lesson 10 notes - angular measurement - science … · web view9. a sample of gas of volume 0.1 m3...

69
Name…………………… Class…………….. science-spark.co.uk Module G484.3 Thermal Physics NOTES AND QUESTIONS ©2010 science-spark.co.uk RAB Plymstock School

Upload: hoangnguyet

Post on 27-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Name……………………Class……………..

science-spark.co.uk

Module G484.3 Thermal Physics

NOTES AND QUESTIONS

©2010 science-spark.co.uk RAB Plymstock School

Lesson 31 notes - Solids, Liquids and Gases

ObjectivesBe able to describe solids, liquids and gases in terms of the spacing, ordering and motion of atoms or molecules.Be able to describe a simple kinetic model for solids, liquids and gases.

OutcomesBe able to describe solids, liquids and gases in terms of the spacing, ordering and motion of atoms or molecules.Be able to describe a simple kinetic model for solids, liquids and gases.

3 States of MatterMatter can exist is three states, as a solid, a liquid or a gas. Water shows us these 3 states brilliantly. The solid form, ice is hard and rigid, a piece of ice has a shape of its own. The liquid form, water is "runny", has no shape of its own and takes up the shape of its container. The density of liquid water is just slightly higher than that of ice (both at 0oC). Steam is what we think of as water in its gaseous form, this has a very much larger volume (1600 times) than the water that produced it, a low density and no shape of its own. (NB Steam as we see it is not a true gas, the gas produced when water boils is invisible, steam is a cloud of fine droplets of water vapour).

©2010 science-spark.co.uk RAB Plymstock School

Phase ChangesThe diagram shows phase changes between solid, liquid and gas.

Between each phase change there is no temperature change as the bonds are breaking or forming. It also shows Plasma which is an ionized gas normally formed by heating it up.

The enthalpy of the system is the heat energy of an object.

As molecules inside an object have more enthalpy their vibrations and therefore their kinetic energy goes up.

The Kinetic Molecular TheoryParticles are in constant motion. In solids the particles are close together and have limited motion. In a liquid some of the attraction between particles is overcome which allows the particles more freedom of movement. In a gas particles attraction between particles is minimized and the particles move freely throughout the container.

©2010 science-spark.co.uk RAB Plymstock School

Standard temperature and pressure (STP on NTP)This set of conditions which is usually applied to gases is defined as a temperature of 273 K and a pressure of 760 mm of mercury (1.013x105 Pa). At STP 1 mole of any gas has a volume of 22.4x10-3 m3.

ExtensionBurning CandlesAnother example of solids, liquids and gases is a burning candle. Carefully light a candle and watch the surface of the candle and the flame. The flame melts the solid wax, creating a pool of liquid wax. This creeps up the wick inside the flame and becomes a gas, which then burns in the flame. The flame melts more wax and the cycle continues.

SublimationA few compounds go from solid to gas without becoming liquid in between. Solid carbon dioxide (dry ice) becomes carbon dioxide gas without becoming a liquid, as does iodine.

In some circumstances, snow and ice can sublime – sometimes, wet washing hung outside freezes solid and then dries without melting. This is called freeze-drying and is used in food preserving and for making instant foods and drinks.

Intermolecular ForcesIn a solid the molecules are held together by intermolecular forces, the exact type of force depending on the type of solid.These forces are divide into four types:

(a) ionic bonds - sodium and chloride ions in sodium chloride;(b) covalent bonds - shared electrons between atoms;(c) metallic bonds - free electrons wandering through a metal;(d) Van der Waal's bonds - electric dipole forces

Structure of Solids Crystalline solids have specific molecular structures – here are a few examples:

©2010 science-spark.co.uk RAB Plymstock School

Lesson 31 questions – Solids Liquids Gases( /15)…………%………

ALL1 a) Draw a diagram of each state of matter and describe each state in terms of the spacing, ordering and motion of atoms or molecules.

…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..……………………………………………………………………………………… (3)

…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..……………………………………………………………………………………… (3)

…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..……………………………………………………………………………………… (3)

b) Describe what is meant by a Kinetic Molecular Theory for Solids Liquids and Gases.

…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………… (2)

SOME

©2010 science-spark.co.uk RAB Plymstock School

2 A Student asks on a Physics blog “If all matter is either solid, liquid, gas or plasma, what state of matter is a single atom or molecule?” What would you write in answers to this question?

…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………… (4)

©2010 science-spark.co.uk RAB Plymstock School

Lesson 32 notes – Brownian MotionObjectivesBe able to describe an experiment that demonstrates Brownian motion and discuss the evidence for the movement of molecules provided by such an experiment.

OutcomesBe able to describe an experiment that demonstrates Brownian motion Be able to discuss and explain the evidence for the movement of molecules provided by such an experiment.

The ancients such as the philosophers Democritus and Lucretius held that matter was composed of minute particles. They also Maintained that these particles were in a state of continuous random motion within solids, liquids and gases. The theory was therefore called the kinetic theory of matter, after the Greek work kinema - motion.

It was not until 1827, however, that actual experimental evidence for these particles existed. This was provided by the Scottish physicist Robert Brown. He observed a weak solution of milk and later pollen grains in suspension with a high-powered microscope, and saw that the particles of milk and the pollen grains showed a violent and random motion. Brown wrongly attributed what he saw to living organisms, and the true explanation was not given until some thirty years later when the Frenchman Carbonelle proposed that the motion was due to the impacts of the liquid molecules on the milk particles or pollen grains. The motion is now known as Brownian movement.

However the first good explanation of Brownian movement was advanced by the French scientist Desaulx in 1877: "In my way of thinking the phenomenon is a result of thermal molecular motion in the liquid environment (of the particles)."

The Smoke CellA simple modern version of Brown's experiment is the smoke cell. A small cell of air is placed under a microscope and illuminated strongly from the side. Some smoke is then blown into it. Through the

©2010 science-spark.co.uk RAB Plymstock School

microscope the particles of smoke can be seen to be in violent random motion just like Brown's pollen grains. This motion is due to the collisions of the (invisible) air molecules with the much larger particles of smoke. Heating the cell makes the smoke particles' motion even more violent due to the increased velocity of the air molecules.

©2010 science-spark.co.uk RAB Plymstock School

Lesson 33 notes - Kinetic Theory and PressureObjectivesBe able to define the term pressure and use the kinetic model to explain the pressure exerted by gases.

OutcomesBe able to define pressure.Be able to use the kinetic model to describe pressure.Know the assumptions made of ideal gases.Be able to use the kinetic model to explain the pressure exerted by gases.Be able to select and use the equation p=1/3ρv2.Be able to derive the equation p=1/3ρv2.Be able to derive the equation(s) P = 1/3 ρ<c>2 and/or PV = 1/3 mn<c>2.

You must be familiar with Change in Momentum to understand this lesson fully so read through lessons 2, 3 and 5 first to review.

Gas PressureFrom lesson 21 of G481, Pressure is defined as the force per unit area.

P (Pa) = F (N) / A (m2)

Assumptions of the kinetic theory of an IDEAL GAS.

1 A Gas consists of particles called molecules.2 The molecules are in constant random motion. As many travelling in

one direction as any other. The centre of mass of the gas is at rest.3 Intermolecular forces are negligible.4 The duration of collisions between molecules is negligible.5 Molecules move with constant velocity in between collisions.6 The volume of gas molecules is negligible compared with the volume of

the gas.7 All collisions are totally elastic.8 Newtonian mechanics can be applied to the collisions.

©2010 science-spark.co.uk RAB Plymstock School

vz

vy

vx

b

L

a

The pressure exerted by an ideal gasSuppose there are N molecules in a rectangular box of dimensions a, b and l and suppose that the molecule has a velocity v with the components as shown.

When the molecule hits the shaded face, the change in momentum is 2mvx since the collision is elastic.

The time interval before the same molecule makes a 2nd collision at the same face is 2Lvx. Therefore the frequency of collisions is vx/2L

The force exerted by this molecule on the face is:

Rate of change of momentum at the face = 2mvx x vx/2L= mvx2/L

(Since F=Δp/Δt)

Therefore the pressure exerted on the shaded face is by one molecule is:

P=F/A

P = (mvx2/L / (ab)

(ab = A, Area of shaded face)

If we sum N contributions, one from each particle in the box, each contribution proportional to vx

2 for that particle, the sum just gives us N times the average value of vx

2. That is to say,

2 2/ / /x xP F A Nmv LA Nmv V

where there are N particles in a box of volume V. Next we note that the particles are equally likely to be moving in any of 3 directions, so the average value of vx

2 must be the same as that of vy2 or vz

2, and since v2 = vx2 + vy

2 + vz2,

it follows that

2 / 3 .P Nmv V

©2010 science-spark.co.uk RAB Plymstock School

ExtensionFinally to simplify even further we can use the definition for density: ρ=m/VSo the mass of the gas in the box will equal Nm

So, P = ⅓ρ v2

<c> can be used for the mean speed.

©2010 science-spark.co.uk RAB Plymstock School

Lesson 33 questions - Kinetic theory and Pressure( /51)……………%……….

ALL1. (a) What do you see when looking at Brownian motion in air?

…………………………………………………………………………………………………………………………………………………………………………………………...……………………………………………………………………………… (2)

(b) What changes do you see if the air is heated?…………………………………………………………………………………………………………………………………………………………………………………………...……………………………………………………………………………… (1)

2. Define pressure and give its units.……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (2)

3. List six assumptions that you have to make about molecules when deriving the equation for the kinetic theory of gases.

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………...……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………...…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (6)

4. (a) A molecule of mass 3x10-26 kg moving at 4x102 ms-1 collides elastically with a wall. What is the change of momentum of the molecule?

Change in momentum = …………………. Unit………… (3)

(b) How long would it take this molecule to travel a distance of 0.4 m?

Time = …………….. s (2)

©2010 science-spark.co.uk RAB Plymstock School

MOST5. (a) What is meant by the root mean square speed of gas molecules?

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………...……………………………………………………………………………… (2)

(b) What is the difference between the root mean square of a group of gas molecules and their average speed?

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………...……………………………………………………………………………… (2)

6. Calculate the root mean square speeds for the following gases at a pressure of 105 Pa:

(a) air density 1.29 kgm-3

root mean square speed = …………….. ms-1 (2)(b) carbon dioxide density 1.98 kgm-3

root mean square speed = …………….. ms-1 (2) (c) nitrogen density 1.25 kgm-3

root mean square speed = …………….. ms-1 (2) (d) chlorine density 3.21 kgm-3

root mean square speed = …………….. ms-1 (2) (e) hydrogen density 0.09 kgm-3

root mean square speed = …………….. ms-1 (2)

7. Calculate the pressure of three samples of air of density 1.29 kgm-3 with different root mean square speeds:

(a) 4.0x102 ms-1

pressure = ……………..Pa (2)

(b) 5.0x102 ms-1

©2010 science-spark.co.uk RAB Plymstock School

vz

vy

vx

b

L

a

pressure = ……………..Pa (2)(c) 6.0x102 ms-1

pressure = ……………..Pa (2)

9. A sample of gas of volume 0.1 m3 and at a pressure of 2.0x105 Pa is enclosed in a cylinder. If the root mean square speed of the gas molecules is 5.5x102 ms-1 and the mass of each molecule is 3.5x10-26 kg calculate the number of gas molecules in the cylinder.

Number of gas molecules = ……………… (3)

10. A sample of gas at a pressure of 1.5x105 Pa is contained in a cylinder with a volume of 0.05 m3. If there are 1.2x1025 molecules of gas in the cylinder with a root mean square speed of 350 ms-1 calculate the mass of one gas molecule.

Mass of one gas molecule = ………………kg (3)SOME11. Suppose there are N molecules in a rectangular box of dimensions a, b and l and suppose that the molecule has a velocity v with the components as shown.

a) What is the change in velocity of the particle when it hits the shaded face if the collision is totally elastic?

(1)

©2010 science-spark.co.uk RAB Plymstock School

b) i) What is the time interval before the same molecule makes a 2nd collision at the same face?

(1)ii) An therefore what is the frequency of collisions?

(1)c) From the definition of Pressure and by finding the rate of change of

momentum for one molecule show that for N molecules:2 / 3 .P Nmv V

(6)

©2010 science-spark.co.uk RAB Plymstock School

Lesson 34 notes – Internal EnergyObjectivesBe able to define internal energy as the sum of the random distribution of kinetic and potential energies associated with the molecules of a system.Be able to explain that the rise in temperature of a body leads to an increase in its internal energy.

OutcomesBe able to define internal energy as the sum of the random distribution of kinetic and potential energies associated with the molecules of a system.Be able to explain that the rise in temperature of a body leads to an increase in its internal energy.Be able to describe energy changes in particles in materials as they are expanded/contracted, heated or cooled.

Internal EnergyThe Internal Energy (U) of an object (solid, liquid or gas) is the sum of the heat energy (Q) plus the work done on the object (W). So:

U = Q + W

It is defined as the sum of the random distribution of kinetic and potential energies associated with the molecules of a system.

Factors not affecting Internal EnergyIt is the energy of the particles inside the object and is not affected by the objects kinetic or potential energy but by the energy of these particles inside it.

Factors affecting Internal EnergyThe internal energy can be changed by changing the temperature or volume of the object without changing the amount of particles in the object.

Temperature: If the temperature of a system rises, the molecules will travel quicker, therefore have more kinetic energy and so the Internal Energy will increase.Pressure: If the pressure falls but the temp doesn’t change then there is no change in the internal energy of a system. In a non-ideal expanding gas the molecules have to overcome the attraction to each other and therefore some work must be done on them and therefore the internal energy must increase.

©2010 science-spark.co.uk RAB Plymstock School

State: For most materials that change from solid to liquid the volume increases and so the potential energy of the molecules increases.

Lesson 34 questions – Internal Energy( /23)…………%………

ALL1 Describe the arrangement of atoms, the forces between the atoms and the motion of the atoms in:

a) a solid…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (3)

b) a liquid…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (3)

c) a gas.…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (3)

2 A small amount of gas is trapped inside a container. Describe the motion of the gas atoms as the temperature of the gas within the container in increased.

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (3)

3 a) Define the internal energy of a substance. …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (1)

b) The temperature of an aluminium block increases when it is placed in the flame of a Bunsen burner. Explain why this causes an increase in its internal energy.

…………………………………………………………………

©2010 science-spark.co.uk RAB Plymstock School

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (3)

SOMEc) An ice cube is melting at a

temperature of 0 °C. Explain whether its internal energy is increasing or decreasing as it melts at 0°C.

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (4)

4 Complete the table below for each of the processes shown. Use the symbol ‘+’ for an increase, the symbol ‘–’ for a decrease and ‘0’ for no change, as appropriate.

(3)

©2010 science-spark.co.uk RAB Plymstock School

Lesson 35 notes – Heat and TemperatureObjectivesBe able to explain that thermal energy is transferred from a region of higher temperature to a region of lower temperature.Be able to explain that regions of equal temperature are in thermal equilibrium.

OutcomesBe able to describe what heat and temperature are and the difference between them.Be able to describe that thermal energy is transferred from a region of higher temperature to a region of lower temperature.Be able to describe that regions of equal temperature are in thermal equilibrium.Be able to explain that thermal energy is transferred from a region of higher temperature to a region of lower temperature.Be able to explain that regions of equal temperature are in thermal equilibrium.

HeatAll objects are made up of particles. These particles are vibrating about all the time unless they are at absolute zero (-273 degrees Celsius). The vibration of these particles in an object is known as thermal energy. If the particles vibrate more, or there are more vibrating particles there will be more thermal energy.

If we compare the thermal energy in a bath to that of a cup of tea at the same temperature, the bath would have more thermal energy because there are more particles.

Heat is a measurement of the total energy in a substance. That total energy is made up of not only of the kinetic energies of the molecules of the substance, but total energy is also made up of the potential energies of the molecules.

TemperatureTemperature is the measure of how hot something is.

Temperature is related to the average kinetic energy of the molecules of a substance. If temperature is measured in Kelvin, then this number is directly proportional to the average kinetic energy of the molecules.

Heat transferThermal energy will always move from an area that is hotter to an area that is cooler. (This comes from the Second Law of Thermodynamics).

©2010 science-spark.co.uk RAB Plymstock School

AHOT

BCOLD

After a time A and B will reach the same temperature. Thermal Equilibrium will be reached at a temperature somewhere in between HOT and COLD. This temperature will depend on the heat capacities (see lessons 38 and 39) of the objects A and B. This assumes thee is no other heat loss in the system.

No further heat transfer between A and B occurs when they are at the same temperature.

The Zeroth Law of ThermodynamicsWhen two systems are put in contact with each other, there will be a net exchange of energy between them unless or until they are in thermal equilibrium, that is, they are at the same temperature. While this is a fundamental concept of thermodynamics, the need to state it explicitly was not perceived until the first third of the 20th century, long after the first three principles were already widely in use, hence the zero numbering.

ExtensionThe First Law of Thermodynamics states that energy cannot be created or destroyed; rather, the amount of energy lost in a steady state process cannot be greater than the amount of energy gained. This is the statement of conservation of energy for a thermodynamic system. It refers to the two ways that a closed system transfers energy to and from its surroundings – by the process of heating (or cooling) and the process of mechanical work. The rate of gain or loss in the stored energy of a system is determined by the rates of these two processes. In open systems, the flow of matter is another energy transfer mechanism, and extra terms must be included in the expression of the first law.

The First Law in equation form as it applies to a gas is:

Increase in internal energy (dU) = Heat energy supplied (dQ) + Work done on the gas (dW)

The Second Law of Thermodynamics states that the entropy of an isolated system not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium. In other words the second law states "energy systems have a tendency to increase their entropy rather than decrease it." This can also be stated as "heat can spontaneously flow from a higher-temperature region to a lower-temperature region, but not the other way around."

Entropy: a thermodynamic quantity representing the amount of energy in a system that is no longer available for doing mechanical work. The fundamental idea of an increase of the entropy of a system can give us a way

©2010 science-spark.co.uk RAB Plymstock School

AWARM

BWARM

of checking the passage of time. Physicists call this the 'arrow of time' that tells us that time is passing and in 'which direction'. For example if you watch a film of a pile of books falling over it is easy to tell if the film is being run backwards since in only one case is the entropy or disorder increasing. Mixing hot and cold water to give a beaker of lukewarm water shows an entropy increase - you would not expect the lukewarm water to 'unmix' itself! Notice the word 'isolated' in the Second Law. Intervention is 'not allowed' to rebuild the pile of books. However even with human help it is not easy to see how we could 'unmix' the water.

The third law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. The la states that: As a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value.

©2010 science-spark.co.uk RAB Plymstock School

Lesson 36 37 notes – Absolute ZeroObjectivesBe able to describe how there is an absolute scale of temperature that does not depend on the property of any particular substance (ie the thermodynamic scale and the concept of absolute zero);Be able to convert temperatures measured in kelvin to degrees Celsius (or vice versa): T (K)= θ (°C) + 273.15;Be able to state that absolute zero is the temperature at which a substance has minimum internal energy.

OutcomesBe able to describe how there is an absolute scale of temperature that does not depend on the property of any particular substance.Be able to convert temperatures measured in kelvin to degrees Celsius (or vice versa): T (K)= θ (°C) + 273.15;Be able to state that absolute zero is the temperature at which a substance has minimum internal energy.

Thermometers

Since Galileo's invention of the thermometer in 1592, some 32 different scales have been used to represent temperatures. This entry is a brief introduction to some of today's most commonly used scales and how they came into being.

Fahrenheit (°F)

Daniel Gabriel Fahrenheit 1686 - 1736

Fahrenheit, although born in Germany, spent most of his adult life in The Netherlands. By profession he was a physicist - working in the field of meteorological instrumentation. He is credited with the invention of both the alcohol and mercury thermometers (in 1709 and 1714 respectively). Although it wasn't until over 150 years later that the mercury thermometer was first used for what is now its most common usage - an aid to medical diagnosis. This could have had something to do with the fact that the first medical thermometers were still over 10cm in length and took over five minutes to register a temperature.

His original scale was based upon three fixed temperatures:

0° - freezing point of a solution of 1 part (by mass) salt in 1 part water 30° - freezing point of water (later revised to 32°)

©2010 science-spark.co.uk RAB Plymstock School

90° - temperature of the human body (later adjusted to 96° and finally to today's figure of 98.2°)

This resulted in a scale where the difference between the freezing and boiling points of water was divided into 180 equal parts.

The scale was widely used throughout the English speaking world until the 1970s but since then has gradually been replaced in official usage by the Celsius scale, with one exception: Fahrenheit continues to be used in both the USA (officially) and the UK (unofficially) when discussing atmospheric temperatures.

Centigrade/Celsius (°C)

Anders Celsius 1701 - 1744

Celsius, a Swede, was Professor of Astronomy in Uppsala University, Sweden from 1730 until his death in 1744.

During this time Anders was actively involved in a great deal of practical astronomical research: Taking part in an expedition to Lapland in 1736 to verify Isaac Newton's theory that the world was not actually a perfect sphere. He was also the first person to connect changes in the Earth's magnetic field to the phenomenon known as the Aurora Borealis.

Sadly, he died of tuberculosis at the age of just 42.

Two years before his death he published details for a new temperature scale; to be known as the centigrade scale.

It was based upon two pre-set temperatures:

100° being the freezing point of water.

0° being the boiling point of water at standard atmospheric pressure.

These two figures were reversed after his death - leading to the current system.

The fact that the difference between the two points was broken up into 100 degrees gave the scale its original name: the Centigrade Scale - this was finally changed to honour the memory of the astronomer in 1948.

The Celsius scale has now replaced Fahrenheit throughout most of the world.

©2010 science-spark.co.uk RAB Plymstock School

Other Current Temperature Scales

Kelvin (K)

In 1848, the Scottish physicist, William Thomson (later known as Lord Kelvin) introduced a new temperature scale. Based upon the Celsius scale, but with one important difference: The zero point for his scale was set at Absolute Zero (-273.15°C), meaning that 0°C/32°F is equivalent to 273.15K. This scale is widely used for astronomical and scientific work.

Note: Kelvin is the only temperature scale to be expressed without using 'degrees':

70°F - Seventy degrees Fahrenheit 5°C - Five degrees Celsius 300K - Three hundred kelvin

Kelvin is also the only temperature unit that can be used with standard numerical prefixes (micro, kilo, mega, giga, etc) and is the agreed SI unit of measurement for temperature.

Absolute Zero

This is defined as 0 K, or –273.15 oC. This is the lowest temperature possible. In fact the third law of thermodynamics states that it is impossible to actually reach this temperature. When an object is cooled its internal energy is reduced and the temperature approaches absolute zero it becomes more and more difficult to lower the temperature further. You can think of the energy being reduced in smaller and smaller steps – the steps being rather like those of a stationary escalator as you near the bottom – they get smaller and smaller. We are always left with what is known as 'zero point energy' and so we can define absolute zero as the temperature at which substances have a minimum internal energy.

This can be found from the pressure law which satates that temperature is directly proportortional to the pressure of a gas in a closed system. (lessons 41 and 42) If you extrapolate the line back so that pressure equals zero then you get a value for absolute zero.

The temperature in deep space is about 3 K above absolute zero and temperatures as low as 10–6 K have been achieved in the laboratory by sophisticated means.

©2010 science-spark.co.uk RAB Plymstock School

The Rankine Scale (°R)

The 'American' equivalent of the Kelvin Scale. The zero point again being Absolute Zero, however, this time the scale is based upon the Fahrenheit system, meaning that O°C/32°F is now equivalent to 491.67°R.

Conversion Methods

Fahrenheit to CelsiusTake the Fahrenheit temperature 212°FSubtract 32 212 - 32 = 180Divide by 9 180 / 9 = 20Multiply by 5 5 x 20 = 100Giving 212°F = 100°C

Celsius to FahrenheitTake the Celsius temperature 20°CDivide by 5 20 / 5 = 4Multiply by 9 4 x 9 = 36Add 32 36 + 32 = 68Giving 20°C = 68°F

An Aide-memoire to this Formula

One Researcher's method of remembering this formula is simply drawing a pair of thermometers side-by-side on a piece of paper, Make 0 on the Celsius scale align with 32 on the Fahrenheit scale. And 100 with the 212. You have 0-100°C corresponding to 32-212 (or 180) °F. That's a ratio of 100/180 or 5/9. Then you just have to figure out whether to subtract the 32 first or add it on after doing the division.

A Few Useful Temperature Equivalents

K °C °F °R Notes  100 212   Boiling point of water  37 98.6   Human body temperature  21 70   Room temperature (approximately)

273.15 0 32 491.67 Freezing point of water  -18 0   Cold  -40 -40   Very cold!0 -273.15 -459.67 0 Absolute Zero

©2010 science-spark.co.uk RAB Plymstock School

Lesson 38 39 notes – Specific Heat CapacityObjectivesBe able to define and apply the concept of specific heat capacity.Be able to select and apply the equation E = mcΔθ.Be able to describe an electrical experiment to determine the specific heat capacity of a solid or a liquid.

OutcomesBe able to define specific heat capacity.Be able to select and apply the equation E = mcΔθ to a number of different situations correctly.Be able to describe an electrical experiment to determine the specific heat capacity of a solid or a liquid.

Specific Heat CapacityDifferent materials will lose their heat at different rates depending on a factor called their Specific Heat Capacity.

The specific heat capacity of a material is the amount of energy (J) that is needed to raise the temperature of 1kg of the substance by 1 degree C.Its unit is written J/kg ˚C.

Aluminium has a specific heat capacity of 880J/kg˚C.Steel has a specific heat capacity of 420J/kg˚C.Water has a specific heat capacity of 4200 J/kg˚C.

The energy needed to raise the temperature of a material is given by the equation:

Energy needed (J) = specific heat capacity (J/kg˚C) x mass (kg) x change in temperature (˚C)

©2010 science-spark.co.uk RAB Plymstock School

Lesson 38 39 questions – Specific Heat Capacity( /33)……..%

ALL1 What unit is used for all types of energy?………………………………………………………………………………………(1)

2 State the equation for the energy needed to raise the temperature of a particular material of known mass.………………………………………………………………………………………………………………………………………………………………………………… (1)

3 Use the following data to calculate the amounts of energy needed to change the temperature of the questions below.Material Specific heat capacity (J/kg ˚C)Copper 380Water 4200Aluminium 880Air 1000

a) 2kg of water by 5˚C………………………………………………………………………………………………………………………………………………………………………………… (2)b) 500g of water by 4˚C………………………………………………………………………………………………………………………………………………………………………………… (2)c) 100g of aluminium from 20˚C to 30˚C……………………………………………………………………………………………………………………………………………………………………………… (2)d) 200 g of copper from 60˚C to 10˚C………………………………………………………………………………………………………………………………………………………………………………… (3)

4 A 2kg block of iron is given 10kJ of energy and its temperature rises by 10˚C. What is the specific heat capacity of iron?……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (4)

5 Some cooks make toffee. Essentially, this is a process of boiling down a sugar solution to concentrate it and then allowing the liquid to cool until it sets. Small children are usually warned not to touch the cooling toffee for a very long time – much longer than the cooling for the same volume of pure water in the same vessel. Why do you think that the cooling period so long?…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (2)

©2010 science-spark.co.uk RAB Plymstock School

6 Show that the energy required to heat the air in your physics laboratory from a chilly 10 °C to a more comfortable 20 °C is about 3 000 000 J if it has the following dimensions: 3 m 10 m 10 m.

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (4)7 This question is about the operation of an electrically operated shower.

a) The water moves at constant speed through a pipe of cross section 7.5 x 10-5m2 to a showerhead. See the diagram. The maximum mass of water which flows per second is 0.090kgs-1.

i) Show that the maximum speed of the water in the pipe is 1.2ms-

1.Density of water = 1000kg m-3

(2)ii) The total cross-sectional area of the holes in the head is half

that of the pipe. Calculate the maximum speed of the water as it leaves the shower head.

Speed = ……………… ms-1 (1)iii) Calculate the magnitude of the force on the showerhead.

Force = …………….. N (3)b) The water enters the heater at the temperature of 15˚C. At the

maximum flow rate of 0.090kgs-3, the water leaves the shower head at a temperature of 27˚C.

©2010 science-spark.co.uk RAB Plymstock School

i) Calculate the rate at which energy is transferred to the water. Give a suitable unit for your answer.Specific heat capacity of water = 4200Jkg-1K-1

Rate of energy transfer = ……………… unit …………….. (4)ii) Suggest a reason that the power of the heater must be greater

than your answer to (b)(i)…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (1)

iii) Calculate the maximum possible temperature of the water at the showerhead when the flow rate is half of the maximum.

Temperature = ………………….˚C (1)

©2010 science-spark.co.uk RAB Plymstock School

Lesson 40 notes – Specific Latent HeatObjectivesBe able to describe what is meant by the terms latent heat of fusion and latent heat of vaporisation.

OutcomesBe able to recognise on a temp-time heating curve where latent heat of fusion and latent heat of vaporisation occurs.Be able to describe what is meant by the terms latent heat of fusion and latent heat of vaporisation.Be able to explain that a rise in temperature of a body leads to an increase in internal energy.Be able to use a simple kinetic model to describe melting, boiling and evaporation.Be able to describe an experiment that can be used to find the latent heat of fusion.

If you have a glass of a cool drink, well supplied with ice, you can expect its temperature to drop until it is close to 0 ºC. You also can expect (and can easily check with a thermometer) that it will remain cold, regardless of the outside temperature, as long as there remains some unmelted ice in the drink. Only after all the ice has melted will the temperature of the drink begin to rise. Why is this?

When a solid substance changes from the solid phase to the liquid phase, energy must be supplied in order to overcome the molecular attractions between the constituent particles of the solid. This energy must be supplied

©2010 science-spark.co.uk RAB Plymstock School

externally, normally as heat, and does not bring about a change in temperature. We call this energy latent heat (the word "latent" means "invisible"). The latent heat is the energy released or absorbed during a change of state. With this in mind, we define the specific latent heat of fusion:

"The specific latent heat of fusion of a substance is the amount of heat required to convert unit mass of the solid into the liquid without a change in temperature."

The specific latent heat of fusion of ice at 0 ºC, for example, is 334 kJ.kg-1. This means that to convert 1 kg of ice at 0 ºC to 1 kg of water at 0 ºC, 334 kJ of heat must be absorbed by the ice. Conversely, when 1 kg of water at 0 ºC freezes to give 1 kg of ice at 0 ºC, 334 kJ of heat will be released to the surroundings.

Latent heats of fusion vary widely, and values should always be accompanied by the temperatures at which they were measured (these are not necessarily the normal melting points).

Latent heat of vaporisation:

A change of state from liquid to vapour at constant temperature also requires the input of energy, called the latent heat of vaporisation. This implies that while a liquid undergoes a change to the vapour state at the normal boiling point, the temperature of the liquid will not rise beyond the temperature of the boiling point.

The latent heat of evaporation is the energy required to overcome the molecular forces of attraction between the particles of a liquid, and bring them to the vapour state, where such attractions are minimal.

The definition of the specific latent heat of vaporization is

'The specific latent heat of vaporisation is the amount of heat required to convert unit mass of a liquid into the vapour without a change in temperature."

©2010 science-spark.co.uk RAB Plymstock School

For water at its normal boiling point of 100 ºC, the latent specific latent heat of vaporization is 2260 kJ.kg-1. This means that to convert 1 kg of water at 100 ºC to 1 kg of steam at 100 ºC, 2260 kJ of heat must be absorbed by the water. Conversely, when 1 kg of steam at 100 ºC condenses to give 1 kg of water at 100 ºC, 2260 kJ of heat will be released to the surroundings.

Latent heats of vaporization vary widely, and values should always be accompanied by the temperatures at which they were measured (these are not necessarily the normal boiling points).

Heating/cooling curves:

The diagram shows the uptake of heat by 1 kg of water, as it passes from ice at -50 ºC to steam at temperatures above 100 ºC, affects the temperature of the sample.

A: Rise in temperature as ice absorbs heat.B: Absorption of latent heat of fusion. Intermolecular bonds are breaking.C: Rise in temperature as liquid water absorbs heat.D: Water boils and absorbs latent heat of vaporisation. Intermolecular bonds are breaking.E: Steam absorbs heat and thus increases its temperature.

The above is an example of a heating curve. One could reverse the process, and obtain a cooling curve. The flat portions of such curves indicate the phase changes.

©2010 science-spark.co.uk RAB Plymstock School

This diagram shows the rise in temperature of 200ml of water (red) and 1kg of steel (blue). Water has a specific heat capacity of 4200 J/Kg˚C and a boiling point of 100˚C. Its specific latent heat of vaporisation is 2258 kJ/kg. Steel has a boiling point of 825ºC and specific heat capacity of 450 J/kg°C.

Some values for specific latent heats of fusion and vaporization:

Substance Specific latent heat of

fusion kJ.kg-1

ºCSpecific latent heat of

vaporization kJ.kg-1

ºC

Water 334 0 2258 100

Ethanol 109 -114 838 78

Ethanoic acid 192 17 395 118

Chloroform 74 -64 254 62

Mercury 11 -39 294 357

Sulphur 54 115 1406 445

Hydrogen 60 -259 449 -253

Oxygen 14 -219 213 -183

Nitrogen 25 -210 199 -196

©2010 science-spark.co.uk RAB Plymstock School

Worked example:Calculate the amount of heat required to completely convert 50 g of ice at 0 ºC to steam at 100 ºC. The specific heat capacity of water is 4.18 kJ.kg-1.K-1. The specific latent heat of fusion of ice is 334 kJ.kg-1, and the specific heat of vaporization of water is 2260 kJ.kg-1.

Answer: Heat is taken up in three stages: 1. The melting of the ice, 2. the heating of the water, and 3. the vapourization of the water. The heat taken up in the complete process is the sum of the heat taken up in each stage.

1. Heat taken up for converting iceat 0ºC to water at 0ºC

   mass of water x latent heat of fusion= 0.050 (kg) x 334 (kJ.kg-1) = 16.7 kJ

2. Heat taken up heating the waterfrom 0 ºC to the boiling point, 100 ºC

   

mass of water x specific heat capacity x temperature change= 0.05 (kg) x 4.18 (kJ.kg-1. K-1)x 100 (º K)= 20.9 kJ

3. Heat taken up vaporizing thewater

   mass of water x latent heat of vaporization0.05 (kg) x 2260 kJ.kg-1 = 113 kJ

The sum of these is     16.7 + 20.9 + 113 = 150.6 kJ (151 kJ)

The heater in an electric kettle delivers 1.5 kW of power to 2 kg of water at its boiling point. The specific latent heat of vaporisation of water is 2.26 x 106 J/kg.

(a) How much energy would be needed to boil off 1 kg of the water?

(b) The kettle is switched on for 100 s.

(i) How much heat energy is delivered to the water in this time.

(ii) How much steam is produced in 100 s?

The Answer(a) 2.26 x 106 J  

(b)(i)  

Heat supplied, Eh = power x time

  = 1.5 x 103 x 100

  = 1.5 x 105 J

(ii)  

Eh = m l m = Eh/l

©2010 science-spark.co.uk RAB Plymstock School

  = 1.5 x 105/2.26 x 106

  = 0.066

mass of steam produced = 0.066 kg

©2010 science-spark.co.uk RAB Plymstock School

Lesson 40 questions – specific latent heat( /17)…………%

ALLQuestion 1

Calculate the energy released when (a) 10 g water at 100 °C and (b) 10 g of steam at 100 °C are each spilt on the hand. Take the specific heat capacity of water to be 4200 J /kg °C and the specific latent heat of vaporisation of water to be 2.2 MJ / kg. Assume that the temperature of the skin is 33 °C.

a)……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………(3)

b)…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (3)

Question 2 When a falling hailstone is at a height of 2.00 km its mass is 2.50 g. It has 49.05 J of gravitational potential energy. Assuming that all of this potential energy is converted to latent heat during the fall, calculate the mass of the hailstone on reaching the ground. Take the specific latent heat of fusion of ice to be 336000 J / kg.

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………(3)

Question 3 0.30 kg of ice at 0 °C is added to 1.0 kg of water at 45 °C. What is the final temperature, assuming no heat exchange with the surroundings? Take the specific heat capacity of water to be 4200 J / kg °C and the specific latent heat of fusion of ice to be 340 000 J / kg. 

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (3)

©2010 science-spark.co.uk RAB Plymstock School

4. Why is a scald by steam at 100 oC much more painful than one by water at 100 oC?

Specific latent heat of fusion of ice = 335 000 J kg-1

Specific latent heat of evaporation of water 2.26 MJ kg-1

(3)

5. How long will it take a 50 W heater to melt 2 kg of ice at 0 oC?

(3)

©2010 science-spark.co.uk RAB Plymstock School

Lesson 41 42 notes – Boyle’s LawObjectivesBe able to state Boyle’s law.

OutcomesBe able to state Boyle’s law;Be able to describe an experiment that demonstrates Boyle’s Law.

Boyle’s LawBoyle’s Law states that the pressure of a gas is inversely proportional to its volume.Boyle’s law and number of molecules

Two ways to double gaspressure

molecules in box:pressure due to impactsof molecules with wallsof box

piston squashes up same molecules intohalf the volume, so doubles the number perunit volume

add extra molecules to double the number,so double the number per unit volume

If.... pressure is proportional to number ofimpacts on wall per second

and if.... number of impacts on wall per secondis proportional to number of molecules per unitvolume

Then.... pressure is proportional to number ofmolecules per unit volume

p = constant N/V

p = constant N/V

Boyle’s law in two forms

Boyle’s law says that pressure is proportional to crowding of molecules

pressure proportional to 1/volumep 1/V

pressure proportional to number of moleculesp N

N molecules

squash the gasdecrease V increase N

cram in more molecules

N molecules in volume V

pV = constant N

2N molecules in volume Vsame: number of moleculesper unit volume number of impacts onwall per second pressure

©2010 science-spark.co.uk RAB Plymstock School

Boyle’s law and gas density

Boyle’s law:compress gas to half volume:double pressure and density

half as much gas in half volume:same pressure and density

double mass of gas in same volume:double pressure and density

Boyle’s law says that gas pressure is proportional to density

temperature constant in each

pressure p

2

34

1

volume Vmass mdensity d

pressure p

2

34

1

volume V/2mass mdensity 2d

push inpiston

pressure 2p2

34

1

volume V/2mass m/2density d

volume Vmass 2mdensity 2d

pump inmore air

pressure 2p2

34

1

Boyle’s Law ExperimentYou need to measure how the volume of a fixed number of particles affects the pressure. Squeezing these particles into a smaller and smaller volume results in more and more collisions with the walls, giving a higher pressure. However, you will only get a true relationship between pressure and volume if the number of particles stays the same: you need to make sure that no molecules escape. Rough and ready results can be obtained by using syringes, but these leak, so more precise ways have evolved – sealing off a volume of gas behind a liquid makes for a good seal. It is the measurement of volume that turns out to be the difficult one to get right. You may be able to set up a slicker arrangement using automated data capture, but you will need to take great care to measure the volume, ensuring the equivalent of a leak-proof syringe, where you can measure the position of the plunger or piston.

Compressing a gas will warm it up and vice versa, so after changing the volume leave sufficient time for the temperature to return to its original value.

A traditional solution

oil to transmit pressure

sample of air

0

5

10

15

20

101300 Pa

©2010 science-spark.co.uk RAB Plymstock School

ExtensionThe Pressure Law

Pressure and volume of gases increasing with temperature

Pressure and volume extrapolate to zero at same temperature –273.16 CSo define this temperature as zero of Kelvin scale of temperature, symbol T

Constant volume

heat gas:pressureincreases

T/C

pressure p

45.1

Constant pressure

heat gas:volumeincreases

T/C

45.1

–273 0temperature/C –273 0

temperature/C

2730temperature/K

2730temperature/K

pressure proportional to Kelvin temperature volume proportional to Kelvin temperature

Pressure and volume proportional to absolute temperature

pT VT

2

34

1

volume V

Charle’s LawCharles's Law states that the volume of a given amount of dry ideal gas is directly proportional to the Kelvin Temperature provided the amount of gas and the pressure remain fixed.

When we plot the Volume of a gas against the Kelvin temperature it forms a straight line. The mathematical statement is that the V / T = a constant. For two sets of conditions the following is a math statement of Charles's Law:

V1 / T1 = V2 / T2

©2010 science-spark.co.uk RAB Plymstock School

Lesson 43 notes – Ideal GasesObjectivesBe able to select and apply pV = constant T Be able to state the basic assumptions of the kinetic theory of gases;

OutcomesBe able to select and apply pV = constant T correctly to a number of situations.Be able to state the basic assumptions of the kinetic theory of gases.

The Ideal Gas EquationFrom lessons 41 and 42 we know that:

Pressure Law: P T (constant n, V)

So for a fixed number of moles, (see lesson 44 for definition) we could say that:

pV = constantT

Assumptions of the kinetic theory of an IDEAL GAS.

1 A Gas consists of particles called molecules.2 The molecules are in constant random motion. As many travelling in

one direction as any other. The centre of mass of the gas is at rest.3 Intermolecular forces are negligible.4 The duration of collisions between molecules is negligible.5 Molecules move with constant velocity in between collisions.6 The volume of gas molecules is negligible compared with the volume of

the gas.7 All collisions are totally elastic.8 Newtonian mechanics can be applied to the collisions.

©2010 science-spark.co.uk RAB Plymstock School

Lesson 44 notes – Moles and the Ideal Gas equationObjectivesBe able to state that one mole of any substance contains 6.02 × 1023 particles and that 6.02 × 1023 mol-1 is the Avogadro constant NA.Be able to select and solve problems using the ideal gas equation expressed as pV = nRT, where N is the number of atoms and n is the number of moles.

OutcomesBe able to state that one mole of any substance contains 6.02 × 1023 particles and that 6.02 × 1023 mol-1 is the Avogadro constant NA.Be able to state that R is the molar gas constant and be able to select and use it correctly from a data book.Be able to show that R has the Units J mol-1 K-1.Be able to select and solve problems using the ideal gas equation expressed as pV = nRT, where N is the number of atoms and n is the number of moles.

The moleThe mole (symbol: mol) is the SI base unit that measures an amount of substance. One mole contains Avogadro's number (approximately 6.022×1023) things. A mole is like "a dozen" in that both are absolute numbers (having no units) and can describe any type of elementary object, although the mole's use is usually limited to measurement of subatomic, atomic, and molecular structures.

Why?A mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram (or 12 grams) of carbon-12. It is useful because we can take any element and 1 mole of it will equal its atomic mass in grams.

n= mass of sample / molar mass of substance

©2010 science-spark.co.uk RAB Plymstock School

The Ideal Gas Equation

Pressure Law: P T (constant n, V)

And so:

So we can use a constant and make V equal nT/P multiplies by this constant

This is normally written as:

PV = nRT

P is pressure of gas in PaV is volume of gas m3

n is the number of moles of gas in molR is called the gas constant and has the value 8.314 Jmol-1K-1

(since R=PV/nTan analysis of the units for PV/nT ≡ Nm-2 m3 /mol K

≡ Nm/mol K≡ J mol-1 K-1)

T is temperature in K.

Examples

Avogadro's Number (NA) 1 mole of atoms or molecules contains 6.022 x 1023 atoms or

molecules     eg, 1 mole of helium atoms (He) contains 6.022 x 1023 helium atoms (He)

To find the number of atoms in a known number of moles, multiply the moles by 6.022 x 1023     eg, 2 moles of helium atoms (He) contains 2 x 6.022 x 1023     = 1.2044 x 1024 helium atoms. (He)

©2010 science-spark.co.uk RAB Plymstock School

To find the moles of atoms, divide the number of atoms by 6.022 x 1023

    eg, If we have 4.2154 x 1023 neon atoms, how many moles of neon atoms are there?     Moles of neon atoms = (4.2154 x 1023) ÷ (6.022 x 1023)     = 0.7 mol

1 mole of molecules contains 6.022 x 1023 molecules.     eg, 1 mole of oxygen molecules (O2) contains 6.022 x 1023 oxygen molecules (O2).

To find the moles of molecules, multiply the number of molecules by 6.022 x 1023     eg, ½ mole of oxygen molecules (O2) contains ½ x 6.022 x 1023     = 3.011 x 1023 oxygen molecules (O2).

To find the number of molecules, divide the moles of molecules by 6.022 x 1023     eg, If we have 6.022 x 1021 chlorine molecules (Cl2), how many moles of chlorine molecules are there?     Moles of chlorine molecules = (6.022 x 1021) ÷ (6.022 x 1023)     = 0.01 mol

1 mole of molecules does not necessarily contain 1 mole of atoms of each element in the formula     eg, 1 mole of HCl WILL contain 1 mole of hydrogen atoms (H) and 1 mole of chlorine atoms (Cl)     eg, 1 mole of HCl contains 6.022 x 1023 hydrogen atoms and 6.022 x 1023 chlorine atoms     eg, 5 moles of oxygen molecules (O2) contains 5 x 2 = 10 moles of oxygen atoms (O)     eg, 5 moles of oxygen molecules contains 10 x 6.022 x 1023 = 6.022 x 1024 oxygen atoms.     eg, 1 mole of ammonia molecules (NH3) will contain 1 mole of nitrogen atoms (N) and 3 moles of hydrogen atoms (H)     1 mole of ammonia molecules contains 6.022 x 1023 nitrogen atoms and 3 x 6.022 x 1023 = 1.8066 x 1024 hydrogen atoms

Molar Mass 1 mole of a pure substance has a mass in grams equal to its molecular

mass (MM).     eg, 1 mole of Helium (a monatomic gas with the formula He) has a mass equal to its relative atomic mass, 4.003g     eg, 1 mole of hydrogen gas (a diatomic gas with the formula H2) has a mass equal to 2 x 1.008 = 2.016g     eg, 1 mole of ammonia gas (NH3) has a mass equal to 14.01 + (3 x 1.008) = 17.034g     eg, 1 mole of water (H2O) has a mass equal to (2 x 1.008) + 16.00 = 18.016g

Ideal Gas Volumes at S.T.P [0oC (273K), 101.3kPa (1 atm)], an ideal gas has a volume of

22.4L

©2010 science-spark.co.uk RAB Plymstock School

To find the volume of a certain number of moles of gas, multiply the moles by 22.4L     eg, What is the volume of 2.5 moles of chlorine gas at S.T.P?     Volume of chlorine gas = 2.5 x 22.4 = 56.0L

To find the moles of a certain volume of gas, divide the volume by 22.4L     eg, How many moles of argon are in 3.36L of argon gas at S.T.P?     moles of argon gas = 3.36 ÷ 22.4 = 0.15 mol

at S.L.C [25oC (298K), 101.3kPa (1 atm)], an ideal gas has a volume of 24.47L     eg, To find the volume of a certain number of moles of gas, multiply the moles by 24.47L     What is the volume of 0.2 moles of hydrogen sulfide gas at S.L.C?     Volume of hydrogen sulfide gas = 0.2 x 24.47 = 4.894L

To find the moles of a certain volume of gas, divide the volume by 24.47L     eg, How many moles of carbon monoxide are in 70.5L of carbon monoxide gas at S.L.C?     moles of argon gas = 70.5 ÷ 24.47 = 2.881 mol

Example:

If we had 1.0 mol of gas at 1.0 atm of pressure at 0?C (273.15 K), what would be the volume?

PV = nRT

V = nRT/P

V = (1.0 mol)(0.0821 L atm/mol K)(273 K)/(1.0 atm)

V = 22.41 L

0 ?C and 1 atm pressure are referred to as the standard temperature and pressure (STP)

The molar volume of an ideal gas (any ideal gas) is 22.4 litres at STP

Example

Nitrate salts (NO3-) when heated can produce nitrites (NO2

-) plus oxygen (O2). A sample of potassium nitrate is heated and the O2 gas produced is collected in a 750 ml flask. The pressure of the gas in the flask is 2.8 atmospheres and the temperature is recorded to be 53.6 ?C.

How many moles of O2 gas were produced?

PV = nRT

n = PV/RT

©2010 science-spark.co.uk RAB Plymstock School

n = (2.8 atm * 0.75 L) / (0.0821 L atm/mol K * (53.6 + 273)K

n = (2.1 atm L) / (26.81 L atm/mol)

n = 0.078 mol O2 were produced

Relationship Between the Ideal-Gas Equation and the Gas Laws

Boyle's law, Charles's law and Avogadro's law represent special cases of the ideal gas law

If the quantity of gas and the temperature are held constant then:

PV = nRT

PV = constant

P = constant * (1/V)

P 1/V (Boyle's law)

If the quantity of gas and the pressure are held constant then:

PV = nRT

V = (nR/P) * T

V = constant * T

V T (Charles's law)

If the temperature and pressure are held constant then:

PV = nRT

V = n * (RT/P)

V = constant * n

V n (Avogadro's law)

A very common situation is that P, V and T are changing for a fixed quantity of gas

PV = nRT

(PV)/T = nR = constant

©2010 science-spark.co.uk RAB Plymstock School

Under this situation, (PV/T) is a constant, thus we can compare the system before and after the changes in P, V and/or T:

Example

A 1 liter sample of air at room temperature (25 ?C) and pressure (1 atm) is compressed to a volume of 3.3 mls at a pressure of 1000 atm. What is the temperature of the air sample?

©2010 science-spark.co.uk RAB Plymstock School

Lesson 44 questions – Ideal Gas Equation( /16)…….%……..

ALL1 What are the Avagadro Constant and the Mole and how are they linked?…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..……………………………………………………………………………………… (2)MOST2 a) The equation of state of an ideal gas is pV = nRT. Explain why the temperature must be measured in Kelvin.…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..…………………………………………………………………………………………..……………………………………………………………………………………… (2)

b) A meteorological balloon rises through the atmosphere until it expands to a volume of 1.0 x 106m3, where pressure is 1.0 x 103 Pa. The temperature also falls from 17˚C to –43˚C.The pressure of the atmosphere at the Earth’s surface = 1.0 x 105Pa.Show that the volume of the balloon at take off is about 1.3 x 104m3.

(3)c) The balloon is filled with helium gas of molar mass 4.0 x 10-3kgmol-1

at 17˚C at a pressure of 1.0 x 105Pa. Calculatei) the number of moles of gas in the balloon

number of moles = ……………. (2)

ii) the mass of gas in the balloon.

Mass = ………….kg (1)d) The internal energy of the helium gas is equal to the random kinetic

energy of all of its molecules. When the balloon is filled at ground level at a temperature of 17˚C the internal energy is 1900 MJ. Estimate the internal energy of the helium when the balloon has risen to a height where the temperature is –43˚C

©2010 science-spark.co.uk RAB Plymstock School

Internal energy = ……………MJ (2)

3 a) Very high temperature, for example, the temperature of the solar corona at half a million degrees, are often stated without a complete unit, i.e. degrees Celsius of Kelvin.

Suggest why it is unnecessary to give degrees Celsius or Kelvin in this case.…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… (2)

b) Two students attempt the same experiment to find how air pressure varies with temperature. They heat identical sealed glass flasks of air, to be considered as an ideal gas, in an oil bath. The flasks are heated from 300k to 400k The pressure in flask A rises from atmospheric pressure, p0, as expected, but the pressure in flask B remains at p0 because the rubber bung is defective and air leaks out of the flask.

i) Calculate the pressure in flask A at 400K in terms of p0.

Pressure = …………………… (2)ii) Calculate the fraction, f, of gas molecules in flask B compared

to flask A at 400K.

f = number of gas molecules in B at 400Knumber of gas molecules in A at 400K

f = ………………………. (2)

©2010 science-spark.co.uk RAB Plymstock School

Lesson 45 notes – Boltzmann’s ConstantObjectivesBe able to select and solve problems using the ideal gas equation expressed as pV = NkT and pV = nRT, where N is the number of atoms and n is the number of moles; Be able to explain that the mean translational kinetic energy of an atom of an ideal gas is directly proportional to the temperature of the gas in kelvin;Be able to select and apply the equation E = 3/2kT for the mean translational kinetic energy of atoms.

OutcomesUnderstand the difference between R and k and when to apply them.Be able to state that the Boltzmann constant is the gas constant for individual molecules whilst the molar gas constant is the constant used when dealing with quantities in moles.Be able to explain that the mean translational kinetic energy of an atom of an ideal gas is directly proportional to the temperature of the gas in Kelvin.Be able to select and apply the equation E = 3/2kT for the mean translational kinetic energy of atoms correctly in different situations.Be able to derive equation for the translational KE of an atom in an ideal gas E = 3/2kT.

The Boltzmann ConstantThe Boltzmann constant is used when we are looking at amounts of molecules rather than amounts of moles.From lesson 44 we know that

pV = nRTWe can now write that

pV = NkT

where N is the number of atoms and n is the number of moles So we can see that

nR=NkAlso

N=nNA

Thereforek=R/NA

Check that you understand this from the definitions of these symbols.

Translational kinetic energy of an atom of an ideal gasFrom lesson 33 we saw that from the kinetic theory, gas pressure is given by:

P = ⅓ρ<c>2Letting <c> = the mean square speed

which is the same as saying:

©2010 science-spark.co.uk RAB Plymstock School

2 / 3 .P Nmv VFrom lesson 44 we saw that the Ideal Gas equation is:

PV = nRTTherefore:

nRT = 1/3 Nm<c>2Now,

KE = 1/2m v2

Rearranging3nRT / N = m<c>2

So,1/2 m<c>2

= (3/2) nRT/NWe know that

NA = N/n so n/N = 1/NA

(N is the number of molecules in a volume of gas, n is the amount of gas in moles, NA is Avagadro’s number).

Therefore:

E = 1/2 m<c>2= (3/2) RT / NA = (3/2)kT

This tells us that the mean kinetic energy of a molecule of an ideal gas is proportional to the thermodynamic temperature. (lesson 35).

©2010 science-spark.co.uk RAB Plymstock School

Lesson 45 questions – Boltzmann Constant( /44)………%………

Ideal gas constant (R) = 8.31 Jmol-1K-1 Avogadro’s number (NA) = 6.02x1023 mol-1

1. Use the data given on this page to calculate the value of the Boltzmann constant (k)

k = …………… units…………. (3)2. Calculate:

(a) the kinetic energy of an individual gas molecule of mass 3.5x10-26 kg moving at a speed of 600 ms-1.

Kinetic energy = …………….. J (3)(b) the kinetic energy of the gas molecules in a cylinder at a temperature

of 20oC

Kinetic energy = …………….. J (3)

3. A cylinder contains 2 moles of a gas composed of molecules with a mass of 2.5x10-26 kg moving with an r.m.s. speed of 500 ms-1. Calculate the temperature of the gas.

Temperature = ………….. Kelvin (4)

4. A container of volume 1.5 m3 is full of gas with a density of 1.8 kgm-3 at a pressure of 1.4x105 Pa.

(a) Calculate the root mean square velocity of the molecules within the gas.

©2010 science-spark.co.uk RAB Plymstock School

root mean square velocity = ……………… ms-1 (3)

(b) If the mass of an individual molecule of the gas is 3.0x10-27 kg calculate the number of molecules in the container

Number of molecules = ……………….. (3)

5. A deuterium plasma contains deuterium ions of mass 4.9x10-27 kg at a temperature of 150x106 K. Calculate:

(a) the r.m.s. speed and

r.m.s. speed = ……………….. ms-1 (3)(b) the kinetic energy of a deuterium ion in the plasma

Kinetic energy = …………………….. J (3)6. The mean kinetic energy of a gas molecule at an absolute temperature T is given by:

kinetic energy = 3RT/2NA

where R is the molar gas constant and NA is the Avogadro constant.

a) Calculate the mean kinetic energy of gas atoms at 0 °C.

Kinetic energy = …………………….. J (2)

b) Determine the speed of carbon dioxide molecules at 0 °C. The molar massof carbon dioxide is 44 g.

Speed = ……………. ms-1 (5)

©2010 science-spark.co.uk RAB Plymstock School

c) Calculate the change in the internal energy of one mole of carbon dioxidegas when its temperature increases from 0 °C to 100 °C. [3]

change in the internal energy = ……………… J (3)SOME7 from the kinetic theory, gas pressure is given by:

P = ⅓ρ<c>2a) State the ideal gas equation for n number of moles

(1)b) By using the equation for pressure given by the kinetic theory, the

ideal gas equation and the definition of kinetic energy show that E = 3/2kT for the mean translational kinetic energy of an atom.

©2010 science-spark.co.uk RAB Plymstock School

(7)b) What can we deduce about the relationship between the mean

translational kinetic energy of a molecule and the thermodynamic temperature of a gas?

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..……………………………………………………………………………………… (1)

©2010 science-spark.co.uk RAB Plymstock School