lecture8 electrical systems notes 2016

Upload: amit-kumar

Post on 06-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    1/17

    Energy Management (EN 410/607) Notes 1

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    1

    Electrical Systems

    Lecture 8

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    2

    Outline

    Topics Number of

    lectures

    (approx)

    Electrical Systems: Demand control,

    power factor correction, load

    scheduling/shifting, Motor drives-

    motor efficiency testing, energy

    efficient motors, motor speed

    control.

    2 (17, 19

    Feb)

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    Electrical Load

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    4

    Electrical Energy Terms

    • Direct Current

    • Alternating Current

    • Current• Voltage

    • Resistance

    • Ohm' Law

    • Frequency

    • Apparent power (kVA)

    • Reactive power 

    • Active Power 

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    2/17

    Energy Management (EN 410/607) Notes 2

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    5

    Load curve of a typical day –MSEB(8/11/2000 source: WREB annual report-2001)

    10260 MW9892 MW

    6000

    7000

    8000

    9000

    10000

    11000

    1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    Time hours

       D  e  m  a  n   d ,   M   W

    morning

    peak

    Eveningpeak 

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    6

     Analysis of System Load Curve

    • A load curve defines power vs time

    • Load Factor = (Average Power)Peak Power

    System Load Factor 

    • Capacity Factor (plant load factor)

    = Energy generated by a plant

    Energy generated if operating at max capacity

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    7

    Loads and Demands• Connected Load - sum of the continuous (or

    nameplate )ratings of equipment.

    • Contract Demand: electric power that the

    consumer agreed upon with the utility•  Average Demand

    • Load Factor - ratio of the average demand tothe maximum demand

    • Demand factor- ratio of maximum demandto connected load

    • Power Factor   (PF) is the ratio of activepower (kW) to the apparent power (kVA)

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    8

    Electricity Tariff 

    • Residential - Block - Energy charge

    • Agricultural – Horsepower

    • Industrial – Two part –Energy, Demand

    • Commercial – Block

    • Public Works

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    3/17

    Energy Management (EN 410/607) Notes 3

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    9

    Electricity Tariff-Components

    • Maximum demand Charges

    • Energy Charges

    • Power factor penalty or bonus rates

    • Fuel cost adjustment charges

    • Electricity duty charges levied w.r.t units consumed

    • Meter rentals

    • Time Of Day (TOD)

    • Penalty for exceeding contract demand

    • Surcharge if metering is at LT s ide in some of the utilities

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    10

    Example (MSEB LT tariff-1/6/08)

    • LT Domestic

    Less than 30 kWh/m Rs 0.40/kWh +Rs 3 service0-100 kWh/month Rs 2.05/kWh

    101-300 kWh/month Rs 3.90/kWh

    301-500 kWh/month Rs 5.30/kWh

    >500 kWh/month Rs 6.20/kWh

    Service connection: Rs 30/single ph, Rs 100/3-ph

     Additional Fixed charge of Rs. 100 per 10 kW load

    or part thereof above 10 kW load shall be payable.

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    11

    Example (MSEB LT tariff-1/6/08)

    • LT Non-Domestic

    Less than 20 kW Rs 3.40/kWh +Rs 150 service

    20-50 kW Rs 5.50/kWh + Rs 150/kVA>50 kW Rs 7.50/kWh + Rs 150/kVA

    • LT Public Works

    20-40 kW Rs 1.75/kWh + Rs 50/kVA

    • LT Agriculture

    Non-metered: Rs 2.41/kW

    Metered: Rs 1.10/kWh + Rs 20/kW

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    12

    Example (MSEB HT Tariff-1/6/08)

    • HT Industrial

    Demand charges Rs 150/kVA/month

    Energy charge Rs 4.00-5.00/kWh

    TOD – Energy charge

    • 2200 hrs – 0600 hrs (-0.85)

    • 0600 hrs – 0900 hrs 0

    • 0900 hrs – 1200 hrs 0.80

    • 1200 hrs – 1800 hrs 0

    • 1800 hrs – 2200 hrs 1.10

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    4/17

    Energy Management (EN 410/607) Notes 4

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    13

    Load curve of a typical day –MSEB

    TOD Tariff 

    10260 MW9892 MW

    6000

    7000

    8000

    9000

    10000

    11000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    Time hours

       D  e  m  a  n   d ,   M   W

    morning

    peak

    Eveningpeak 

    -0.85 0.80 1.10

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    14

    Impact of Load Factor on Price

    Base tariff

    0

    2

    4

    6

    8

    0 0.2 0.4 0.6 0.8 1

    Load factor 

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    15

    Maximum Demand Control

    • Typically, demand charges constitute a

    considerable portion of the electricity bill

    • Integrated load management to effectively

    control the maximum demand

     – Generate load curve

     – Analyse load curve for various demands

     – Identification of critical and re-schedulable

    loads for maximum demand and TOD tariff 

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    16

    Maximum Demand Control

    • Rescheduling of large electric loads and

    equipment operations

     – prepare an operation flow chart and a process chart

    • Reduce the maximum demand by building up

    storage capacity

    • Shedding of Non-Essential Loads

    • Operation of Captive Generation

    • Maintain the desired Power factor of system

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    5/17

    Energy Management (EN 410/607) Notes 5

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    Power Factor 

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    18

    Representation in Phasor diagram

    Real Axis

            I  m  a  g   i  n  a  r  y  o  r   j  a  x   i  s

     V V 

      I  I 

       

    sincos   je j

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    19

    Basics of Power 

    )()()(   t it vt P  

    )cos(2)cos(2            t  I t V 

    )cos()cos(2            t t VI 

    )cos()cos(coscos2   B A B A B A  

    )2cos()cos()(            t VI VI t P

    Constant w.r.t time Sinusoidally varyingw.r.t time

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    20

    Basics of Power

    dt t  pT 

    P0

    )(1

    )cos(      VI 

    )cos(       Power factor

    Phase angle difference between V and I

    power factor angle

         

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    6/17

    Energy Management (EN 410/607) Notes 6

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    21

    Power terms

    VI S  

     cosVI P

     sinVI Q

     

    S

    P

    Q

    kVA 

    kW

    kVAr

    22 QPS    S – Apparent Power

    P – Active Power

    Q – Reactive Power

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    22

    Power factor correction

    ))tan()(tan(   21    P

    S1

    P

    Q1kVar

    2 Q2

    S2

    Capacitor rating =Q1-Q2

    Maximum Demand Saving

    = S1-S2 kVA 

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    23

    Power Factor Correction

    • Static Capacitors (Fixed/ Switchable)

     Automatic PF Correction

    • Reduced line current ( and I2R losses)

    • Improved Voltage

    • Reduced Maximum Demand

    • Capacity for expansion

    • Reduction in tariff 

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    24

    Cost Benefits

    • Reduced kVA (Maximum demand) charges in

    utility bill

    • Reduced distribution losses (kWh) within theplant network

    • Better voltage at motor terminals and improved

    performance of motors

    • A high power factor eliminates penalty charges

    imposed and may be reduction in utility bill

    • Capacity deferred costs

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    7/17Energy Management (EN 410/607) Notes 7

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    25

    Location of Capacitors

    • Maximum benefit of capacitors is derived bylocating them as close as possible to the load

    • The rating of the capacitor should not be greaterthan the no-load magnetizing kVAr of the motor,if connected directly (over voltage protection)

    • motor manufacturers specify maximum capacitorratings

    • A circuit breaker or switch will be required if acapacitor is installed for many appliances

    • With high voltage breaker, capacitor bank tofeeder 

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    26

    b

    c

    Ia

    Ib

    Ic

    Iab

    Ibc

    Ica

    a

    Delta connected load

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    27

    Ic

    Ia

    Ib

    a

    bc

    n

     Y connected load

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    28

    )cos(3        L L I V P

    Delta connected

     L I  P I 3   LV  PV 

     Y connected

    PV 3 LV    P I  L I 

    Power in 3-phase circuits

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    8/17Energy Management (EN 410/607) Notes 8

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    Load Management

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    30

    Common LM Options (SEB)

    • Staggering of working hours of largeconsumers

    • Staggering of holidays of large consumers

    • Specified energy and power quotas for major

    consumers

    • Rostering of agricultural loads

    • Curtailment of demand - service interruptions

    (load shedding)

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    31

    Load Management Options

    • Direct Load Control (DLC) – Utility hascontrol of directly switching off customer

    loads• Interruptible Load Control (ILC)- Utility

    provides advance notice to customers toswitch off loads

    • Time of Use (TOU) Tariffs – price signalprovided – customer decides response

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    32

    Sample Industrial Load Profile (Mumbai)

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    9/17Energy Management (EN 410/607) Notes 9

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    33

    ILM Research Objective

    • Determine optimal response of industry for

    a specified time varying tariff – develop ageneral model applicable for different

    industries

     – Process Scheduling- Continuous/ Batch

     – Cool Storage

     – Cogeneration

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    34

    Process Scheduling

    • Variable electricity cost normally not included

    • Flexibility in scheduling• Optimisation problem – Min Annual operating

    costs

    • Constraints – Demand, Storage and equipment

    • Models developed for continuous and batchprocesses (Illustrated for flour mill and mini steelplant)

    • Viable for Industry

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    35

    Process Scheduling

    • Batch processes- batch time, quantity,

    charging, discharging, power demand

    variation (load cycles)

    • Raw material constraints, Allocation

    constraints, Storage constraints,

    Sequential Constraints, maintenance

    downtime

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    36

    30 T MeltingArc furnace

    Bar mill

    Wiremill

    40 T Melting Arc

    furnace

    St. steelScrap mix or 

    Alloy steelscrap mix

    Alloy steel

    scrap mix

    Convertor (only for

    St Steel)

    LadleArc

    furnace

    VDor VOD

    station

    Bloom caster 

    Billet caster 

    Bloom mill

    ooo

    ooo

    Reheat furnace

    Reheat furnace

    Reheat

    furnace

    Wireproducts

    for finalfinish

    Rods, Bars for final

    finish

    Open store

    Open store

    Open store

    Open store

    STEEL PLANT FLOW DIAGRAM

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    10/17Energy Management (EN 410/607) Notes 10

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    37

    0

    10

    20

    30

    40

    50

    60

    Time hours

       L  o  a   d   M   W

    Optimal with TOU tariff 

    Optimal with flat tariff 

      2 4 6 8 10 12 14 16 18 20 22 24

    Steel Plant Optimal Response to TOU tariff 

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    38

    Process Scheduling Summary

    Example Structure Results Saving

    Flour Mill

    Continuous

    Linear, IP

    120 variables

    46 constraints

    Flat- 2 shift

    - 25%store

    TOU-3 shift

    1%

    6.4%

    75%peak

    reduction

    Mini Steel

    Plant

    Batch

    Linear, IP

    432 variables

    630

    constraints

    Flat

    TOU

    Diff loading

    8%

    10%

    50% peak

    reduction

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    39

    LM Options

    • Cool Storage – Chilled water , Ice,

    Phase change material storage- operatecompressor during off-peak

    • Water pumping systems

    • Cogeneration – Operating strategy

    • Power pooling with other industries

    • Evaluate Process Storage possibilities

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    40

    Cool Storage

    • Cool Storage – Chilled water operate compressorduring off-peak 

    • Commercial case study (BSES MDC), Industrial casestudy (German Remedies)

    • Part load characteristics compressor,pumps

    • Non- linear problem – 96 variables, Quasi NewtonMethod 

    • MD reduces from 208 kVA to 129 kVA, 10%reduction in peak co-incident demand, 6% bill saving

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    11/17Energy Management (EN 410/607) Notes 11

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    41

    Cool Storage of Commercial Complex

    -under TOU tariff 

    129 kVA

    208 kVA

    0

    50

    100

    150

    200

    250

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24Time hours

       k   V   A

    with optimal cool storageLoad following (without storage)

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    42

     Analysis of Utility’s Load Profiles

    • Utility :Taloja EHV (100kV/22kV) substation

    • Analysis of load profiles (before and after theintroduction of TOD tariff) Total substation (system)

    Industrial feeders

    Express feeders

    • 191 log sheets are available

    • Hourly average demand (pf = 0.98)

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    Motors

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    44

    End Use (HT Industry)

    • Motor/Pump/Fan 52 %

    • Air Compressor 9 %

    • Air Conditioning/Refrig. 5 %

    • Melting 16 %

    • Electrical Heating 11 %

    • Lighting 4 %

    • Others 4 %

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    12/17

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    13/17Energy Management (EN 410/607) Notes 13

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    49

    DC and Synchronous Motors

    • DC motors are used in special applicationswhere high starting torque or where smoothacceleration over a broad speed range isrequired

    • AC power is fed to the stator of the synchronousmotor. The rotor is fed by DC from a separatesource.

    • The rotor magnetic field locks onto the statorrotating magnetic field and rotates at the samespeed.

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    50

    Motor Characteristics

    • Synchronous Speed (SS) = 120 f/p

    • Slip (s) = 1 - (Rated speed/SS)• Power Factor: lagging due to induction

     – At part load, the active current reduces.

     – However, no reduction in the magnetizing

    current (proportional to supply voltage)

     – Reduction in power factor 

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    51

    Motor Effic iency

    • Ratio of mechanical output to electrical input

    • May be determined directly or indirectly through

    intrinsic losses• Efficiency is a function of operating temperature,

    type of motor, speed, rating, etc.

    • Squirrel cage motors are normally more efficient

    than slip-ring motors

    • Higher-speed motors are normally more efficient

    than lower-speed motors

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    52

    Rotor copper

    loss

    Losses

    Constant Variable

    Mechanical lossCore/Iron loss Copper loss Stray

    load loss

    Eddy current

    loss

    HysteresisStator copper

    loss

    Friction

    lossWindage

    loss

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    14/17Energy Management (EN 410/607) Notes 14

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    Problem• Motor Specifications

    • Rated power: 34 kW

    • Voltage: 415 Volt

    • Current: 57 Amps

    • Speed: 1475 rpm

    • Connection: Delta

    53

    • No load test Data

    • Voltage: 415 V

    • Current: 16.1 A

    • Frequency: 50 Hz

    • Rstator (30°C): 0.264 Ω/ph

    • No-load power: 1063.74 W

    • Stator copper loss at no-load:

    • Iron plus friction and windage loss:

    •  Assume operating temperature of 120°C

    • Stator resistance at 120°C:

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    Problem• Motor Specifications

    • Rated power: 34 kW

    • Voltage: 415 Volt

    • Current: 57 Amps

    • Speed: 1475 rpm

    • Connection: Delta

    54

    • No load test Data

    • Voltage: 415 V

    • Current: 16.1 A

    • Frequency: 50 Hz

    • Rstator (30°C): 0.264 Ω/ph

    • No-load power: 1063.74 W

    • Stator copper loss at full-load:

    • Full load slip:

    • Rotor power input:

    •  Assume stray loss of 0.5% of rated output

    • Motor input:

    • Efficiency: and Power factor:

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    55

    Losses

    • Core losses vary with the core material, coregeometry, and input voltage

    • Friction and windage losses are caused byfriction in the bearings of the motor,aerodynamic losses associated with ventilationfan, and other rotating parts

    • Copper losses are I2R losses

    • Stray losses arise from a variety of sources.Typically, proportional to the square of the rotorcurrent

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    56

    Typical Load Vs Loss curve for design B, 50-HP, 1800 RPM

    induction motor

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    15/17Energy Management (EN 410/607) Notes 15

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    57

    Typical performance curves for design B, 10-HP, 1800RPM, 220-V, Three Phase, 60 HZ induction motor

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    58Source: Larson and Subbiah : ESD

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    59

    ENERGY EFFICIENT MOTORS

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    60

    Technology Characteristics of Motors

    Range Typical

    Rating hp

    STD Motor

    Efficiency

    (%)

    EEM

    Efficiency

    (%)

    Cost of

    Standard

    Motor

    (Rs)

    Cost of

    EEM

    (Rs)

    1-5 3.0 79.7 86.8 7,500 9,750

    5-10 7.5 84.4 88.6 13,300 17,290

    10-15 12.5 87.3 91.0 24,100 31,330

    15-20 17.5 88.4 92.0 28,500 37,050

    20-50 35.0 90.6 92.0 56,200 73,060

    >50 100.0 93.0 94.5 187,100 243,230

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    16/17Energy Management (EN 410/607) Notes 16

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    61

    Efficiency Testing Methods

    • Load Test – No load test and six loadtests

    • Equivalent Circuit Test – No load test,

    Locked Rotor test , Variable voltage

    (IEEE Std 112-1984, JEC 37, IEC –34-2,

    ISI –4889)

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    62

    No Load Test

    • The motor is run at rated voltage and frequency withoutany shaft load

    • Input power, current, frequency and voltage are noted

    • The no load P.F. is quite low and hence low PF watt-meters are required

    • From the input power, stator I2R losses under no loadare subtracted to give the sum of Friction and Windage(F&W) and core losses

    • plot no-load input kW versus Voltage; the intercept isFriction & Windage kW loss component

    • F&W and core losses = No load power (watts) - (No loadcurrent)2 × Stator resistance

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    63

    Stator and Rotor I2R Losses

    • The stator winding resistance is directly

    measured

    • The resistance must be corrected to theoperating temperature

    • The rotor I2R losses are calculated

    • Rotor I2R losses = Slip × (Stator Input – 

    Stator I2R Losses – Core Loss)

    • Stray Load Losses fixed at 0.5%

    Cin:235

    235 1

    0

    1

      t 

     R

     R

    o

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    64

    Example

    • Motor Specifications:

     – Rated power, Voltage, Current, Speed,

    Connection

    • No load test Data:

     – Voltage V, Current I, Frequency F, Stator

    phase resistance at 30°C, No load power Pnl

    • Calculate:

     – Stator cu loss at 30°, Iron and fw loss, stator

    loss at 120°, FL slip, rotor i/p [= Pr/(1-s)], total

    i/p, FL efficiency, FL pf [=P/√3 VI]

  • 8/18/2019 Lecture8 Electrical Systems Notes 2016

    17/17Energy Management (EN 410/607) Notes 17

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    65

    Motor Loading

    • Part load = measured i/p to nameplate i/p

    • Part load = i/p load current to i/p ratedcurrent

     – Current varies approximately linearly withload up 75% of full load.

     – Below the 75% load, pf degrades and therelation is non-linear 

    • Part load = actual slip to rated slip

    • With voltage correction:  2

    load  part  

      

     

    op

    op

    s

    s

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    66

    Source: BEE Manual

    En erg y Man ag em en t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hyay

    67

    ECOs for motors

    • Replace with std motor of lower size

    • Replace with EE motor of lower size

    • Add capacitors to improve pf 

    • Replace V belt drive by flat belt

    • Put timer/controller to switch off during

    idling

    • Two-speed motor/ variable speed

    (application specific)

    En erg y Man ag emen t (EN 607/ EN 410) 2016 San tan u Ban dyop ad hy ay

    68

    References/Further Reading• MSEB Tariffs, MSEB, Mumbai

    • S.Ashok, R.Banerjee,IEEE Trans on Power Systems, Nov 2001,p879-884

    • S.Ashok, R.Banerjee,IEEE Trans on Power Systems, Vol 18, May2003, p931-937

    • S.Ashok, R.Banerjee,Energy, 2003• Witte, Schmidt, Brown, Industrial Energy Management and

    Utilisation, Hemisphere Publ,Washington,1988

    • WREB, Annual Report, 2001

    • O. I.Elgerd Electric Energy Systems Theory,TMH, 2001

    • Larson and Subbiah, Energy for Sustainable Development, Vol 1,1994, p 36-38

    • J.C.Andreas, Energy Efficient Motors, Marcel Dekker, 1992, NewYork

    • H.E.Jordan, Energy Efficient Motors & their application, 1983, VanNostrand

    • Nagrath, Kothari, Electric Machines, Tata Mc Graw Hill, 1996

    • BEE Guide Book (www.em-ea.org/gbook1.asp)