lectures 11 and 12

43
Chap 19-1 Prof. Miruna Mazurencu Marinescu, Ph.D, MBA Lectures 10 and 11 Index Numbers, Time-Series Analysis and Forecasting Statistics for Business and Economics

Upload: eugen

Post on 11-Nov-2015

227 views

Category:

Documents


1 download

DESCRIPTION

Lectures 11 and 12

TRANSCRIPT

  • Chap 19-*Prof. Miruna Mazurencu Marinescu, Ph.D, MBALectures 10 and 11

    Index Numbers, Time-Series Analysis and ForecastingStatistics for Business and Economics

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Chapter GoalsAfter completing this chapter, you should be able to: Compute and interpret index numbersWeighted and unweighted price indexWeighted quantity indexTest for randomness in a time seriesIdentify the trend, seasonality, cyclical, and irregular components in a time seriesUse smoothing-based forecasting models, including moving average and exponential smoothingApply autoregressive models and autoregressive integrated moving average models

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Index NumbersIndex numbers allow relative comparisons over timeIndex numbers are reported relative to a Base Period IndexBase period index = 100 by definitionUsed for an individual item or measurement

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Consider observations over time on the price of a single itemTo form a price index, one time period is chosen as a base, and the price for every period is expressed as a percentage of the base period priceLet p0 denote the price in the base periodLet p1 be the price in a second periodThe price index for this second period isSingle Item Price Index

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Index Numbers: ExampleAirplane ticket prices from 1995 to 2003:Base Year:

    YearPriceIndex (base year = 2000)199527285.0199628890.0199729592.2199831197.21999322100.62000320100.02001348108.82002366114.42003384120.0

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Prices in 1996 were 90% of base year prices

    Prices in 2000 were 100% of base year prices (by definition, since 2000 is the base year)

    Prices in 2003 were 120% of base year pricesIndex Numbers: Interpretation

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Aggregate Price IndexesAn aggregate index is used to measure the rate of change from a base period for a group of itemsAggregate Price IndexesUnweighted aggregate price indexWeighted aggregate price indexesLaspeyres Index

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Unweighted Aggregate Price IndexUnweighted aggregate price index for period t for a group of K items:= sum of the prices for the group of items at time t= sum of the prices for the group of items in time period 0i = itemt = time periodK = total number of items

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Unweighted total expenses were 18.8% higher in 2004 than in 2001Unweighted Aggregate Price Index: Example

    Automobile Expenses:Monthly Amounts ($):YearLease paymentFuelRepairTotalIndex (2001=100)20012604540345100.020022806040380110.120033055545405117.420043105050410118.8

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Weighted Aggregate Price IndexesA weighted index weights the individual prices by some measure of the quantity soldIf the weights are based on base period quantities the index is called a Laspeyres price indexThe Laspeyres price index for period t is the total cost of purchasing the quantities traded in the base period at prices in period t , expressed as a percentage of the total cost of purchasing these same quantities in the base periodThe Laspeyres quantity index for period t is the total cost of the quantities traded in period t , based on the base period prices, expressed as a percentage of the total cost of the base period quantities

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Laspeyres Price Index= quantity of item i purchased in period 0

    = price of item i in time period 0= price of item i in period tLaspeyres price index for time period t:

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Laspeyres Quantity Index= price of item i in period 0

    = quantity of item i in time period 0= quantity of item i in period tLaspeyres quantity index for time period t:

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Time-Series DataNumerical data ordered over timeThe time intervals can be annually, quarterly, daily, hourly, etc.The sequence of the observations is importantExample:Year:2001 2002 2003 2004 2005Sales: 75.3 74.2 78.5 79.7 80.2

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Time-Series Plotthe vertical axis measures the variable of interest

    the horizontal axis corresponds to the time periodsA time-series plot is a two-dimensional plot of time series data

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

    Chart1

    9.1277890467

    5.7620817844

    6.5026362039

    7.5907590759

    11.3496932515

    13.4986225895

    10.3155339806

    6.1606160616

    3.2124352332

    4.3172690763

    3.5611164581

    1.8587360595

    3.6496350365

    4.1373239437

    4.8182586644

    5.4032258065

    4.208110176

    3.0102790015

    2.9935851746

    2.5605536332

    2.8340080972

    2.9527559055

    2.2944550669

    1.5576323988

    2.2085889571

    3.3613445378

    2.8455284553

    1.581027668

    Inflation Rate

    Year

    Inflation Rate (%)

    U.S. Inflation Rate

    Sheet1

    YearInflation RateAnnual CPI-U

    197449.3

    19759.1353.8

    19765.7656.9

    19776.5060.6

    19787.5965.2

    197911.3572.6

    198013.5082.4

    198110.3290.9

    19826.1696.5

    19833.2199.6

    19844.32103.9

    19853.56107.6

    19861.86109.6

    19873.65113.6

    19884.14118.3

    19894.82124

    19905.40130.7

    19914.21136.2

    19923.01140.3

    19932.99144.5

    19942.56148.2

    19952.83152.4

    19962.95156.9

    19972.29160.5

    19981.56163

    19992.21166.6

    20003.36172.2

    20012.85177.1

    20021.58179.9

    Sheet1

    Inflation Rate

    U.S. Inflation Rate

    Sheet2

    Sheet3

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Time-Series ComponentsTime SeriesCyclical ComponentIrregular ComponentTrend ComponentSeasonality Component

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Upward trendTrend ComponentLong-run increase or decrease over time (overall upward or downward movement)Data taken over a long period of timeSalesTime

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Downward linear trendTrend ComponentTrend can be upward or downwardTrend can be linear or non-linearSalesTime Upward nonlinear trendSalesTime (continued)

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Seasonal ComponentShort-term regular wave-like patternsObserved within 1 yearOften monthly or quarterlySalesTime (Quarterly) WinterSpringSummerFallWinterSpringSummerFall

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Cyclical ComponentLong-term wave-like patternsRegularly occur but may vary in lengthOften measured peak to peak or trough to troughSales1 CycleYear

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Irregular ComponentUnpredictable, random, residual fluctuationsDue to random variations of NatureAccidents or unusual eventsNoise in the time series

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Time-Series Component AnalysisUsed primarily for forecastingObserved value in time series is the sum or product of components Additive Model

    Multiplicative model (linear in log form)whereTt = Trend value at period tSt = Seasonality value for period tCt = Cyclical value at time t It = Irregular (random) value for period t

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Smoothing the Time SeriesCalculate moving averages to get an overall impression of the pattern of movement over timeThis smooths out the irregular component

    Moving Average: averages of a designatednumber of consecutivetime series values

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*(2m+1)-Point Moving AverageA series of arithmetic means over timeResult depends upon choice of m (the number of data values in each average) Examples: For a 5 year moving average, m = 2For a 7 year moving average, m = 3Etc.Replace each xt with

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Moving AveragesExample: Five-year moving average

    First average:

    Second average:

    etc.

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Example: Annual Data

    YearSales1234567891011 etc2340252732483337375040 etc

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

    Chart4

    23

    40

    25

    27

    32

    48

    33

    37

    37

    50

    40

    Annual

    Year

    Sales

    Annual Sales

    Sheet1

    YearSales

    123

    240

    32529.4

    42734.4

    53233

    64835.4

    73337.4

    83741

    93739.4

    105041

    1140

    Sheet1

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    Annual

    5-Year Moving Average

    Year

    Sales

    Annual vs. 5-Year Moving Average

    Sheet2

    Sheet3

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Calculating Moving AveragesEach moving average is for a consecutive block of (2m+1) yearsetcLet m = 2

    YearSales12324032542753264873383793710501140

    Average Year5-Year Moving Average329.4434.4533.0635.4737.4841.0939.4

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Annual vs. Moving Average The 5-year moving average smoothes the data and shows the underlying trend

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

    Chart2

    23

    40

    2529.4

    2734.4

    3233

    4835.4

    3337.4

    3741

    3739.4

    50

    40

    Annual

    5-Year Moving Average

    Year

    Sales

    Annual vs. 5-Year Moving Average

    Chart1

    23

    40

    2529.4

    2734.4

    3233

    4835.4

    3337.4

    3741

    3739.4

    5041

    40

    Annual

    5-Year Moving Average

    Year

    Sales

    Annual vs. 5-Year Moving Average

    Sheet1

    YearSales

    123

    240

    32529.4

    42734.4

    53233

    64835.4

    73337.4

    83741

    93739.4

    1050

    1140

    Sheet1

    Annual

    5-Year Moving Average

    Year

    Sales

    Annual vs. 5-Year Moving Average

    Sheet2

    Sheet3

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Centered Moving AveragesLet the time series have period s, where s is even number i.e., s = 4 for quarterly data and s = 12 for monthly dataTo obtain a centered s-point moving average series Xt*:Form the s-point moving averages

    Form the centered s-point moving averages(continued)

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Centered Moving AveragesUsed when an even number of values is used in the moving averageAverage periods of 2.5 or 3.5 dont match the original periods, so we average two consecutive moving averages to get centered moving averagesetc

    Average Period4-Quarter Moving Average2.528.753.531.004.533.005.535.006.537.507.538.758.539.259.541.00

    Centered PeriodCentered Moving Average329.88432.00534.00636.25738.13839.00940.13

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Calculating the Ratio-to-Moving AverageNow estimate the seasonal impactDivide the actual sales value by the centered moving average for that period

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Calculating a Seasonal Index

    QuarterSalesCentered Moving AverageRatio-to-Moving Average1234567891011234025273248333737504029.8832.0034.0036.2538.1339.0040.13 etc 83.784.494.1132.486.594.992.2 etc

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Calculating Seasonal IndexesFind the median of all of the same-season values Adjust so that the average over all seasons is 100FallFallFall(continued)

    QuarterSalesCentered Moving AverageRatio-to-Moving Average1234567891011234025273248333737504029.8832.0034.0036.2538.1339.0040.13 etc 83.784.494.1132.486.594.992.2 etc

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Interpreting Seasonal IndexesSuppose we get these seasonal indexes: = 4.000 -- four seasons, so must sum to 4Spring sales average 82.5% of the annual average salesSummer sales are 31.0% higher than the annual average salesetcInterpretation:

    SeasonSeasonal IndexSpring0.825Summer1.310Fall0.920Winter0.945

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Forecasting Time Period (t + 1)The smoothed value in the current period (t) is used as the forecast value for next period (t + 1)

    At time n, we obtain the forecasts of future values, Xn+h of the series

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Autoregressive ModelsUsed for forecastingTakes advantage of autocorrelation1st order - correlation between consecutive values2nd order - correlation between values 2 periods apartpth order autoregressive model:Random Error

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Autoregressive ModelsLet Xt (t = 1, 2, . . ., n) be a time seriesA model to represent that series is the autoregressive model of order p:

    where , 1 2, . . .,p are fixed parameterst are random variables that have mean 0constant variance and are uncorrelated with one another(continued)

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Autoregressive ModelsThe parameters of the autoregressive model are estimated through a least squares algorithm, as the values of , 1 2, . . .,p for which the sum of squares

    is a minimum(continued)

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Forecasting from Estimated Autoregressive ModelsConsider time series observations x1, x2, . . . , xt Suppose that an autoregressive model of order p has been fitted to these data:

    Standing at time n, we obtain forecasts of future values of the series from

    Where for j > 0, is the forecast of Xt+j standing at time n and for j 0 , is simply the observed value of Xt+j

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Autoregressive Model: Example Year Units 1999 4 2000 3 2001 2 2002 3 2003 2 2004 2 2005 4 2006 6The Office Concept Corp. has acquired a number of office units (in thousands of square feet) over the last eight years. Develop the second order autoregressive model.

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Autoregressive Model: Example SolutionYear xt xt-1 xt-2 99 4 -- -- 00 3 4 -- 01 2 3 4 02 3 2 3 03 2 3 2 04 2 2 3 05 4 2 2 06 6 4 2Excel Output Develop the 2nd order table Use Excel to estimate a regression model

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

    Sheet6

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R0.667413042

    R Square0.4454401687

    Adjusted R Square0.0757336145

    Standard Error1.7985917684

    Observations6

    ANOVA

    dfSSMSFSignificance F

    Regression27.7952029523.8976014761.20484790870.4129739079

    Residual39.7047970483.2349323493

    Total517.5

    CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

    Intercept3.41697416974.87663076060.70068338930.5339558989-12.102655935718.9366042752-12.102655935718.9366042752

    X Variable 1-1.32656826572.9081572319-0.45615424470.6792756863-10.58163118567.9284946543-10.58163118567.9284946543

    X Variable 20.21586715870.34115383990.63275605740.5718314052-0.86983763711.3015719544-0.86983763711.3015719544

    RESIDUAL OUTPUT

    ObservationPredicted YResidualsStandard Residuals

    11.6273062731-1.6273062731-1.1680490269

    22.1808118081-1.1808118081-0.8475639198

    31.62730627310.37269372690.2675123622

    41.62730627311.37269372690.9852930567

    54.7084870849-0.7084870849-0.5085383519

    63.22878228781.77121771221.2713458797

    Sheet6

    0

    0

    0

    0

    0

    0

    X Variable 1

    Residuals

    X Variable 1 Residual Plot

    Sheet7

    0

    0

    0

    0

    0

    0

    X Variable 2

    Residuals

    X Variable 2 Residual Plot

    Sheet8

    00

    10

    20

    30

    40

    50

    Y

    Predicted Y

    X Variable 1

    Y

    X Variable 1 Line Fit Plot

    Sheet10

    00

    10

    20

    30

    40

    50

    Y

    Predicted Y

    X Variable 2

    Y

    X Variable 2 Line Fit Plot

    Sheet1

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R0.5735253764

    R Square0.3289313574

    Adjusted R Square0.1611641968

    Standard Error0.2410543825

    Observations6

    ANOVA

    dfSSMSFSignificance F

    Regression10.11392745240.11392745241.96064209550.2340371757

    Residual40.23242886130.0581072153

    Total50.3463563137

    CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

    Intercept0.33583794830.17446235351.92498806530.1265429144-0.14854820240.8202240991-0.14854820240.8202240991

    X Variable 10.08068543940.05762301891.40022930110.2340371757-0.07930204060.2406729195-0.07930204060.2406729195

    RESIDUAL OUTPUTantilog(.33583795) =2.1668954035

    antilog(.08068544) =1.2041634459

    ObservationPredicted YResidualsStandard Residuals

    10.3358379483-0.0348079527-0.1614427158

    20.41652338780.28244661661.3100152506

    30.4972088272-0.1961788316-0.9098967597

    40.5778942667-0.276864271-1.2841237817

    50.65857970610.18651833390.8650904192

    60.73926514560.03888610480.1803575874

    Sheet1

    0

    0

    0

    0

    0

    0

    X Variable 1

    Residuals

    X Variable 1 Residual Plot

    Sheet9

    0.30102999570

    0.69897000430

    0.30102999570

    0.30102999570

    0.845098040

    0.77815125040

    Y

    Predicted Y

    X Variable 1

    Y

    X Variable 1 Line Fit Plot

    Sheet11

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R0.0377358491

    R Square0.0014239943

    Adjusted R Square-0.3314346743

    Standard Error2.6564268809

    Observations5

    ANOVA

    dfSSMSFSignificance F

    Regression10.03018867920.03018867920.00427807490.9519646302

    Residual321.16981132087.0566037736

    Total421.2

    CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

    Intercept4.26415094342.39273255911.78212601620.172748462-3.350599092311.8789009791-3.350599092311.8789009791

    X Variable 10.03773584910.5769390510.0654069940.9519646302-1.79834342461.8738151227-1.79834342461.8738151227

    RESIDUAL OUTPUT

    ObservationPredicted YResidualsStandard Residuals

    14.33962264150.66037735850.2870540488

    24.4528301887-2.4528301887-1.0662007525

    34.3396226415-2.3396226415-1.016991487

    44.33962264152.66037735851.1564177393

    54.52830188681.47169811320.6397204515

    Sheet11

    0

    0

    0

    0

    0

    X Variable 1

    Residuals

    X Variable 1 Residual Plot

    Sheet12

    50

    20

    20

    70

    60

    Y

    Predicted Y

    X Variable 1

    Y

    X Variable 1 Line Fit Plot

    Sheet2

    Sheet3

    YearSales1stCodedSalesSales^2log(sales)

    199420240.3010299957

    19955215250.6989700043

    1996252240.3010299957

    1997223240.3010299957

    19987247490.84509804

    19996756360.7781512504

    0

    Sheet3

    0

    0

    0

    0

    0

    0

    Sales

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R0.3977058393

    R Square0.1581699346

    Adjusted R Square-0.0101960784

    Standard Error1.4712939483

    Observations7

    ANOVA

    dfSSMSFSignificance F

    Regression12.03361344542.03361344540.93944099380.3769372438

    Residual510.82352941182.1647058824

    Total612.8571428571

    CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

    Intercept1.29411764711.98680770190.65135525990.5435635839-3.81312579696.401361091-3.81312579696.401361091

    X Variable 10.64705882350.6675887510.96924764320.3769372438-1.06902988932.3631475364-1.06902988932.3631475364

    RESIDUAL OUTPUT

    ObservationPredicted YResidualsStandard Residuals

    13.8823529412-0.8823529412-0.6569518078

    23.2352941176-1.2352941176-0.9197325309

    32.58823529410.41176470590.3065775103

    43.2352941176-1.2352941176-0.9197325309

    52.5882352941-0.5882352941-0.4379678719

    62.58823529411.41176470591.0511228925

    73.88235294122.11764705881.5766843387

    0

    0

    0

    0

    0

    0

    0

    X Variable 1

    Residuals

    X Variable 1 Residual Plot

    30

    20

    30

    20

    20

    40

    60

    Y

    Predicted Y

    X Variable 1

    Y

    X Variable 1 Line Fit Plot

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R0.6920231961

    R Square0.4788961039

    Adjusted R Square0.1314935065

    Standard Error1.4930394056

    Observations6

    ANOVA

    dfSSMSFSignificance F

    Regression26.14583333333.07291666671.37850467290.3761720123

    Residual36.68752.2291666667

    Total512.8333333333

    CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

    Intercept3.53.5014877790.99957510090.3911779502-7.64330729914.643307299-7.64330729914.643307299

    X Variable 10.81250.8346344010.97348012380.4021141357-1.84368165753.4686816575-1.84368165753.4686816575

    X Variable 2-0.93750.834634401-1.12324629670.3431108215-3.59368165751.7186816575-3.59368165751.7186816575

    RESIDUAL OUTPUT

    ObservationPredicted YResidualsStandard Residuals

    12.1875-0.1875-0.1621266379

    22.31250.68750.5944643391

    34.0625-2.0625-1.7833930173

    42.3125-0.3125-0.2702110632

    53.250.750.6485065518

    64.8751.1250.9727598276

    0

    0

    0

    0

    0

    0

    X Variable 1

    Residuals

    X Variable 1 Residual Plot

    0

    0

    0

    0

    0

    0

    X Variable 2

    Residuals

    X Variable 2 Residual Plot

    22.1875

    32.3125

    24.0625

    22.3125

    43.25

    64.875

    Y

    Predicted Y

    X Variable 1

    Y

    X Variable 1 Line Fit Plot

    22.1875

    32.3125

    24.0625

    22.3125

    43.25

    64.875

    Y

    Predicted Y

    X Variable 2

    Y

    X Variable 2 Line Fit Plot

    SUMMARY OUTPUT

    Regression Statistics

    Multiple R0.6477984695

    R Square0.4196428571

    Adjusted R Square-1.3214285714

    Standard Error2.5495097568

    Observations5

    ANOVA

    dfSSMSFSignificance F

    Regression34.71.56666666670.2410256410.8655519358

    Residual16.56.5

    Total411.2

    CoefficientsStandard Errort StatP-valueLower 95%Upper 95%Lower 95.0%Upper 95.0%

    Intercept213.20984481360.15140223280.9043408499-165.8462736521169.8462736521-165.8462736521169.8462736521

    X Variable 1120.50.7048327648-24.412300601626.4123006016-24.412300601626.4123006016

    X Variable 2-0.52.9580398915-0.16903085090.8933992419-38.085299457837.0852994578-38.085299457837.0852994578

    X Variable 301.732050807601-22.007697889622.0076978896-22.007697889622.0076978896

    RESIDUAL OUTPUT

    ObservationPredicted YResidualsStandard Residuals

    12.50.50.3922322703

    24-2-1.5689290811

    32.5-0.5-0.3922322703

    4310.7844645406

    5510.7844645406

    0

    0

    0

    0

    0

    X Variable 1

    Residuals

    X Variable 1 Residual Plot

    0

    0

    0

    0

    0

    X Variable 2

    Residuals

    X Variable 2 Residual Plot

    0

    0

    0

    0

    0

    X Variable 3

    Residuals

    X Variable 3 Residual Plot

    30

    20

    20

    40

    60

    Y

    Predicted Y

    X Variable 1

    Y

    X Variable 1 Line Fit Plot

    30

    20

    20

    40

    60

    Y

    Predicted Y

    X Variable 2

    Y

    X Variable 2 Line Fit Plot

    30

    20

    20

    40

    60

    Y

    Predicted Y

    X Variable 3

    Y

    X Variable 3 Line Fit Plot

    14

    234

    3234

    33234

    42323

    52232

    64223

    76422

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Autoregressive Model Example: ForecastingUse the second-order equation to forecast number of units for 2007:

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Autoregressive Modeling StepsChoose p Form a series of lagged predictor variables xt-1 , xt-2 , ,xt-pRun a regression model using all p variablesTest model for significanceUse model for forecasting

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA

  • Prof. Miruna Mazurencu Marinescu, Ph.D, MBAChap 19-*Chapter SummaryDiscussed weighted and unweighted index numbersAddressed components of the time-series modelAddressed time series forecasting of seasonal data using a seasonal indexPerformed smoothing of data seriesMoving averagesAddressed autoregressive models for forecasting

    Prof. Miruna Mazurencu Marinescu, Ph.D, MBA