by

    e x i e x j = ij fur i, j = 1 , 2, 3 . (157)

    Scalar Product: Scalar Vector Components

    Further, we can use the scalar sroduct to determine the scalar vector components of a vector A ,

    i. e. in the Cartesian Coordinate System we ndAx = A e xAy = A e y (158)Az = A e z .

    We compute for the scalar product in components form of A and B

    A B = (A x e x + A y e y + A z e z ) (B x e x + B y e y + B z e z ) (159)

    and nd by formal multiplication and the use of Eq. ( 157)

    A B = A x Bx + A y By + A z Bz . (160)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 62 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    57/68

    Enclosed Angle between two General Vectors A and B

    The Enclosed Angle between the vector A and B is if A = 0 and B = 0 :

    cos =A B

    A B

    =Ax Bx + A y By + A z Bz

    A2x + A 2y + A 2z B2x + B 2y + B 2z. (161)

    Magnitude of a General Vector A

    The Magnitude A of the Vector A is dened by the scalar product A A :

    A = A A = A2x + A 2y + A 2z ; (162)Unit Vector of a General Vector A

    Then, the Unit Vector of the Vector A can be computed by

    A =A

    A A=

    A

    A=

    AxA

    e x +AyA

    e y +AzA

    e z . (163)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 63 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    58/68

    Enclosed Angle between two General Vectors A and B

    The Enclosed Angle between the vector A and B is if A = 0 and B = 0 :

    cos =A B

    A B

    =Ax Bx + A y By + A z Bz

    A2x + A 2y + A 2z B2x + B 2y + B 2z. (161)

    Magnitude of a General Vector A

    The Magnitude A of the Vector A is dened by the scalar product A A :

    A = A A = A2x + A 2y + A 2z ; (162)Unit Vector of a General Vector A

    Then, the Unit Vector of the Vector A can be computed by

    A =A

    A A=

    A

    A=

    AxA

    e x +AyA

    e y +AzA

    e z . (163)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 63 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    59/68

    Enclosed Angle between two General Vectors A and B

    The Enclosed Angle between the vector A and B is if A = 0 and B = 0 :

    cos =A B

    A B

    =Ax Bx + A y By + A z Bz

    A2x + A 2y + A 2z B2x + B 2y + B 2z. (161)

    Magnitude of a General Vector A

    The Magnitude A of the Vector A is dened by the scalar product A A :

    A = A A = A2x + A 2y + A 2z ; (162)Unit Vector of a General Vector A

    Then, the Unit Vector of the Vector A can be computed by

    A =A

    A A=

    A

    A=

    AxA

    e x +AyA

    e y +AzA

    e z . (163)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 63 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://goforward/http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    60/68

    Scalar Product: More Short-Hand Notations

    We are going to cite two other short-hand notation of the scalar product. With Eq. ( 158) innumbered form we nd

    Ax i = A e x i fur i = 1 , 2, 3 (164)

    and for B we obtain instead Eq. (159 )

    A B =3

    i =1Ax i Bx i (165)

    or applying the summation convention

    A B = A x i Bx i . (166)

    Obviously, this proves that the scalar product is commutative, i.e.,

    A B = B A . (167)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 64 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    61/68

    Scalar Product: More Short-Hand Notations

    We are going to cite two other short-hand notation of the scalar product. With Eq. ( 158) innumbered form we nd

    Ax i = A e x i fur i = 1 , 2, 3 (164)

    and for B we obtain instead Eq. (159 )

    A B =3

    i =1Ax i Bx i (165)

    or applying the summation convention

    A B = A x i Bx i . (166)

    Obviously, this proves that the scalar product is commutative, i.e.,

    A B = B A . (167)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 64 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    62/68

    Scalar Product: More Short-Hand Notations

    We are going to cite two other short-hand notation of the scalar product. With Eq. ( 158) innumbered form we nd

    Ax i = A e x i fur i = 1 , 2, 3 (164)

    and for B we obtain instead Eq. (159 )

    A B =3

    i =1Ax i Bx i (165)

    or applying the summation convention

    A B = A x i Bx i . (166)

    Obviously, this proves that the scalar product is commutative, i.e.,

    A B = B A . (167)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 64 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    63/68

    Scalar Product: More Short-Hand Notations

    We are going to cite two other short-hand notation of the scalar product. With Eq. ( 158) innumbered form we nd

    Ax i = A e x i fur i = 1 , 2, 3 (164)

    and for B we obtain instead Eq. (159 )

    A B =3

    i =1Ax i Bx i (165)

    or applying the summation convention

    A B = A x i Bx i . (166)

    Obviously, this proves that the scalar product is commutative, i.e.,

    A B = B A . (167)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 64 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    64/68

    Scalar Product: Independence of the Coordinate System

    In generalization of Eq. (164 ) we dene for the components of a vector in orthogonal curvilinearcoordinates by a)

    A i = A e i , (168)

    and obtain by applying the summation convention

    A = A i e i

    = A i ij e x j= A x j e x j (169)

    with

    Ax j = ij A i , (170)

    by applying the transformation formulas in Eq. (108 ).a ) At the point in space R ( 1 , 2 , 3 ) we project the general position dependent vector A ( 1 , 2 , 3 ) onto the position

    dependent unit vectors e i ( 1 , 2 , 3 ) .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 65 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    65/68

    Scalar Product: Independence of the Coordinate System

    In generalization of Eq. (164 ) we dene for the components of a vector in orthogonal curvilinearcoordinates by a)

    A i = A e i , (168)

    and obtain by applying the summation convention

    A = A i e i= A i ij e x j

    = A x j e x j (169)

    with

    Ax j = ij A i , (170)

    by applying the transformation formulas in Eq. (108 ).a ) At the point in space R ( 1 , 2 , 3 ) we project the general position dependent vector A ( 1 , 2 , 3 ) onto the position

    dependent unit vectors e i ( 1 , 2 , 3 ) .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 65 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    S l d d d f h C di S

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    66/68

    Scalar Product: Independence of the Coordinate System

    On the other hand, by inserting the cartesian components form A = A x i e x i in

    A j = A

    =A x i e x i e j

    = A x i e x i e j

    = A x i e x i e j

    = ji

    (171)

    = ji Ax i . (172)

    Number triples, which are transformed from the cartesian to an orthonormal curvilinearcoordinate system with Eq. ( 170) or Eq. (172) are in the mathematical sense (scalar) componentsof vectors. Because of the inverse of is equal to the transpose, Eq. ( 172), A j = ji Ax i canbe derived from Eq. (170 ), Ax

    j=

    ijA

    i, via inversion and vice versa. The vector A as a

    directed physical value is independent of the coordinate system (it is koordinatenfrei), simply themathematical representation is coordinate dependent.

    The values of the Scalar Product of two Vectors is Independent of the Coordinate System :

    A B = A x i Bx i = A i B i . (173)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 66 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    S l P d I d d f h C di S

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    67/68

    Scalar Product: Independence of the Coordinate System

    On the other hand, by inserting the cartesian components form A = A x i e x i in

    A j = A

    =A x i e x i e j

    = A x i e x i e j

    = A x i e x i e j

    = ji

    (171)

    = ji Ax i . (172)

    Number triples, which are transformed from the cartesian to an orthonormal curvilinearcoordinate system with Eq. ( 170) or Eq. (172) are in the mathematical sense (scalar) componentsof vectors. Because of the inverse of is equal to the transpose, Eq. ( 172), A j = ji Ax i canbe derived from Eq. (170 ), Ax

    j=

    ijA

    i, via inversion and vice versa. The vector A as a

    directed physical value is independent of the coordinate system (it is koordinatenfrei), simply themathematical representation is coordinate dependent.

    The values of the Scalar Product of two Vectors is Independent of the Coordinate System :

    A B = A x i Bx i = A i B i . (173)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 66 / 77

    Vectors: Scalar Product; Vector Product; Dyadic Product Scalar Product

    Scalar Product

    S l P d t I d d f th C di t S t

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_3_s

    68/68

    Scalar Product: Independence of the Coordinate System

    On the other hand, by inserting the cartesian components form A = A x i e x i in

    A j = A

    =A x i e x i e j

    = A x i e x i e j

    = A x i e x i e j

    = ji

    (171)

    = ji Ax i . (172)

    Number triples, which are transformed from the cartesian to an orthonormal curvilinearcoordinate system with Eq. ( 170) or Eq. (172) are in the mathematical sense (scalar) componentsof vectors. Because of the inverse of is equal to the transpose, Eq. ( 172), A j = ji Ax i canbe derived from Eq. (170 ), Ax

    j= ij A

    i, via inversion and vice versa. The vector A as a

    directed physical value is independent of the coordinate system (it is koordinatenfrei), simply themathematical representation is coordinate dependent.

    The values of the Scalar Product of two Vectors is Independent of the Coordinate System :

    A B = A x i Bx i = A i B i . (173)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundation of EFT (MFEFT) WS 2007/2008 66 / 77

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-