lecture_4_s

Upload: hmalrizzo469

Post on 03-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 lecture_4_s

    1/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Lecture 4: Vectors: Vector Product; Dyadic Product

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 73 / 115

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    2/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    MFEFT - Lecture 4

    1 Introduction

    2 Vector and Tensor Algebra

    Position Vector and Coordinate SystemsCartesian CoordinatesEinsteins Summation ConventionDifferentiation of the Position Vector; Kronecker Symbol (Kronecker Delta)Cylinder Coordinate SystemOrthogonal Curvilinear Coordinate SystemSpherical Coordinate SystemDupin Coordinates

    Vectors: Scalar Product; Vector Product; Dyadic ProductScalar ProductVector ProductDyadic ProductComplex Vectors

    TensorsDefinition

    3 Vector and Tensor Analysis

    4 Distributions5 Complex Analysis

    6 Special Functions

    7 Fourier Transform

    8 Laplace Transform

    9

    ReferencesDr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 74 / 115

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    3/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    MFEFT - Lecture 4

    1 Introduction

    2 Vector and Tensor Algebra

    Position Vector and Coordinate SystemsCartesian CoordinatesEinsteins Summation ConventionDifferentiation of the Position Vector; Kronecker Symbol (Kronecker Delta)Cylinder Coordinate SystemOrthogonal Curvilinear Coordinate SystemSpherical Coordinate SystemDupin Coordinates

    Vectors: Scalar Product; Vector Product; Dyadic ProductScalar ProductVector ProductDyadic ProductComplex Vectors

    TensorsDefinition

    3 Vector and Tensor Analysis

    4 Distributions5 Complex Analysis

    6 Special Functions

    7 Fourier Transform

    8 Laplace Transform

    9

    ReferencesDr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 75 / 115

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    4/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Vector Product

    Vector Product

    The definition of the vector product isshown in Fig. 8. Two vectors A and Bspan a parallelogram with the surface

    F = A B sin . (203)

    The vector C with the length equal to F isnormal ( perpendicular) to the surface Fand the orientation ofC is given by theright-hand rule

    C = AB . (204)

    Thats because the vector product is notcommutative

    BA = AB . (205)

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..............................................

    ...

    ..

    ...

    ...

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ...

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ...

    ...

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ..

    ..

    ..

    ..

    ..............................................

    ..

    ..

    ..

    ..

    ..

    ..

    ...

    ..

    ........................

    .

    ...................

    ....

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    .....................................................

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ...

    ..

    ..

    ...

    ...

    ..

    ...

    ...

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    ...

    ..

    .........................

    .......................

    ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .......................

    ..............................................

    ...........................

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ...

    ..

    ..

    ..

    ...

    ..

    ...

    ..

    .........................................................................

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ..

    ................................

    ..

    ...

    ..

    ...

    ..

    ......................................................

    .............................................

    .......................

    .............

    ..........................

    .................................................... ............. ............. ............. ............. ............. .............

    .................................................................

    .....

    .....................

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .............

    .........

    ....

    2

    2

    A

    BC

    F= |C|

    Figure 8: Definition of the Vector Product

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 76 / 115

    V d T Al b V S l P d V P d D di P d

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    5/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Vector Product

    Vector Product between two Parallel or Antiparallel Vectors

    It follows that two vectors are parallel or antiparallel, if the vector product is zero:

    A B AB = 0 .

    Vector Product between the Unit Vectors of the Cartesian Coordinate System

    For example, the vector product between the unit vectors of the Cartesian coordinate system is

    exex = 0

    eyey = 0 (206)

    ezez = 0

    and

    exey = ez

    exez = ey (207)

    eyez = ex .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 77 / 115

    Vecto and Tenso Algeb a Vecto s Scala P od ct Vecto P od ct D adic P od ct

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    6/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Vector Product

    Vector Product between two Parallel or Antiparallel Vectors

    It follows that two vectors are parallel or antiparallel, if the vector product is zero:

    A B AB = 0 .

    Vector Product between the Unit Vectors of the Cartesian Coordinate System

    For example, the vector product between the unit vectors of the Cartesian coordinate system is

    exex = 0

    eyey = 0 (206)

    ezez = 0

    and

    exey = ez

    exez = ey (207)

    eyez = ex .

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 77 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    7/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Vector Product between two Vectors: Components Form in CartesianCoordinates

    In components representation ofA and B it follows explicitly by using Eq. (207) and (206)

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (208)

    = AxexBxex + AyeyBxex + AzezBxex+ AxexByey + AyeyByey + AzezByey+ AxexBzez + AyeyBzez + AzezBzez (209)

    = AxBx exex =0

    +AyBx eyex =ez

    +AzBx ezex =ey

    + AxBy exey =ez

    +AyBy eyey =0

    +AzBy ezey =ex

    + AxBz exez =ey

    +AyBz eyez =ex

    +AzBz ezez =0

    (210)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (211)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 78 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    8/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Vector Product between two Vectors: Components Form in CartesianCoordinates

    In components representation ofA and B it follows explicitly by using Eq. (207) and (206)

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (208)

    = AxexBxex + AyeyBxex + AzezBxex+ AxexByey + AyeyByey + AzezByey+ AxexBzez + AyeyBzez + AzezBzez (209)

    = AxBx exex =0

    +AyBx eyex =ez

    +AzBx ezex =ey

    + AxBy exey =ez

    +AyBy eyey =0

    +AzBy ezey =ex

    + AxBz exez =ey

    +AyBz eyez =ex

    +AzBz ezez =0

    (210)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (211)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 78 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    9/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Vector Product between two Vectors: Components Form in CartesianCoordinates

    In components representation ofA and B it follows explicitly by using Eq. (207) and (206)

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (208)

    = AxexBxex + AyeyBxex + AzezBxex+ AxexByey + AyeyByey + AzezByey+ AxexBzez + AyeyBzez + AzezBzez (209)

    = AxBx exex =0

    +AyBx eyex =ez

    +AzBx ezex =ey

    + AxBy exey =ez

    +AyBy eyey =0

    +AzBy ezey =ex

    + AxBz exez =ey

    +AyBz eyez =ex

    +AzBz ezez =0

    (210)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (211)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 78 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    10/66

    g ; ; y

    Vector Product between two Vectors: Components Form in CartesianCoordinates

    In components representation ofA and B it follows explicitly by using Eq. (207) and (206)

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (208)

    = AxexBxex + AyeyBxex + AzezBxex+ AxexByey + AyeyByey + AzezByey+ AxexBzez + AyeyBzez + AzezBzez (209)

    = AxBx exex =0

    +AyBx eyex =ez

    +AzBx ezex =ey

    + AxBy exey =ez

    +AyBy eyey =0

    +AzBy ezey =ex

    + AxBz exez =ey

    +AyBz eyez =ex

    +AzBz ezez =0

    (210)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (211)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 78 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    11/66

    g y

    Sarrus Scheme

    Sarrus Scheme

    The last result is also obtained by applying the Sarrus Scheme introduced by the Frenchmathematician Pierre Frederic Sarrus (1798-1861):

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (212)

    = det

    ex ey ezAx Ay AzBx By Bz

    =

    ex ey ezAx Ay AzBx By Bz

    . (213)

    Computing the determinant of the 3 3 matrix gives:

    C =

    ex ey ezAx Ay AzBx By Bz

    (214)

    = exAyBz + eyAzBx + ezAxBy BxAyez ByAzex BzAxey (215)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (216)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 79 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    12/66

    Sarrus Scheme

    Sarrus Scheme

    The last result is also obtained by applying the Sarrus Scheme introduced by the Frenchmathematician Pierre Frederic Sarrus (1798-1861):

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (212)

    = det

    ex ey ezAx Ay AzBx By Bz

    =

    ex ey ezAx Ay AzBx By Bz

    . (213)

    Computing the determinant of the 3 3 matrix gives:

    C =

    ex ey ezAx Ay AzBx By Bz

    (214)

    = exAyBz + eyAzBx + ezAxBy BxAyez ByAzex BzAxey (215)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (216)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 79 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    13/66

    Sarrus Scheme

    Sarrus Scheme

    The last result is also obtained by applying the Sarrus Scheme introduced by the Frenchmathematician Pierre Frederic Sarrus (1798-1861):

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (212)

    = det

    ex ey ezAx Ay AzBx By Bz

    =

    ex ey ezAx Ay AzBx By Bz

    . (213)

    Computing the determinant of the 3 3 matrix gives:

    C =

    ex ey ezAx Ay AzBx By Bz

    (214)

    = exAyBz + eyAzBx + ezAxBy BxAyez ByAzex BzAxey (215)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (216)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 79 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    14/66

    Sarrus Scheme

    Sarrus Scheme

    The last result is also obtained by applying the Sarrus Scheme introduced by the Frenchmathematician Pierre Frederic Sarrus (1798-1861):

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (212)

    = det

    ex ey ezAx Ay AzBx By Bz

    =

    ex ey ezAx Ay AzBx By Bz

    . (213)

    Computing the determinant of the 3 3 matrix gives:

    C =

    ex ey ezAx Ay AzBx By Bz

    (214)

    = exAyBz + eyAzBx + ezAxBy BxAyez ByAzex BzAxey (215)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (216)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 79 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    15/66

    Sarrus Scheme

    Sarrus Scheme

    The last result is also obtained by applying the Sarrus Scheme introduced by the Frenchmathematician Pierre Frederic Sarrus (1798-1861):

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (212)

    = det

    ex ey ezAx Ay AzBx By Bz

    =

    ex ey ezAx Ay AzBx By Bz

    . (213)

    Computing the determinant of the 3 3 matrix gives:

    C =

    ex ey ezAx Ay AzBx By Bz

    (214)

    = exAyBz + eyAzBx + ezAxBy BxAyez ByAzex BzAxey (215)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (216)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 79 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    16/66

    Sarrus Scheme

    Sarrus Scheme

    The last result is also obtained by applying the Sarrus Scheme introduced by the Frenchmathematician Pierre Frederic Sarrus (1798-1861):

    C = (Axex + Ayey + Azez)(Bxex + Byey + Bzez) (212)

    = det

    ex ey ezAx Ay AzBx By Bz

    =

    ex ey ezAx Ay AzBx By Bz

    . (213)

    Computing the determinant of the 3 3 matrix gives:

    C =

    ex ey ezAx Ay AzBx By Bz

    (214)

    = exAyBz + eyAzBx + ezAxBy BxAyez ByAzex BzAxey (215)

    = (AyBz AzBy) =Cx

    ex + (AzBx AxBz) =Cy

    ey + (AxBy AyBx) =Cz

    ez . (216)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 79 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    17/66

    Levi-Civita Symbol

    Levi-Civita Symbol

    We can also make use of the so-called Levi-Civita Symbol ijk , i,j,k = 1, 2, 3 introduced by theItalian mathematician T. LeviCivita (1873-1941)

    ijk =

    0 , if two subscripts are equal

    1 , if ijk is a even permutation of 123

    1 , if ijk is a odd permutation of 123 .

    (217)

    Then, the components of the result vector of the vector product of two vectors read

    Ci =3

    j=1

    3k=1

    ijkAjBk (218)

    and by using the Einstein summation convention:

    Ci = ijkAjBk . (219)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 80 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    18/66

    Levi-Civita Symbol

    Levi-Civita SymbolWe can also make use of the so-called Levi-Civita Symbol ijk , i,j,k = 1, 2, 3 introduced by theItalian mathematician T. LeviCivita (1873-1941)

    ijk =

    0 , if two subscripts are equal

    1 , if ijk is a even permutation of 123

    1 , if ijk is a odd permutation of 123 .

    (217)

    Then, the components of the result vector of the vector product of two vectors read

    Ci =3

    j=1

    3k=1

    ijkAjBk (218)

    and by using the Einstein summation convention:

    Ci = ijkAjBk . (219)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 80 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    19/66

    Levi-Civita Symbol

    Levi-Civita SymbolWe can also make use of the so-called Levi-Civita Symbol ijk , i,j,k = 1, 2, 3 introduced by theItalian mathematician T. LeviCivita (1873-1941)

    ijk =

    0 , if two subscripts are equal

    1 , if ijk is a even permutation of 123

    1 , if ijk is a odd permutation of 123 .

    (217)

    Then, the components of the result vector of the vector product of two vectors read

    Ci =3

    j=1

    3k=1

    ijkAjBk (218)

    and by using the Einstein summation convention:

    Ci = ijkAjBk . (219)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 80 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    20/66

    Multiple Vector and Scalar Products

    Vector Triple Product (VTB)

    The vector triple product is defined as

    A(BC) = B(A C) C(A B) (220)

    Say: A cross B cross C = BAC minus CAB.

    This is called the Vector Triple Product (VTP), because it involves three terms (vectors) and theresult is a vector. The right-hand side can be shown to be correct by direct evaluation of the

    vector product. The VTO appears for example in theMagnetostatic (MS) Case: in the derivation of the vectorial Poisson/Laplace equation forthe magnetic vector potential A(R):

    B(R) = A(R) H(R) =1

    A(R) (221)

    H(R) = 1

    A(R)

    = 1

    A(R) = Je(R) . (222)

    Electromagnetic (EM) Case: in the derivation of the vectorial wave equation for the electricfield strength E(R, t):

    E(R, t) = 0

    t J(R, t) 002

    t2E(R, t) (223)Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 81 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    21/66

    Multiple Vector and Scalar Products

    Vector Triple Product (VTB)

    The vector triple product is defined as

    A(BC) = B(A C) C(A B) (220)

    Say: A cross B cross C = BAC minus CAB.

    This is called the Vector Triple Product (VTP), because it involves three terms (vectors) and theresult is a vector. The right-hand side can be shown to be correct by direct evaluation of the

    vector product. The VTO appears for example in theMagnetostatic (MS) Case: in the derivation of the vectorial Poisson/Laplace equation forthe magnetic vector potential A(R):

    B(R) = A(R) H(R) =1

    A(R) (221)

    H(R) = 1

    A(R)

    = 1

    A(R) = Je(R) . (222)

    Electromagnetic (EM) Case: in the derivation of the vectorial wave equation for the electricfield strength E(R, t):

    E(R, t) = 0

    t J(R, t) 00

    2

    t2E(R, t) (223)Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 81 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    22/66

    Multiple Vector and Scalar Products

    Vector Triple Product (VTB)

    The vector triple product is defined as

    A(BC) = B(A C) C(A B) (220)

    Say: A cross B cross C = BAC minus CAB.

    This is called the Vector Triple Product (VTP), because it involves three terms (vectors) and theresult is a vector. The right-hand side can be shown to be correct by direct evaluation of the

    vector product. The VTO appears for example in theMagnetostatic (MS) Case: in the derivation of the vectorial Poisson/Laplace equation forthe magnetic vector potential A(R):

    B(R) = A(R) H(R) =1

    A(R) (221)

    H(R) = 1

    A(R)

    = 1

    A(R) = Je(R) . (222)

    Electromagnetic (EM) Case: in the derivation of the vectorial wave equation for the electricfield strength E(R, t):

    E(R, t) = 0

    t J(R, t) 00

    2

    t2E(R, t) (223)Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 81 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://goback/http://find/http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    23/66

    Multiple Vector and Scalar Products

    Vector Triple Product (VTB)

    The vector triple product is defined as

    A(BC) = B(A C) C(A B) (220)

    Say: A cross B cross C = BAC minus CAB.

    This is called the Vector Triple Product (VTP), because it involves three terms (vectors) and theresult is a vector. The right-hand side can be shown to be correct by direct evaluation of the

    vector product. The VTO appears for example in theMagnetostatic (MS) Case: in the derivation of the vectorial Poisson/Laplace equation forthe magnetic vector potential A(R):

    B(R) = A(R) H(R) =1

    A(R) (221)

    H(R) = 1

    A(R)

    = 1

    A(R) = Je(R) . (222)

    Electromagnetic (EM) Case: in the derivation of the vectorial wave equation for the electricfield strength E(R, t):

    E(R, t) = 0

    t J(R, t) 00

    2

    t2E(R, t) (223)Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 81 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    24/66

    Multiple Vector and Scalar Products

    Vector Triple Product (VTB)

    The vector triple product is defined as

    A(BC) = B(A C) C(A B) (220)

    Say: A cross B cross C = BAC minus CAB.

    This is called the Vector Triple Product (VTP), because it involves three terms (vectors) and theresult is a vector. The right-hand side can be shown to be correct by direct evaluation of the

    vector product. The VTO appears for example in theMagnetostatic (MS) Case: in the derivation of the vectorial Poisson/Laplace equation forthe magnetic vector potential A(R):

    B(R) = A(R) H(R) =1

    A(R) (221)

    H(R) = 1

    A(R)

    = 1

    A(R) = Je(R) . (222)

    Electromagnetic (EM) Case: in the derivation of the vectorial wave equation for the electricfield strength E(R, t):

    E(R, t) = 0

    t J(R, t) 00

    2

    t2E(R, t) (223)Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 81 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    M l i l V d S l P d

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    25/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    BC =

    ex ey ezBx By BzCx Cy Cz

    (225)

    = (ByCz BzCy)ex + (BzCx BxCz)ey + (BxCy ByCx)ez . (226)

    A(BC) =

    ex ey ezAx Ay Az

    (ByCz BzCy) (BzCx BxCz) (BxCy ByCx)

    (227)= (Ay(BxCy ByCx) Az(BzCx BxCz))ex

    + (Az(ByCz BzCy) Ax(BxCy ByCx))ey

    + (Ax(BzCx BxCz) Ay(ByCz BzCy))ez (228)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    + ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    + BzezAxCx AxBxCzez AyByCzez + BzezAyCy . (229)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 82 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    M l i l V d S l P d

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    26/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    BC =

    ex ey ezBx By BzCx Cy Cz

    (225)

    = (ByCz BzCy)ex + (BzCx BxCz)ey + (BxCy ByCx)ez . (226)

    A(BC) =

    ex ey ezAx Ay Az

    (ByCz BzCy) (BzCx BxCz) (BxCy ByCx)

    (227)= (Ay(BxCy ByCx) Az(BzCx BxCz))ex

    + (Az(ByCz BzCy) Ax(BxCy ByCx))ey

    + (Ax(BzCx BxCz) Ay(ByCz BzCy))ez (228)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    + ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    + BzezAxCx AxBxCzez AyByCzez + BzezAyCy . (229)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 82 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    M lti l V t d S l P d t

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    27/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    BC =

    ex ey ezBx By BzCx Cy Cz

    (225)

    = (ByCz BzCy)ex + (BzCx BxCz)ey + (BxCy ByCx)ez . (226)

    A(BC) =

    ex ey ezAx Ay Az

    (ByCz BzCy) (BzCx BxCz) (BxCy ByCx)

    (227)= (Ay(BxCy ByCx) Az(BzCx BxCz))ex

    + (Az(ByCz BzCy) Ax(BxCy ByCx))ey

    + (Ax(BzCx BxCz) Ay(ByCz BzCy))ez (228)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    + ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    + BzezAxCx AxBxCzez AyByCzez + BzezAyCy . (229)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 82 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    M lti l V t d S l P d t

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    28/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    BC =

    ex ey ezBx By BzCx Cy Cz

    (225)

    = (ByCz BzCy)ex + (BzCx BxCz)ey + (BxCy ByCx)ez . (226)

    A(BC) =

    ex ey ezAx Ay Az

    (ByCz BzCy) (BzCx BxCz) (BxCy ByCx)

    (227)= (Ay(BxCy ByCx) Az(BzCx BxCz))ex

    + (Az(ByCz BzCy) Ax(BxCy ByCx))ey+ (Ax(BzCx BxCz) Ay(ByCz BzCy))ez (228)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    + ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    + BzezAxCx AxBxCzez AyByCzez + BzezAyCy . (229)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 82 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    29/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    BC =

    ex ey ezBx By BzCx Cy Cz

    (225)

    = (ByCz BzCy)ex + (BzCx BxCz)ey + (BxCy ByCx)ez . (226)

    A(BC) =

    ex ey ezAx Ay Az

    (ByCz BzCy) (BzCx BxCz) (BxCy ByCx)

    (227)= (Ay(BxCy ByCx) Az(BzCx BxCz))ex

    + (Az(ByCz BzCy) Ax(BxCy ByCx))ey+ (Ax(BzCx BxCz) Ay(ByCz BzCy))ez (228)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    + ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    + BzezAxCx AxBxCzez AyByCzez + BzezAyCy . (229)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 82 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    30/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    A(BC)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    +ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    +BzezAxCx AxBxCzez AyByCzez + BzezAyCy (230)

    = Bxex (AyCy + AzCz) (AyBy + AzBz) Cxex+ Byey (AzCz + AxCx) (AzBz + AxBx) Cyey+ Bzez (AxCx + AyCy) (AxBx + AyBy) Czez (231)

    = Bxex (AyCy + AzCz) +BxexAxCx (AyBy + AzBz) CxexBxexAxCx

    + Byey (AzCz + AxCx) +ByeyAyCy (AzBz + AxBx) CyeyByeyAyCy

    + Bzez (AxCx + AyCy) +BzezAzCz (AxBx + AyBy) CzezBzezAzCz (232)

    = Bxex (AxCx + AyCy + AzCz) (BxAx + AyBy + AzBz) Cxex+ Byey (AxCx+AyCy + AzCz) (AxBx+ByAy + AzBz) Cyey+ Bzez (AxCx + AyCy+AzCz) (AxBx + AyBy+BzAz) Czez . (233)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 83 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    31/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    A(BC)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    +ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    +BzezAxCx AxBxCzez AyByCzez + BzezAyCy (230)

    = Bxex (AyCy + AzCz) (AyBy + AzBz) Cxex+ Byey (AzCz + AxCx) (AzBz + AxBx) Cyey+ Bzez (AxCx + AyCy) (AxBx + AyBy) Czez (231)

    = Bxex (AyCy + AzCz) +BxexAxCx (AyBy + AzBz) CxexBxexAxCx

    + Byey (AzCz + AxCx) +ByeyAyCy (AzBz + AxBx) CyeyByeyAyCy

    + Bzez (AxCx + AyCy) +BzezAzCz (AxBx + AyBy) CzezBzezAzCz (232)

    = Bxex (AxCx + AyCy + AzCz) (BxAx + AyBy + AzBz) Cxex+ Byey (AxCx+AyCy + AzCz) (AxBx+ByAy + AzBz) Cyey+ Bzez (AxCx + AyCy+AzCz) (AxBx + AyBy+BzAz) Czez . (233)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 83 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    32/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    A(BC)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    +ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    +BzezAxCx AxBxCzez AyByCzez + BzezAyCy (230)

    = Bxex (AyCy + AzCz) (AyBy + AzBz) Cxex+ Byey (AzCz + AxCx) (AzBz + AxBx) Cyey+ Bzez (AxCx + AyCy) (AxBx + AyBy) Czez (231)

    = Bxex (AyCy + AzCz) +BxexAxCx (AyBy + AzBz) CxexBxexAxCx

    + Byey (AzCz + AxCx) +ByeyAyCy (AzBz + AxBx) CyeyByeyAyCy

    + Bzez (AxCx + AyCy) +BzezAzCz (AxBx + AyBy) CzezBzezAzCz (232)

    = Bxex (AxCx + AyCy + AzCz) (BxAx + AyBy + AzBz) Cxex+ Byey (AxCx+AyCy + AzCz) (AxBx+ByAy + AzBz) Cyey+ Bzez (AxCx + AyCy+AzCz) (AxBx + AyBy+BzAz) Czez . (233)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 83 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    33/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(A C)C(A B)

    A(BC)

    = BxexAyCy AyByCxex AzBzCxex + BxexAzCz

    +ByeyAzCz AzBzCyey AxBxCyey + ByeyAxCx

    +BzezAxCx AxBxCzez AyByCzez + BzezAyCy (230)

    = Bxex (AyCy + AzCz) (AyBy + AzBz) Cxex+ Byey (AzCz + AxCx) (AzBz + AxBx) Cyey+ Bzez (AxCx + AyCy) (AxBx + AyBy) Czez (231)

    = Bxex (AyCy + AzCz) +BxexAxCx (AyBy + AzBz) CxexBxexAxCx

    + Byey (AzCz + AxCx) +ByeyAyCy (AzBz + AxBx) CyeyByeyAyCy

    + Bzez (AxCx + AyCy) +BzezAzCz (AxBx + AyBy) CzezBzezAzCz (232)

    = Bxex (AxCx + AyCy + AzCz) (BxAx + AyBy + AzBz) Cxex+ Byey (AxCx+AyCy + AzCz) (AxBx+ByAy + AzBz) Cyey+ Bzez (AxCx + AyCy+AzCz) (AxBx + AyBy+BzAz) Czez . (233)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 83 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    34/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(AC)C(A

    B)

    A(BC)

    = Bxex (AxCx + AyCy + AzCz) =A C

    (BxAx + AyBy + AzBz) =A B

    Cxex

    + Byey (AxCx+AyCy + AzCz) =A C

    (AxBx+ByAy + AzBz) =A B

    Cyey

    + Bzez (AxCx + AyCy+AzCz) =A C

    (AxBx + AyBy+BzAz) =A B

    Czez (234)

    = Bxex

    (A C) + Byey

    (A C) + Bzez

    (A C)

    (A B) Cxex (A B) Cyey (A B) Czez (235)

    = B (A C) (A B)C . (236)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 84 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    35/66

    Multiple Vector and Scalar Products

    Proof of the Identity A(BC) = B(AC)C(A

    B)

    A(BC)

    = Bxex (AxCx + AyCy + AzCz) =A C

    (BxAx + AyBy + AzBz) =A B

    Cxex

    + Byey (AxCx+AyCy + AzCz) =A C

    (AxBx+ByAy + AzBz) =A B

    Cyey

    + Bzez (AxCx + AyCy+AzCz) =A C

    (AxBx + AyBy+BzAz) =A B

    Czez (234)

    = Bxex

    (A C) + Byey

    (A C) + Bzez

    (A C)

    (A B) Cxex (A B) Cyey (A B) Czez (235)

    = B (A C) (A B)C . (236)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 84 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    36/66

    p S

    Proof of the Identity A(BC) = B(AC)C(A

    B)

    A(BC)

    = Bxex (AxCx + AyCy + AzCz) =A C

    (BxAx + AyBy + AzBz) =A B

    Cxex

    + Byey (AxCx+AyCy + AzCz) =A C

    (AxBx+ByAy + AzBz) =A B

    Cyey

    + Bzez (AxCx + AyCy+AzCz) =A C

    (AxBx + AyBy+BzAz) =A B

    Czez (234)

    = Bxex (A C) + Byey (A C) + Bzez (A C)

    (A B) Cxex (A B) Cyey (A B) Czez (235)

    = B (A C) (A B)C . (236)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 84 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    37/66

    p

    Scalar Triple Product (STP)

    The Scalar Triple Product is defined by

    A (BC) = [ABC] , (237)

    which determines the volume of the parallelepiped represented by the vectors A,B,C. This

    scalar value is a so-called Pseudo Scalar [Hafner, 1987], because the sign depends on thehandedness of the involved vector product.

    Special Cases of the Scalar Triple Product (STP)

    The resulting vector of two vectors is always perpendicular to both vectors, then

    A (AB) = 0B (AB) = 0 . (238)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 85 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Multiple Vector and Scalar Products

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    38/66

    p

    Scalar Triple Product (STP)

    The Scalar Triple Product is defined by

    A (BC) = [ABC] , (237)

    which determines the volume of the parallelepiped represented by the vectors A,B,C. This

    scalar value is a so-called Pseudo Scalar [Hafner, 1987], because the sign depends on thehandedness of the involved vector product.

    Special Cases of the Scalar Triple Product (STP)

    The resulting vector of two vectors is always perpendicular to both vectors, then

    A (AB) = 0B (AB) = 0 . (238)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 85 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    39/66

    Definition of the Dyadic Product

    The Dyadic Product (product without a dot or cross) of two vectors is defined by the formalmultiplication of the vectors in components form

    AB = (Axex + Ayey + Azez) (Bxex + Byey + Bzez) . (239)

    The multiplication gives the dyadic products of the unit vectors:

    AB = AxBxexex + AxByexey + AxBzexez+AyBxeyex + AyByeyey + AyBzeyez

    +AzBxezex + AzByezey + AzBzezez . (240)

    The dyadic product is not commutative, this means

    AB = BA

    ex ey = ey exex ez = ez ex

    ...

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 86 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    40/66

    Definition of the Dyadic Product

    The Dyadic Product (product without a dot or cross) of two vectors is defined by the formalmultiplication of the vectors in components form

    AB = (Axex + Ayey + Azez) (Bxex + Byey + Bzez) . (239)

    The multiplication gives the dyadic products of the unit vectors:

    AB = AxBxexex + AxByexey + AxBzexez+AyBxeyex + AyByeyey + AyBzeyez

    +AzBxezex + AzByezey + AzBzezez . (240)

    The dyadic product is not commutative, this means

    AB = BA

    ex ey = ey exex ez = ez ex

    ...

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 86 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    41/66

    Definition of the Dyadic Product

    The Dyadic Product (product without a dot or cross) of two vectors is defined by the formalmultiplication of the vectors in components form

    AB = (Axex + Ayey + Azez) (Bxex + Byey + Bzez) . (239)

    The multiplication gives the dyadic products of the unit vectors:

    AB = AxBxexex + AxByexey + AxBzexez+AyBxeyex + AyByeyey + AyBzeyez

    +AzBxezex + AzByezey + AzBzezez . (240)

    The dyadic product is not commutative, this means

    AB = BA

    ex ey = ey exex ez = ez ex

    ...

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 86 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    42/66

    Definition of the Dyadic Product

    The Dyadic Product (product without a dot or cross) of two vectors is defined by the formalmultiplication of the vectors in components form

    AB = (Axex + Ayey + Azez) (Bxex + Byey + Bzez) . (239)

    The multiplication gives the dyadic products of the unit vectors:

    AB = AxBxexex + AxByexey + AxBzexez+AyBxeyex + AyByeyey + AyBzeyez

    +AzBxezex + AzByezey + AzBzezez . (240)

    The dyadic product is not commutative, this means

    AB = BA

    ex ey = ey exex ez = ez ex

    ...

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 86 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    43/66

    Definition of the Dyadic Product

    The Dyadic Product (product without a dot or cross) of two vectors is defined by the formalmultiplication of the vectors in components form

    AB = (Axex + Ayey + Azez) (Bxex + Byey + Bzez) . (239)

    The multiplication gives the dyadic products of the unit vectors:

    AB = AxBxexex + AxByexey + AxBzexez+AyBxeyex + AyByeyey + AyBzeyez

    +AzBxezex + AzByezey + AzBzezez . (240)

    The dyadic product is not commutative, this means

    AB = BA

    ex ey = ey exex ez = ez ex

    ...

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 86 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://goback/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    44/66

    Definition of the Dyadic Product

    The Dyadic Product (product without a dot or cross) of two vectors is defined by the formalmultiplication of the vectors in components form

    AB = (Axex + Ayey + Azez) (Bxex + Byey + Bzez) . (239)

    The multiplication gives the dyadic products of the unit vectors:

    AB = AxBxexex + AxByexey + AxBzexez+AyBxeyex + AyByeyey + AyBzeyez

    +AzBxezex + AzByezey + AzBzezez . (240)

    The dyadic product is not commutative, this means

    AB = BA

    ex ey = ey exex ez = ez ex

    ...

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 86 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    45/66

    Dyadic Product in Matrix Form

    We also can write the components form of the dyadic product in a 33 Matrix. The (cartesian)

    components representation of a vector

    A = Axex + Ayey + Azez (241)

    can be written by keeping the unit vectors in mind in form of a row vector or a column vector

    {A} = {Ax Ay Az} (row vector) (242)

    {A} =

    AxAyAz

    (column vector) . (243)

    Then, it follows for the dyadic product of two vectors AB by keeping the unit vectors of thefixed coordinate system in mind

    AB =

    AxAyAz

    {Bx By Bz} =

    AxBx AxBy AxBzAyBx AyBy AyBzAzBx AzBy AzBz

    . (244)

    Obviously, the dyadic products exiexj , i,j = 1, 2, 3, in Eq. (240) determine the position of the

    AiBj element in the matrix in Eq. (244).

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 87 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    46/66

    Dyadic Product in Matrix Form

    We also can write the components form of the dyadic product in a 33 Matrix. The (cartesian)

    components representation of a vector

    A = Axex + Ayey + Azez (241)

    can be written by keeping the unit vectors in mind in form of a row vector or a column vector

    {A} = {Ax Ay Az} (row vector) (242)

    {A} =

    AxAyAz

    (column vector) . (243)

    Then, it follows for the dyadic product of two vectors AB by keeping the unit vectors of thefixed coordinate system in mind

    AB =

    AxAyAz

    {Bx By Bz} =

    AxBx AxBy AxBzAyBx AyBy AyBzAzBx AzBy AzBz

    . (244)

    Obviously, the dyadic products exiexj , i,j = 1, 2, 3, in Eq. (240) determine the position of the

    AiBj element in the matrix in Eq. (244).

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 87 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    47/66

    Dyadic Product in Matrix Form

    We also can write the components form of the dyadic product in a 33 Matrix. The (cartesian)

    components representation of a vector

    A = Axex + Ayey + Azez (241)

    can be written by keeping the unit vectors in mind in form of a row vector or a column vector

    {A} = {Ax Ay Az} (row vector) (242)

    {A} =

    AxAyAz

    (column vector) . (243)

    Then, it follows for the dyadic product of two vectors AB by keeping the unit vectors of thefixed coordinate system in mind

    AB =

    AxAyAz

    {Bx By Bz} =

    AxBx AxBy AxBzAyBx AyBy AyBzAzBx AzBy AzBz

    . (244)

    Obviously, the dyadic products exiexj , i,j = 1, 2, 3, in Eq. (240) determine the position of the

    AiBj element in the matrix in Eq. (244).

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 87 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    48/66

    Dyadic Product in Matrix Form

    We also can write the components form of the dyadic product in a 33 Matrix. The (cartesian)

    components representation of a vector

    A = Axex + Ayey + Azez (241)

    can be written by keeping the unit vectors in mind in form of a row vector or a column vector

    {A} = {Ax Ay Az} (row vector) (242)

    {A} =

    AxAyAz

    (column vector) . (243)

    Then, it follows for the dyadic product of two vectors AB by keeping the unit vectors of thefixed coordinate system in mind

    AB =

    AxAyAz

    {Bx By Bz} =

    AxBx AxBy AxBzAyBx AyBy AyBzAzBx AzBy AzBz

    . (244)

    Obviously, the dyadic products exiexj , i,j = 1, 2, 3, in Eq. (240) determine the position of the

    AiBj element in the matrix in Eq. (244).

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 87 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    49/66

    Dyadic Product in Matrix Form

    We also can write the components form of the dyadic product in a 33 Matrix. The (cartesian)

    components representation of a vector

    A = Axex + Ayey + Azez (241)

    can be written by keeping the unit vectors in mind in form of a row vector or a column vector

    {A} = {Ax Ay Az} (row vector) (242)

    {A} =

    AxAyAz

    (column vector) . (243)

    Then, it follows for the dyadic product of two vectors AB by keeping the unit vectors of thefixed coordinate system in mind

    AB =

    AxAyAz

    {Bx By Bz} =

    AxBx AxBy AxBzAyBx AyBy AyBzAzBx AzBy AzBz

    . (244)

    Obviously, the dyadic products exiexj , i,j = 1, 2, 3, in Eq. (240) determine the position of the

    AiBj element in the matrix in Eq. (244).

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 87 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    50/66

    Dyadic Product in Matrix Form

    We also can write the components form of the dyadic product in a 33 Matrix. The (cartesian)

    components representation of a vector

    A = Axex + Ayey + Azez (241)

    can be written by keeping the unit vectors in mind in form of a row vector or a column vector

    {A} = {Ax Ay Az} (row vector) (242)

    {A} =

    AxAyAz

    (column vector) . (243)

    Then, it follows for the dyadic product of two vectors AB by keeping the unit vectors of thefixed coordinate system in mind

    AB =

    AxAyAz

    {Bx By Bz} =

    AxBx AxBy AxBzAyBx AyBy AyBzAzBx AzBy AzBz

    . (244)

    Obviously, the dyadic products exiexj , i,j = 1, 2, 3, in Eq. (240) determine the position of the

    AiBj element in the matrix in Eq. (244).

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 87 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    51/66

    Dyadic Product in Matrix Form

    The entry AxBz is positioned at the place exez

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    and the entry AzBx is given by the position ezex

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    .

    This proves that the dyadic product is not commutative

    AB = BA . (245)

    We summarize: In this sense, the dyad has nine components in comparison to the the threecomponents of a vector. In the discussed case AB, these nine components are determined by sixvector components.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 88 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    52/66

    Dyadic Product in Matrix Form

    The entry AxBz is positioned at the place exez

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    and the entry AzBx is given by the position ezex

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    .

    This proves that the dyadic product is not commutative

    AB = BA . (245)

    We summarize: In this sense, the dyad has nine components in comparison to the the threecomponents of a vector. In the discussed case AB, these nine components are determined by sixvector components.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 88 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    53/66

    Dyadic Product in Matrix Form

    The entry AxBz is positioned at the place exez

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    and the entry AzBx is given by the position ezex

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    .

    This proves that the dyadic product is not commutative

    AB = BA . (245)

    We summarize: In this sense, the dyad has nine components in comparison to the the threecomponents of a vector. In the discussed case AB, these nine components are determined by sixvector components.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 88 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    54/66

    Dyadic Product in Matrix Form

    The entry AxBz is positioned at the place exez

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    and the entry AzBx is given by the position ezex

    AB =

    AxBx AxBy AxBzAyBx AyBy AyBz

    AzBx AzBy AzBz

    .

    This proves that the dyadic product is not commutative

    AB = BA . (245)

    We summarize: In this sense, the dyad has nine components in comparison to the the threecomponents of a vector. In the discussed case AB, these nine components are determined by sixvector components.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 88 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    55/66

    Practical Meaning of the Dyadic Product

    A practical meaning of the dyadic product, if according to a matrix-vector multiplication adot product (contraction) is a applied to a vector. We interpret the operation the linearmapping

    ABC =

    AxBx AxBy AxBz

    AyBx AyBy AyBzAzBx AzBy AzBz

    Cx

    CyCz (246)

    or

    C AB = {Cx Cy Cz}

    AxBx AxBy AxBzAyBx AyBy AyBzAzBx AzBy AzBz

    (247)

    in a meaningful way.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 89 / 115

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    56/66

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

  • 7/28/2019 lecture_4_s

    57/66

    Practical Meaning of the Dyadic Product

    For example, we find by computing the DyadVector Multiplication in Eq. (246) and

    interpretation of the result according to Eq. (243)

    AB C =

    AxBxCx + AxByCy + AxBzCzAyBxCx + AyByCy + AyBzCz

    AzBxCx + AzByCy + AzBzCz

    = Ax(BxCx + ByCy + BzCz)

    Ay(BxCx + ByCy + BzCz)Az(BxCx + ByCy + BzCz)

    = (Axex + Ayey + Azez)(BxCx + ByCy + BzCz) (248)

    and respectively by calculation of the Vector-Dyad Multiplication

    C AB = (CxAx + CyAy + CzAz)(Bxex + Byey + Bzez) , (249)

    which can be written in the coordinate-free form

    AB C = A(B C) (250)

    C AB = (C A)B . (251)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 90 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    58/66

    Practical Meaning of the Dyadic Product

    For example, we find by computing the DyadVector Multiplication in Eq. (246) and

    interpretation of the result according to Eq. (243)

    AB C =

    AxBxCx + AxByCy + AxBzCzAyBxCx + AyByCy + AyBzCz

    AzBxCx + AzByCy + AzBzCz

    = Ax(BxCx + ByCy + BzCz)

    Ay(BxCx + ByCy + BzCz)Az(BxCx + ByCy + BzCz)

    = (Axex + Ayey + Azez)(BxCx + ByCy + BzCz) (248)

    and respectively by calculation of the Vector-Dyad Multiplication

    C AB = (CxAx + CyAy + CzAz)(Bxex + Byey + Bzez) , (249)

    which can be written in the coordinate-free form

    AB C = A(B C) (250)

    C AB = (C A)B . (251)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 90 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    59/66

    Practical Meaning of the Dyadic Product

    For example, we find by computing the DyadVector Multiplication in Eq. (246) and

    interpretation of the result according to Eq. (243)

    AB C =

    AxBxCx + AxByCy + AxBzCzAyBxCx + AyByCy + AyBzCz

    AzBxCx + AzByCy + AzBzCz

    = Ax(BxCx + ByCy + BzCz)

    Ay(BxCx + ByCy + BzCz)Az(BxCx + ByCy + BzCz)

    = (Axex + Ayey + Azez)(BxCx + ByCy + BzCz) (248)

    and respectively by calculation of the Vector-Dyad Multiplication

    C AB = (CxAx + CyAy + CzAz)(Bxex + Byey + Bzez) , (249)

    which can be written in the coordinate-free form

    AB C = A(B C) (250)

    C AB = (C A)B . (251)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 90 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    60/66

    Practical Meaning of the Dyadic Product

    The result of the product of a dyadAB

    with a vectorC

    AB C = A(B C)

    is again a vector, but in the direction ofA, where the length is modified by the scalarproduct B Ca).

    Similarly, the dot product of a vector C with a dyad AB

    C AB = (C A)B

    is a vector in direciton ofB, which is stretched/compressed by the scalar product C A.

    The contraction of a dyad with a vector determines a rotation ofC in A or ofC in B, where

    AB C = C AB . (252)

    a)Note that for all vectors C in a plane perpendicular to B is AB C = 0, i. e., the Cs are building the kernel of a(nullspace) of the linear mapping AB C [Burg et al., 1990]; for all vectors in the kernel AB C = D it is impossible to solveC in a unique way.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 91 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    61/66

    Practical Meaning of the Dyadic Product

    The result of the product of a dyadAB

    with a vectorC

    AB C = A(B C)

    is again a vector, but in the direction ofA, where the length is modified by the scalarproduct B Ca).

    Similarly, the dot product of a vector C with a dyad AB

    C AB = (C A)B

    is a vector in direciton ofB, which is stretched/compressed by the scalar product C A.

    The contraction of a dyad with a vector determines a rotation ofC in A or ofC in B, where

    AB C = C AB . (252)

    a)Note that for all vectors C in a plane perpendicular to B is AB C = 0, i. e., the Cs are building the kernel of a(nullspace) of the linear mapping AB C [Burg et al., 1990]; for all vectors in the kernel AB C = D it is impossible to solveC in a unique way.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 91 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    62/66

    Practical Meaning of the Dyadic Product

    The result of the product of a dyadAB

    with a vectorC

    AB C = A(B C)

    is again a vector, but in the direction ofA, where the length is modified by the scalarproduct B Ca).

    Similarly, the dot product of a vector C with a dyad AB

    C AB = (C A)B

    is a vector in direciton ofB, which is stretched/compressed by the scalar product C A.

    The contraction of a dyad with a vector determines a rotation ofC in A or ofC in B, where

    AB C = C AB . (252)

    a)Note that for all vectors C in a plane perpendicular to B is AB C = 0, i. e., the Cs are building the kernel of a(nullspace) of the linear mapping AB C [Burg et al., 1990]; for all vectors in the kernel AB C = D it is impossible to solveC in a unique way.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 91 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    EM Application: Hertzian Dipole Radiation

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    63/66

    EM Application: Hertzian Dipole Radiation

    The simplest antenna to radiate electromagnetic waves is a Hertzian Dipole. The vector of theelectric field strength E of the radiated electromagnetic field is a function of the observationpoint R and has a different magnitude and direction at every point in space:

    E(R, ) = 0 2 p

    e() G(0)(R, ) . (253)

    The change in direction (rotation) and amplitude (stretching/compression) relative to the

    arbitrary but constant directed dipole moment pe is given by a dyad, the so-called DyadicGreens Function:

    G(R, ) =

    I+

    1

    k20

    ej k0R

    4R

    = I R R+ jk0R (I 3R R) 1

    k20R2 (I 3R R) e

    j k0R

    4R for R = 0

    def= G(0)(R, ) for R = 0 . (254)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 92 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    EM Application: Hertzian Dipole Radiation

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    64/66

    EM Application: Hertzian Dipole Radiation

    The simplest antenna to radiate electromagnetic waves is a Hertzian Dipole. The vector of theelectric field strength E of the radiated electromagnetic field is a function of the observationpoint R and has a different magnitude and direction at every point in space:

    E(R, ) = 0 2 p

    e() G(0)(R, ) . (253)

    The change in direction (rotation) and amplitude (stretching/compression) relative to the

    arbitrary but constant directed dipole moment pe is given by a dyad, the so-called DyadicGreens Function:

    G(R, ) =

    I+

    1

    k20

    ej k0R

    4R

    = I R R+ jk0R (I 3R R) 1

    k20R2 (I 3R R) e

    j k0R

    4R for R = 0

    def= G(0)(R, ) for R = 0 . (254)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 92 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    65/66

    The Cross Product between a Vector and a Dyad

    We can generalize the results obtained for the scalar product to the vector product of a vectorand a dyad and vice versa:

    ABC = A(BC) (255)

    CAB = (CA)B , (256)

    but note that the result is a dyad and these relations are not commutative.

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 93 / 115

    Vector and Tensor Algebra Vectors: Scalar Product; Vector Product; Dyadic Product

    Dyadic Product

    http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 lecture_4_s

    66/66

    Dyadic Product with Numbered Coordinates and Summation Convention

    If we use the numbered Cartesian coordinates (240) we write:

    AB =3

    i=1

    3j=1

    AxiBxjexiexj (257)

    and applying the summation convention we find:

    AB = Axi Bxj exi exj , (258)

    where we have to sum i, j from 1, 2, 3. Note that exi exj = exj exi for i = j. A dyad AB has

    components with double indices

    Dxixj = Axi Bxj ; (259)

    this results in the notation of a so-called 2nd rank tensor D:

    D = AB = Axi Bxj exi exj = Dxixj exi exj . (260)

    Dr.-Ing. Rene Marklein (University of Kassel) Mathematical Foundations of EFT (MFEFT) WS 2007/2008 94 / 115

    http://-/?-http://-/?-http://-/?-http://-/?-http://find/http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-