lectureacm_1

Upload: phuong2311

Post on 04-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 LectureACM_1

    1/149

    Mechanics

    PGS.TS. Nguyn Xun Hng

    Universit of Science

    School of Math & Computer Science

  • 8/13/2019 LectureACM_1

    2/149

    Contents

    1. Introduction

    .

    3. Overview of Partial Differential Equations (PDE)

    4. Introduction to Variational Principles

    5. Overview of some advanced variational forms

    6. Advanced numerical methods in deformable solids

    7. Advanced numerical methods in plates and shells structure

    8. Practical a lications

  • 8/13/2019 LectureACM_1

    3/149

    References

    1. Zienkewicz and Taylor, The finite element method, Vol., , .

    2. J.N. Reddy, Principles of Continuum mechanics,

    3. Boo Cheon Khoo et al. Numerical Methods for PartialDifferential Equations, Lecture Notes, MIT (2008)

  • 8/13/2019 LectureACM_1

    4/149

    1. Introduction

  • 8/13/2019 LectureACM_1

    5/149

    Introduction

    Applied

    Mechanics

    Experimental

  • 8/13/2019 LectureACM_1

    6/149

    Introduction

    Nano/Micro

    Comput.ec an cs

    Methodology

  • 8/13/2019 LectureACM_1

    7/149

    Introduction

  • 8/13/2019 LectureACM_1

    8/149

    Introduction

    Nanomechanics the molecular and atomic levels particle physics and chemistry.

    Mt nano chnhbng 1/80.000 ng knh si tc

  • 8/13/2019 LectureACM_1

    9/149

    Introduction

    Micromechanics the crystallo-graphic and granular levels the design and fabrication of materials and micro-devices.

    Mt tbo mu ln 2,5 micromt = 2,500 nanomt

    1103 mm 10.0001 m =

  • 8/13/2019 LectureACM_1

    10/149

    Introduction

    Continuum mechanics studies bodies at the macroscopiclevel, usin continuum models in which the microstructure

    is homogenized by phenomenological averages- Solids and Structures- Fluids

    - Multi-physics

    Our interest in this course !

    Marco

    Scale in meter, , millimeter

  • 8/13/2019 LectureACM_1

    11/149

    Introduction

    System : mechanical objects such as airplanes, buildings,bridges, engines, cars, microchips,

    Biomechanics objects such as a whale, amoeba, inner

    Ecological, astronomical and cosmological entities also

  • 8/13/2019 LectureACM_1

    12/149

    Advanced numerical methods

    Discretization Methodology:

    Finite Difference (FDM)Finite Element (FEM)

    Discontinuous Galerkin FEM

    Boundary Element (BEM)Spectral methodsMeshfree methodsIso eometric anal sis

    Multiscale- FE analysis

  • 8/13/2019 LectureACM_1

    13/149

    Introduction

    See Carlos Felippa, IFEM

  • 8/13/2019 LectureACM_1

    14/149

    Introduction

    Displacement

    HybridMixed

    Pure equilibriumMixed/hybrid

    gy

    StiffnessMixed/hybride

    ner

    formulation:FlexibilityMixed

    DOFs

  • 8/13/2019 LectureACM_1

    15/149

    Introduction

    Total potential energy

    ar at ona pr nc p e

    Hellinger-Reissner (HR)Hybrid principlesVeubeke-Hu-Washizu (VHW)

    Displacements (one field)

    Approximate field:Stresses (one field)Displacements & stresses (two fields)

    , ,(three fields)

  • 8/13/2019 LectureACM_1

    16/149

    Some applications

    Truss bridge

    model

    Derived from COMSOL

    Deformation under self weight

  • 8/13/2019 LectureACM_1

    17/149

    Some applications

    3D trussPlate structures

    compositepressureFrame

  • 8/13/2019 LectureACM_1

    18/149

    Composite structures

    Source: Apatech & Vinashin Vietnam

  • 8/13/2019 LectureACM_1

    19/149

    analysis of composite plate0.5

    y

    q0

    0.1

    0.2

    0.3

    0.4

    .

    icknessz/h

    a/h=10HSDT

    a/h=4HSDT

    a/h=10FSDT

    a/h=4FSDTSupported

    plate

    x

    z

    h a/

    2

    a/

    090

    900

    h

    0.4

    0.3

    0.2

    0.1

    0

    Nomalizedthi

    x0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.80.5 Stress, x(a/2,b/2)

    0.4

    0.5

    a/h=10HSDTa/h=4HSDT

    a/h=10FSDT

    0.4

    0.5

    0.4

    0.5 a/h=10HSDT

    a/h=4HSDT

    a/h=10FSDT

    0.1

    0

    0.1

    0.2

    0.3

    malizedthicknessz/h

    a/h=4FSDT

    0.1

    0

    0.1

    0.2

    0.3

    malize

    ic

    nessz

    a/h=10HSDT

    a/h=4HSDT

    a/h=10FSDT

    a/h=4FSDT 0.1

    0

    0.1

    0.2

    0.3

    malizedthicknessz/h

    a/h=4FSDT

    0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.80.5

    0.4

    0.3

    0.2

    Stress, y(a/2,b/2)

    No

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0.5

    0.4

    0.3

    0.2

    Stress, xz

    (0,b/2)

    o

    0 0.05 0.1 0.15 0.2 0.25

    0.5

    0.4

    0.3

    0.2

    Stress, yz

    (a/2,0)

    No

    y xz yzSource: H. Nguyen-Xuan et al. (2012), MAMS, accepted

  • 8/13/2019 LectureACM_1

    20/149

    Sandwich plates

    layer1 Temperature

    decreases

    layer2

    layer3 Step 1

    150C

    Axialstressx

    Temperature

    decreases

    150C to20C

    displacement

  • 8/13/2019 LectureACM_1

    21/149

    0.3

    0.4

    0.5

    z

    /h

    0.1

    0

    0.1

    .

    alizedthickness

    a/h=20

    a/h=10

    a/h=4

    1.5 1 0.5 0 0.5 1 1.50.5

    0.4

    0.3

    .

    No

    ,x ,

    0.3

    0.4

    0.5

    z/h

    0.3

    0.4

    0.5

    z/h

    0.3

    0.4

    0.5

    /h

    0.2

    0.1

    0

    0.1

    .

    omalizedthickness

    a/h=20

    a/h=10

    a/h=4

    0.2

    0.1

    0

    0.1

    .

    Nomalizedthickness

    a/h=20

    a/h=10

    a/h=4

    0.2

    0.1

    0

    0.1

    .

    Nomalizedthickness

    a/h=20

    a/h=10

    a/h=4

    0.4 0.3 0.2 0.1 0 0.1 0.2 0.30.5

    0.4

    0.3

    Stress, y(a/2,b/2)

    0.2 0.15 0.1 0.05 0 0.05 0.1 0.15

    0.5

    0.4

    0.3

    Stress, xy

    (0,b/2)

    0.2 0 0.2 0.4 0.6 0.8 1 1.20.5

    0.4

    0.3

    Stress, xz

    (0,b/2)

    Stresses distributions in (0/core/0) supported sandwich composite plates

    Source: H. Nguyen-Xuan et al. (2012), MAMS, accepted

  • 8/13/2019 LectureACM_1

    22/149

  • 8/13/2019 LectureACM_1

    23/149

    Material propertyTc=300C

    Numerical computation

    ( ) 0.5 /c m c m

    n

    c

    z z

    V z z h

    Tm=20C

    0.2

    0.3

    0.4

    0.5

    z/h

    n=5

    n=10

    d dT

    Thermal distribution through thickness

    0.4

    0.5

    0.1

    0

    0.1

    .

    dimentionalthicknes

    n=3

    n=1

    n=0.5

    d dz z

    0

    0.1

    0.2

    .

    nalthicknes

    z/h

    n=0

    n=0.1 50 100 150 200 250 300 350 4000.5

    0.4

    0.3

    0.2

    Non-

    n=0.1

    n=0.3

    0.3

    0.2

    0.1

    Non-dime

    nti n=0.3

    n=0.5

    n=1

    n=3

    n=5

    n=10

    Effective modulus Eef f

    Effective modulus of Al/Al2O3 FGM

    0 50 100 150 200 250 3000.5

    0.4

    Temperature o

    C

    n=100

    Source: H. Nguyen-Xuan et al. (2011), Composite & Structures, 93: 3019-3039

  • 8/13/2019 LectureACM_1

    24/149

    0.3

    0.4

    0.5

    ss

    ceramic0.51

    -0.1

    0.0

    -0.1

    0.0

    0.1

    0.2

    tionalthickn

    metal

    -0.4

    -0.3

    -0.2

    entionaldeflectio

    ceramic0.5

    -0.4

    -0.3

    -0.2

    .

    Non-d

    ime

    through thickness

    -0.7

    -0.6

    -0.5

    N

    on-di 1

    2

    metalDeflectionunder mechanical load

    -0.5

    -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

    Non-dimentional axial stress

    -14 -12 -10 -8 -6 -4 -2 0

    Load parameter

    0.2

    0.3

    ceramic

    0.50

    = = = =

    -

    0.0

    0.1

    tionaldeflection

    .12metal

    0.40

    0.45

    tress

    .

    -0.3

    -0.2

    .

    Non-dim

    en

    Deflection under- 0.25

    0.30

    .

    Central

    -14 -12 -10 -8 -6 -4 -2 0-0.4

    Load parameter

    Source: H. Nguyen-Xuan et al. (2012), Thin-Walled Structures 54:118

    1 10 100 1000 10000 100000 10000000.20

    Ratio L/t

  • 8/13/2019 LectureACM_1

    25/149

    2000

    n=125

    30

    1000

    1500

    gthermalT

    cr

    uniformlinear15

    20

    lingthermal

    CCCC (non-uniform)SSSS (uniform)SSSS (non-uniform)

    500

    Criticalb

    uckli -

    5

    10

    Critica

    lbuc

    20 40 60 80 100

    0

    a/h

    0 2 4 6 8 100

    volume fraction exponent n

    Source: H. Nguyen-Xuan et al., Journal of Thermal stresses (submitted, 2012)

    The first four buckling mode shapes of FG circular plate

  • 8/13/2019 LectureACM_1

    26/149

    Piezoelectric structure

    Simulating the linear tilt angle of the reflected light through amirror of a MEMs device

    BimorphMEMs device

    20

    25

    structures 15Tiltangle(0)

    Tilt angle ofmirror in thebimorph MEMs

    5 PCM

    T3

    Q4

    EST3

    Source:Nguyen Xuan et al., SMS (2009)

    0 5 10 15 20 25 30 35 40 45 500

    Applied voltage (V)

  • 8/13/2019 LectureACM_1

    27/149

    1

    10-5

    10 V

    ricplate 0V (s)

    5V (s)

    10V (s)

    -

    -2

    -1

    5 V

    /45]piezoelect a

    5V (a)

    10V (a)

    -6

    -5

    -4

    0 V

    lectionof

    [p/-4

    -0.50.0

    0.5

    1.0

    1.5

    10 V

    tricplaete

    0V ()

    5V ()

    10V()

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Def

    =

    -3.5

    -3.0

    -2.5

    -2.0

    -1.5

    -1.0

    5 V

    ]apiezoele 0V ()

    5V ()

    10V()

    0V ()

    5V ()

    Piezoelectric

    late

    -6.5

    -6.0

    -5.5

    -5.0

    -4.5

    -4.0

    0 Vctionof[p/-

    Shape control

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    -7.5

    -7.0

    Defl

    ydirection (x=a/2)Source: Phan et al., IJCM (2011), in press

  • 8/13/2019 LectureACM_1

    28/149

    Vibration Control of satellite arms

    A scale model to testactive vibration controlschemes of satellite

    Hubbard, 1985),(Lammering, 1991).The accelerometer ismodeled by a tip massM.

  • 8/13/2019 LectureACM_1

    29/149

    Other applications: Vibration analysis

    ree v ra on o a mac ne par

    Source: Nguyen-Thanh, JCAM, 233 (2010) 2112-2135

  • 8/13/2019 LectureACM_1

    30/149

    Composite circular plates

    Mode 2

    Mode 1o e

    Mode 4 Mode 5 Mode 6

  • 8/13/2019 LectureACM_1

    31/149

    Buckling analysis

    Plates under axial andbiaxial compression

  • 8/13/2019 LectureACM_1

    32/149

    Mode shape of buckling behavior

    SSSS SSFF SSCC

    SSSC SSFC SSFS

    Source: H. Nguyen-Xuan et al. (2010), CMAME, Vol. 199 (9-12), 471-489

  • 8/13/2019 LectureACM_1

    33/149

    Static structures shell analysis

    deformedconfiguration

    ScordelisLoroof

    Pinchedcylinder

    nc e em sp ere

    Source: our publication in CMAME, Vol. 200,, p. 3410-3424, 2011

  • 8/13/2019 LectureACM_1

    34/149

    Pinched composite hemispherical shell with 18hole

    h = 0.08 inE11 = 20.4610

    6 psiE22 = 4.09210

    6 psi= = 612 13 .

    G23 = 1.26852106 psi

    12 = 0.313

    Inward deflection Outward deflection

    Source: Vu Duy, Proceedings of Structural Engineering, 2010

  • 8/13/2019 LectureACM_1

    35/149

    Free vibration in macro/microtubes

    Source: our publication in KSCE, Vol. 12, No. 2, pp. 347-361, 2011

  • 8/13/2019 LectureACM_1

    36/149

    Heterogeneous media

    www.scorec.rpi.edu

  • 8/13/2019 LectureACM_1

    37/149

    Multiscale approach to homogenization problems

    The steady state heat conduction of microprocessor made of a layered material

    processor core

    Heat distribution in amicroprocessor

    in cellphones orautomotive electronicsHeatsink

  • 8/13/2019 LectureACM_1

    38/149

    in ,a u fe e- = W

    1 1Find ( )such that forall ( )D Du H v H e

    e e e e

    W W

    Weak form:Strong form:

    ( )on ,

    on .

    D D

    N N

    u g

    n a u g

    e

    e e

    = W = W

    ,

    : ( )N

    N Dfvdx g vdx a g vdx l ve e

    W

    W W W= + - = 1 1where : : 0onH v H v W = W = W

    Micro solver: Under some constrains

    (sample domain size, periodic or

    Dirichlet boundary condition v.v), we

    solve on each sampling domain .l

    h

    Kv d lKd

    Post processing:

    1( , ) ( ) .

    l

    l llH l

    LKH H h h

    K KKK T l

    w

    B v w a x v w dx K d dd

    e

    d ==

    deg=2l 3 04

  • 8/13/2019 LectureACM_1

    39/149

    104

    deg=3

    deg=4

    deg=5

    slope=3.04

    slope=2.81

    slope=2.73

    103

    CPU-t

    ime(s)

    slope=3.11

    101

    102

    103

    102

    slope=2.03 102

    101

    number of macro elements per dimensionIsogeometric approach

    105

    104

    uHH1

    0

    H1

    slope=3.09

    105

    104

    103

    L2

    2

    slope=3.07

    107

    106

    u0

    deg=2

    deg=3

    slope=5.36

    slope=4.17

    107

    106

    u0

    uH

    u

    0

    L

    slope=4.98

    s ope= .

    101

    108

    1/Hmax

    deg=4

    deg=5

    10110

    9

    108

    1/hmax

    eg=

    deg=3

    deg=4

    deg=5

    slope=6.26

    Nguyen-Xuan and Hoang, J. Com Physics, submitted, 2012

  • 8/13/2019 LectureACM_1

    40/149

    Simulation of failure cracked structures

    Plate is a rectangle of 4 8 ,

    E = 1e9,E = 1e8, = =0.3 and = 1.

    0.5 8performed for two cases, namely:

    (1) hard inclusion (R = 0.1) and (2)2so t nc us on =

    matrixE

    2ncE fiber

    rac n compos e ma er a

  • 8/13/2019 LectureACM_1

    41/149

    Finite Element Mesh

    Crack rowth in

    compositematerial

    Enrichment of singularfield around crack, bi-

    material interface

  • 8/13/2019 LectureACM_1

    42/149

    Crack path

    8Comparison of Crack Growth Paths in Presence of Soft and Hard Inclusion

    Ref

    XFEM soft

    6

    7

    Ref

    XFEM (hard)

    4

    5

    2

    3

    1

    3 2 1 0 1 2 3 4 5 6 70

  • 8/13/2019 LectureACM_1

    43/149

    Simulation of failure crack in materials

    Concrete

    Collaboration with: Prof T. Rabczuk and from Dr M. Duflot et al

    Simulation of crack growth in materials

  • 8/13/2019 LectureACM_1

    44/149

    Simulation of crack growth in materials

    Crack growth in concrete at mesoscale Crack growth in polycrystals at mesoscale

    Multi-delamination research:

    Application: laminated composite

    Source: Nguyen Vinh et al, IMM (2012), 3(4):1-42

    s ruc ures, n ms

  • 8/13/2019 LectureACM_1

    45/149

    Some other applications

    Fuel Cell Bipolar Plate

    The thermal and structuralanalysis in a bipolarp a e n a pro on exc angemembrane fuel cell

    Source: Comsol software

  • 8/13/2019 LectureACM_1

    46/149

    Some applications

    Fuel Cell Bipolar Plate

    ModelSource: Comsol software

  • 8/13/2019 LectureACM_1

    47/149

    Some applications

    Fuel Cell Bipolar Plate

    Temperature distribution in the plate

    Source: Comsol software

  • 8/13/2019 LectureACM_1

    48/149

    Some applications

    Pinched Hemispherical Shell structure

    Model

    Source: Comsol software

  • 8/13/2019 LectureACM_1

    49/149

    Some applications

    Shell Diffusion

    Model

    Electric potential distribution across the

    surface (V).Source: Comsol software

  • 8/13/2019 LectureACM_1

    50/149

    Some applications

    Power Transistor

    Model geometry and position of transistor chip

    The power transistor is mounted on the circuit board usingthrough-hole technology. The solder in the holes give mechanical

    suppor an e ec ron c con ac e ween e copper rou es an e

    transistor pinsSource: Comsol software

    S li i

  • 8/13/2019 LectureACM_1

    51/149

    Some applications

    Power Transistor

    Temperature distributionSource: Comsol software

    S li ti

  • 8/13/2019 LectureACM_1

    52/149

    Some applications

    Radar Cross Section

    -cut plane lies above the water surface

    Source: Comsol software

    S li ti

  • 8/13/2019 LectureACM_1

    53/149

    Some applications

    The total field norm for a 30 degree angle of incidence.The arrow represents the propagation direction of the

    incident background field. Source: Comsol software

  • 8/13/2019 LectureACM_1

    54/149

    2. Vectors and Tensors

    Source: Thanks anonymous author contributed to this part

    V t

  • 8/13/2019 LectureACM_1

    55/149

    Vectors

    zz

    The Cartesian coordinates is considered !

    Az

    y

    y

    Ax

    Vector is denoted by A or

    Magnitude

  • 8/13/2019 LectureACM_1

    56/149

    Magnitude

    z

    Ay

    AxUnit vector:

    x

    2 2 2A Ae

    x y z

    Vector Addition

  • 8/13/2019 LectureACM_1

    57/149

    Vector Addition

    x x xA B C

    ( )

    y y

    z z zA B C A + B = C

    Number axes

  • 8/13/2019 LectureACM_1

    58/149

    Number axes

    1x x

    2

    x z

    1,2,3i i i

    A B C i or simply:

    i i i

    This is Cartesian Tensor or indicial notation.

    This is called 1st tensor Rank

    A

    Remark

  • 8/13/2019 LectureACM_1

    59/149

    Remark

    1

    2 vectoriA A A

    3A

    Unless otherwise stated, any repeated indices within a

    term require a sum on these indices from 1 to 3 or from

    to or two- mens ona wor .

  • 8/13/2019 LectureACM_1

    60/149

    Examples:

    1 1 2 2 3 3i iB A B A B A B

    31 2k

    f ff f

    1 2 2kx x x x

    , 1,1 2,2 3,3k k k

    kf f f fx

  • 8/13/2019 LectureACM_1

    61/149

    Examples:

    i i k k B A B A B

    jj ii kkC C C

    , , ,k k i i j jf f f

    Look at Gibbs notation

  • 8/13/2019 LectureACM_1

    62/149

    A

    A

    x y z, , .

    , , can e use n t e terature.

    1 2 3, ,

    numbered coordinate directions.

  • 8/13/2019 LectureACM_1

    63/149

    x y zA A A A j ki

    or

    x x y y z z

    or

    1 1 2 2 3 3 A A A A e e e

    3

    A A

    1

    n n

    n

    Matrix This is called 2nd

  • 8/13/2019 LectureACM_1

    64/149

    11 12 13

    21 22 23=a a aa a a

    A

    ensor an

    31 32 33

    a a a

    21 22 2 1 2

    .....

    ....

    n n

    n na a a a

    11 21 1 1 1

    = ... ... .... ... ...

    .....

    ij

    m m m n m na a a a

    1 2 1....m m mn mna a a a ,

    The unit matrix

  • 8/13/2019 LectureACM_1

    65/149

    1 0 0

    = 0 1 0

    I

    0 0 1 Kronecker delta or the unit tensor:

    0 if i j

    i j

    Second uniti j

    tensor

  • 8/13/2019 LectureACM_1

    66/149

    11 12 13 1 0 0

    21 22 23 0 1 0 31 32 33 0 0 1

    Recall Summation Convention

    1 1 2 2 3 3ij i j j jA A A A ij i j

    Recall Summation Convention

  • 8/13/2019 LectureACM_1

    67/149

    3

    and

    ij jk ik

    Strain and Stress:

    11 22 33ii

    Permutation constant

  • 8/13/2019 LectureACM_1

    68/149

    ermutaioevenin3-2-1inki1e

    permutaionoddin1)-2-3(inkj,i,1e kjikiork,j,iif0e kji

    lso called the alternating tensor or the

    Levi-Civita density.

    Permutation constant Alternative definition

  • 8/13/2019 LectureACM_1

    69/149

    e 2i j k j k k i i j no sum on i,j, and k

    i,j,k 1,2,3

  • 8/13/2019 LectureACM_1

    70/149

    1 2 3i i i

    1 2 2

    ei j k j j j

    1 2 3k k k

    2 2 2ei j k i j k

    3 3 3i j k

  • 8/13/2019 LectureACM_1

    71/149

    31 32 33

    312 11 12 12

    e

    21 22 23

    0 0 1312e 1 0 0 1

    0 0 1

    Determinants

  • 8/13/2019 LectureACM_1

    72/149

    11 12 13a a a21 22 23 ija a a a a

    ( 1) ij ,

    Determinants

  • 8/13/2019 LectureACM_1

    73/149

    1 2 3e

    ijk i j k a a a a

    1 2 3eijk i j k a a a a

    Vector Multiplication

  • 8/13/2019 LectureACM_1

    74/149

    Scalar Product (Dot Product)

    Tensor Product

    Scalar Product

  • 8/13/2019 LectureACM_1

    75/149

    B

    cosA B A B

    Scalar Product

  • 8/13/2019 LectureACM_1

    76/149

    (1,0,0)i (0,1,0)j (0,0,1)kzz

    y zA A A i j k Az

    i y

    Ay. . .

    . 0i j . 0jk . 0i k

    x

    x

    . ( ).( )

    =

    x y z x y zA A A B B B A B i j k i j k

    x x y y z z

    We can rename unit vectors as:

    1 (1,0,0)e 2 (0,1,0)e 3 (0,0,1)e

    Scalar Product

  • 8/13/2019 LectureACM_1

    77/149

    (scalar)A B

    x x y y z zA B A B A B 3

    i iA B 1i

  • 8/13/2019 LectureACM_1

    78/149

    Scalar Product With

    i iA B

    Vector Product

  • 8/13/2019 LectureACM_1

    79/149

    C = A B

    ( )or C A B

    C

    Bn

    A

    Vector Product

  • 8/13/2019 LectureACM_1

    80/149

    (vector)C A B

    sinC A B n

    sinC A B

    is unit vector to lane defined b A B

    n

    Vector Product

  • 8/13/2019 LectureACM_1

    81/149

    is area of parallelopipedC

    with adjacent sides andA BC

    B

    Example: Moment vector of load

  • 8/13/2019 LectureACM_1

    82/149

    ( )or M r F M r F

    Translation

  • 8/13/2019 LectureACM_1

    83/149

    2

    1

    Quantities Transformed

  • 8/13/2019 LectureACM_1

    84/149

    Scalars

    Tensors

    Scalar

  • 8/13/2019 LectureACM_1

    85/149

    A scalar is a quantity that does not change its

    coordinate system to another.

    Vector

  • 8/13/2019 LectureACM_1

    86/149

    22

    1

    1

    3

  • 8/13/2019 LectureACM_1

    87/149

    1 1 1 1 2 1 2 3 1 3cos , cos , cos ,V V x x V x x V x x

    2 1 2 1 2 2 2 3 2 3cos , cos , cos ,V V x x V x x V x x 2 1 3 1 2 3 2 3 3 3cos , cos , cos ,V V x x V x x V x x

    i ij jV a V

  • 8/13/2019 LectureACM_1

    88/149

    1 1 1 1cos , cos ,x x x x

    1 3 1 3cos , cos ,x x x x

    2 1 2 1

    2 2 2 2

    cos , cos ,

    cos , cos ,

    x x x x

    x x x x

    2 3 2 3cos , cos ,x x x x

    3 1 3 1

    3 2 3 2

    , ,

    cos , cos ,x x x x

    3 3 3 3cos , cos ,x x x x

    T f ti M t i [A]

  • 8/13/2019 LectureACM_1

    89/149

    Transformation Matrix [A]

    i ij j

    i ji j

    Tensor Product

  • 8/13/2019 LectureACM_1

    90/149

    (tensor) orAB CA B=C

    C A B

    1 2 3 1 2 3C A A A B B B

    S d O d T

  • 8/13/2019 LectureACM_1

    91/149

    Second-Order Tensors

    s mmetric tensorC Canti symmetric tensori iC C

    Tensors Identity

  • 8/13/2019 LectureACM_1

    92/149

    Any tensor symmetric tensor anti symmetric tensor

    1 1

    2 2

    Tensors Operations

  • 8/13/2019 LectureACM_1

    93/149

    additionB C

    ij ij ij

    scalar multiplicationB A

    ij ijB A

    Tensor Fields

  • 8/13/2019 LectureACM_1

    94/149

    y

    depend on spatial location and on time.

    Examples are the displacement vector (1st

    , .

    , ,ij ij k T T x t T T x t , ,i i j jv v x t v v x t

    Derivative

  • 8/13/2019 LectureACM_1

    95/149

    Take partial derivative w.r.t. time of a vector

    e :

    31 2 vv v vt t t t

    dvdv

    kdt dt e

    Unit Vectors in cylindrical coordinates

  • 8/13/2019 LectureACM_1

    96/149

    Cylindrical components:

    , , , , , ,

    r rv r z t v r z t v e e

    , , ,z z

    r rde e

    d

    e

    re

    Take partial deri ati e r t time of a ector

  • 8/13/2019 LectureACM_1

    97/149

    Take partial derivative w.r.t. time of a vector

    r r

    r r

    dvd dv

    dt dt dt

    ev

    e

    z z

    dv dvdv

    dt dt dt

    e

    e e

  • 8/13/2019 LectureACM_1

    98/149

    r

    e

    r

    e

    e

    The gradient operator

  • 8/13/2019 LectureACM_1

    99/149

    A directed rate of change of a tensor field

    w.r.t. the coordinate directions may be

    obtained by the del operator.

    k

    kx

    ( , , )x y z

    kComponents of this operator:

    y zx y z

    Scalar Field

  • 8/13/2019 LectureACM_1

    100/149

    gradient

    k

    grad

    x y z

    x y z

    e e e

    In polar coordinates:

    r z

    r r z

    e e e

    Gradient

    Gradient vector is normal to surfaces of constant

  • 8/13/2019 LectureACM_1

    101/149

    Gradient vector is normal to surfaces of constant. To et the rate of chan e in a articular

    direction:

    n

    n

    e

    Plasticity field

    f

    Vector Fields

  • 8/13/2019 LectureACM_1

    102/149

    xv

    grad v v

    v

    v e eix

  • 8/13/2019 LectureACM_1

    103/149

    Polar Coordinates

    1

  • 8/13/2019 LectureACM_1

    104/149

    1 v v v

    v e e e e e e

    1

    r z r r z z

    r r z

    r r z

    vv v v

    vr r r z

    r zvv v

    1 1 1

    r r r r z

    r r zr r z

    r r r

    v vv v v

    e e e e e e e e e e

    r zz r z z z

    r r r r r

    vv v

    e e e e e e

    Curl e kv u v u

  • 8/13/2019 LectureACM_1

    105/149

    eijk iux

    v u

    e mj

    ijk im

    TT S S

    j

    Polar Coordinates

    r zT

    r r z

    e e e

    [

    r rr r r r r rz z

    T T T

    T T T

    e e e e e e

    e e e e e e

    ]z zr r z z z zz zT T T e e e e e e

    Gradient and divergence theorems

    LetF(x,y,z) and G(x,y,z) be functions of class C1().

  • 8/13/2019 LectureACM_1

    106/149

    gra

    n

    (Gradient theorem)

    ( )d d ddiv

    G G n G

    vergence eoremwhere n=(nx, ny, nz) is the normal vector of the surface .Assume that , G are scalar functions. We have

    d d dG F F G FG n2 d . d d

    FG F F G G

    n

    Curl theorem

    d d F n F

  • 8/13/2019 LectureACM_1

    107/149

    d d F n F

    Homework:

    Find Gradient and divergence, Curl theorems

    ,

    Example

    1 2 0 1 5

  • 8/13/2019 LectureACM_1

    108/149

    =, ,

    0 3 2 1 4

    Find : Det (K), Ku

    KX = FX such that:

    Example

    Assumed that the components of the stress dyadic (tng cp)i i f i di i b

  • 8/13/2019 LectureACM_1

    109/149

    at a certain point of a continuous medium are given by

    200 400 300 400 0 0 psi

    300 0 100

    Find the stress vectort and its normal and tangential components at

    the point on the plane, (x1, x2) x1 + 2x2 + 2x3 = constant, passing

    through the point.

    Example

    Solution:1

  • 8/13/2019 LectureACM_1

    110/149

    1

    1 2 3

    3

    16001

    400 ps3

    100

    t nSurface stress vector

    Example

  • 8/13/2019 LectureACM_1

    111/149

  • 8/13/2019 LectureACM_1

    112/149

    (11/02/1847 -18/10/1931 )

    "Ti khm ph ra 10.000 cht khng th sdn lm d tc bn n tc sau 10.000 lntht bi trong vic chto dy tc bngn)", "Ttcnhng ngi tht biu c mtim chung : ng n n ra r ng c c m n n

    cng chnh l lc htbn lc cui cng ca" ",

    li ca ngy mai"

  • 8/13/2019 LectureACM_1

    113/149

    . verv ew o ar a eren a

    Equations (PDEs)

    , ,Einstein

    Overview of Partial Differential Equations (PDEs)

    Elliptic, Parabolic and Hyperbolic Equations

    Th i ti2 22ax bx c dx e

  • 8/13/2019 LectureACM_1

    114/149

    The conic e uation 2ax bx c dx e

    2 0 : Ellipseb ac

    : ara o aac 2

    Overview of Partial Differential Equations (PDEs)

    Elliptic, Parabolic and Hyperbolic Equations2 2 2u u u u u

  • 8/13/2019 LectureACM_1

    115/149

    u u u u u 2 2x x y y x y

    20 Laplace equation

    , , , , , ,

    , , Poisson equationxx yy f

    2) 0 : Para o c , , Heat equat onxx tac u u

    2 , ,xx tt

    PDE Elliptic form

    1. Poisson equation in one dimension (1D) (spring):d du

  • 8/13/2019 LectureACM_1

    116/149

    d duq

    dx dx

    where u = u(x) is unknown, q = q(x), k> 0 are given functions

    tea y orm

    -An elastic bar (k = EA) subjected to body force or the

    Some real phenomena

    distributed load (q)

    - Stead -State Linear Heat Conduction: k = the

    thermal conductivity coefficient, q QA isdistribution heat production,uT- temperature)

    - Steady potential flow: (k=-mass density,q is source field,

    u- potential function)

    Quantities corresponding to the variables of the spring

  • 8/13/2019 LectureACM_1

    117/149

    Overview of Partial Differential Equations (PDE)

    - Steady-State electric field: (k = the dielectric material

    coefficient e is the source field u electric

  • 8/13/2019 LectureACM_1

    118/149

    coefficient e is the source field u - electricpotential field)

    Homework: 1) Establish model and corresponding

    differential equations of above physical models

    s a s mo e an correspon ngdifferential equations of Magnetostatics, and

    Saint-Venant torsion problem (see Chapter 2

    in AFEM by Prof. Carlos A. Felippa)

    Example 1D

    Ex1: Derive the governing equation of a rod subjected tothe forces inside the member and at the ends

  • 8/13/2019 LectureACM_1

    119/149

    the forces inside the member and at the ends

    Solution: Due to the very small cross-sectional dimensioncom ared to its len th it is assumed that the stress isuniform at any section and all other stresses are zero.

    Example

    Consider an element of length x

  • 8/13/2019 LectureACM_1

    120/149

    x x x x x

    Leading( ) 0x x x f x

    x

    or ( ) ( ) 0d

    A f x d du

    Hookes law: duE E dx dx

    x

    Example

    ( ( ) ) ( ) 0d du

    EA x f x Governing equation

  • 8/13/2019 LectureACM_1

    121/149

    ( ( ) ) ( )fg qx x

    Boundary conditions:

    0sP A F at x L

    where Fs is the compressive force in the spring

    Thermal conduction

    Ex2: Derive the governing equation for heat conductionthrough a wall

  • 8/13/2019 LectureACM_1

    122/149

    g

    ( ) ( )q x A x ( ) ( )q x x A x x

    x

    )s x

    A: section area

    s: heat source

    q: heat flux

    Thermal conduction

    Energy balance in volume of the wall( ) ( ) ( ) ( ) 0s x q x A x q x x A x x

  • 8/13/2019 LectureACM_1

    123/149

    ( ) ( ) ( ) ( )q qheat generated

    heat flowin heat flowout

    Rearran e

    ( ) ( ) ( ) ( )q x x A x x q x A xs

    or

    ( )d qAs

    dx

    According to Fouriers law

    dTq k dx 0

    d dT

    Ak sdx dx

    Governing equation

    Thermal conduction

    Governing equation

  • 8/13/2019 LectureACM_1

    124/149

    0d dT

    Ak sdx dx

    0,on x l

    and the boundary condition

    dTq k q

    dx atx= 0

    T T atx=

    Example

    Homework :

    A bridge is supported by several concrete piers, and

  • 8/13/2019 LectureACM_1

    125/149

    the below figure. The load 20 103 N/m2 represents

    the weight of the bridge and an assumed distribution ofthe traffic on the bridge. The concrete weighsapproximately = 25 103N/m3 and its modulus isE = 28 109 N/m2.

    Determine the axial displacement,,

    a one-dimensional model.

    Example

    Ex3: Consider the bending of a straight beam accordingto the classical (EulerBernoulli) beam theory.

  • 8/13/2019 LectureACM_1

    126/149

    The beam is subjected to distributed axial force f (x)

    and transverse load q(x). derive the equationsgovern ng e equ r um o e eam.

    Example

    Solution:

  • 8/13/2019 LectureACM_1

    127/149

    beam acted by area-integrated forces and moments

    , ,xx xz xxA A

    N dx V dx M zdx Axial force Shear force Bending moment

    Example

    Equilibrium equations:

    x

  • 8/13/2019 LectureACM_1

    128/149

    ( ) 0

    x

    dN f x

    0 : ( ) ( ) 0z

    x

    F V V dV q x dx ( ) 0

    dVq x

    dx

    0 : ( ) ( ) 0y

    M Vdx M M dM q x dxdx

    0V

    dx

    Example

    Hence: 2d M

    2

  • 8/13/2019 LectureACM_1

    129/149

    2dx

    2 2

    erw se, rom u er ernou ypo es s

    2 2xxA AE zdx E z dA EIdx dx

    ence, one o ta ns t e u er ernou equa on

    2 2d d w 2 2

    - ,dx dx

    Overview of Partial Differential Equations (PDEs)

    2. Poisson equation in two and three dimension (2D &3D): u

  • 8/13/2019 LectureACM_1

    130/149

    u u

    x x

    x x y y

    ( ) ( ) ( ) 0k k k qx x y y z z 3D

    Generalized Poisson equation

    where

    ( , , ),x y z

    .( , , )

    u u uu

    x y z

    Overview of Partial Differential Equations (PDEs)

    3. Poissons equation reduces to Laplaces equation:

    s t e constant + t e source q = 0

  • 8/13/2019 LectureACM_1

    131/149

    s t e constant + t e source q = 0

    2 2

    2 2.( ) 0 or 0,where =k u u

    x y

    Having solutions is calledharmonic functions, whichhave been widely studied over the last times

    Homework: 1) Establish partial differential equations of

    2) Find a general solution of Laplaces equation

    Example

    2 0u Laplaces equation:

  • 8/13/2019 LectureACM_1

    132/149

    Note: this equation no dependence on time, just on the

    , .situations such as:

    Stead state tem erature distributions

    Steady state stress distribution

    Steady state flows, for example in a cylinder, around acorner,

    Example

    Ex3: Let consider the temperature distribution in anisolated wire with constant temperature T1 and T2 at twoend

  • 8/13/2019 LectureACM_1

    133/149

    end.

    Solution: At the steady-state without heat source, the governingequa on n x s rewr en as:

    2

    0d T

    k with BC 10T T at x

    x 2

    2 1T Tur so u on s 1

    l

    -

    solution is basically just straight line

    Example

    0,b

    y u=0 Ex3: Let consider this problem

    t i bl

  • 8/13/2019 LectureACM_1

    134/149

    u=0u=0

    two variables

    (0,0) (a,0)

    x

    u= x

    , ,xx yy

    The prescribed value along edges(0, ) 0 0u y for y b In general, suppose that (2)

    ( , ) 0 0

    ( , ) 0 0

    u a y for y b

    u x b for y a

    1( ) sinn

    n

    n x

    f x b a

    (3)

    (4)

    ( ,0) ( ) 0u x f x for y a (5)

    Solution: separate solution into two independent variables

    u x X x Y

  • 8/13/2019 LectureACM_1

    135/149

    0 " " 0u X Y Y X

    " "X Y

    " 0

    "

    X X

    (1)

    Eq. (1) combine with BC Eq. (2) combine with BC

    sinn n xX ( )

    sinh n b y

    aY

    a sinh n b

    a

    Using linear combination the solution of u is)(n b y

    ( ) ( sin)a n x

    u x y b u y bx

  • 8/13/2019 LectureACM_1

    136/149

    1 1

    ( , ) ( , sin)sinh

    nn n abn

    a

    n n

    u x y b u y bx

    4

    6

    4

    5

    Apply for a=b=

    0

    2

    3 1

    4( ) sinn

    x nxn

    0

    1

    4

    2

    1

    2

    3

    4 01

    23

    0

    Overview of Partial Differential Equations (PDEs)

    4. Convection diffusion- reaction equations:*

    ( )d k u u ru q

  • 8/13/2019 LectureACM_1

    137/149

    .( )ad k u u ru qt

    = , ...

    Temperature -- Heat transfer

    Pollutant concentration Coastal engineering

    Probability distribution Statistical mechanics

    ......

    The heat flow equation is parabolic (as is the convectiondiffusion equation)(*)

    Overview of Partial Differential Equations (PDEs)

    Ifu Independent time and no source (q = 0), and no......reac on, convec on - us on s a onary equa ons

  • 8/13/2019 LectureACM_1

    138/149

    y

    . inu k u

    This belongs to a class of elliptic problems

    Heat transfer in a cooling fin

    Example : No convection diffusion- no reactione uations:

    ( )d k u q

  • 8/13/2019 LectureACM_1

    139/149

    .( )ad k u qt

    Overview of Partial Differential Equations (PDEs)

    .

  • 8/13/2019 LectureACM_1

    140/149

    .( ) inad k u qt

    ad C C is the heat capacityk is thermal conductivity

    This belongs to a class of parabolic problems

    Overview of Partial Differential Equations (PDE)

    6. Wave equations (No diffusion term) : .( ) 0k u

  • 8/13/2019 LectureACM_1

    141/149

    u at

    This belongs to a class of hyperbolic problems

    Overview of Partial Differential Equations (PDE)

  • 8/13/2019 LectureACM_1

    142/149

    =.

    2 0 ink u u Find (u,) such that

    0 onu

    Overview of Partial Differential Equations (PDEs)

    8. Wave equation:

    inu

    e k u q

  • 8/13/2019 LectureACM_1

    143/149

    2inae k u q

    t

    9. Navier-Stokes equations (fluid mechanics)

    T u

    0

    t

    u

    Overview of Partial Differential Equations (PDEs)

    10. Structural Mechanics:

  • 8/13/2019 LectureACM_1

    144/149

    View in 2D

    Overview of Partial Differential Equations (PDEs)

    Strain-DisplacementRelationship

    u v w

    The symmetric strain

    tensor

    11 22 33, ,x y zx y z

    x xy xz

  • 8/13/2019 LectureACM_1

    145/149

    1xy

    y

    u v

    xy y yz

    23

    2 2

    1( )

    y

    yz

    yz

    y x

    v w

    x

    13

    1( )

    2 2

    xzxz

    u w

    z x

    y

    z

    y

    z

    yz

    xz

    Stress-Strain relationship

    D xy

    yz

    xz

    Vector form

    Overview of Partial Differential Equations (PDE)

    Isotropic material

    1 0 0 0

    1 0 0 0

    1 0 0 0

  • 8/13/2019 LectureACM_1

    146/149

    1 20 0 0 0 0E

    D

    1 1 21 2

    0 0 0 0 02

    1 2

    0 0 0 0 02

    The equilibrium equations2

    2t

    u

    f = Transient problem(please write more detail this equation ???)

    Overview of Partial Differential Equations (PDEs)

    Plane StressPlane Strain

    Axial

    symmetry

  • 8/13/2019 LectureACM_1

    147/149

    The components of the The components of the Solving the equations for stress tensor in z-directionare assumed to be zero strain tensor in z-directionare assumed to be zero the global displacement (u,w) in therandzdirections

    for three above cases ?

    Overview of Partial Differential Equations (PDEs)

    Boundary initial value problems

    Boundary value problem

    0 1( ) = for

    xd duk f

  • 8/13/2019 LectureACM_1

    148/149

    ( ) for

    (0,1)

    k f

    dx dx

    0 1 0(0) |xdu

    u u k g dx

    2

    +d u

    Initial value problem

    2

    dt

    du0 0

    dt

    What are you looking for ?

    ,nh hai pht. Khi bn ngi trn mt ci l nng la,

  • 8/13/2019 LectureACM_1

    149/149

    nh hai pht. Khi bn ngi trn mt ci l nng la,

    hai pht tng nh hai gi. l s tngi.

    Albert Einstein