lesson 12.3.1 version...

15
© 2013 THE CARNEGIE FOUNDATION FOR THE ADVANCEMENT OF TEACHING A PATHWAY THROUGH STATISTICS, VERSION 2.5, STATWAY® STUDENT HANDOUT STATWAY® STUDENT HANDOUT Lesson 12.3.1 Multiple Representations of Exponential Models INTRODUCTION In Module 12 we have seen how linear functions and linear inequalities can be used to solve real world problems. Linear functions have the key property of a constant rate of change. This means that every increase in x of 1 unit causes the exact same change in y. In this lesson we will reexamine exponential functions and identify their key properties. Comparing Investments Imagine that you want to invest some money. You are considering two investments. Investment 1: Bascom Blackwell offers an investment that doubles your money every four years. Investment 2: Cassandra Cooper offers an investment that increases 18.92% each year. The amount of money you plan to invest is between $100 and $1000. This initial amount of money will remain in either Investment 1 or Investment 2 for 8 years. Decide on an initial amount that you will invest and write the initial amount on the line below. Amount to invest at the beginning: 1 To compare the two investments write the initial amount you chose for year 0 in the table below. Complete the table using the initial amount you selected as your starting point. Calculate the value of each investment over the 8 year period. You do not need to find a value for the shaded part of the table, instead find the value of the Investment 1 at years 0, 4, and 8, and find the value of Investment 2 every year from 0 to 8. Be sure to round your answers to three decimal places Hint: Even though your initial amount may be different from your classmates, the steps to find the values of the investments will be the same. STUDENT NAME DATE

Upload: others

Post on 25-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

 STATWAY®  STUDENT  HANDOUT  

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 INTRODUCTION    In  Module  12  we  have  seen  how  linear  functions  and  linear  inequalities  can  be  used  to  solve  real  world  problems.  Linear  functions  have  the  key  property  of  a  constant  rate  of  change.  This  means  that  every  increase  in  x  of  1  unit  causes  the  exact  same  change  in  y.  In  this  lesson  we  will  reexamine  exponential  functions  and  identify  their  key  properties.    Comparing  Investments    Imagine  that  you  want  to  invest  some  money.  You  are  considering  two  investments.    

§ Investment  1:    Bascom  Blackwell  offers  an  investment  that  doubles  your  money  every  four  years.    

§ Investment  2:  Cassandra  Cooper  offers  an  investment  that  increases  18.92%  each  year.  

 The  amount  of  money  you  plan  to  invest  is  between  $100  and  $1000.  This  initial  amount  of  money  will  remain  in  either  Investment  1  or  Investment  2  for  8  years.  Decide  on  an  initial  amount  that  you  will  invest  and  write  the  initial  amount  on  the  line  below.  

Amount  to  invest  at  the  beginning:         1   To  compare  the  two  investments  write  the  initial  amount  you  chose  for  year  0  in  the  table  below.  

Complete  the  table  using  the  initial  amount  you  selected  as  your  starting  point.  Calculate  the  value  of  each  investment  over  the  8  year  period.  You  do  not  need  to  find  a  value  for  the  shaded  part  of  the  table,  instead  find  the  value  of  the  Investment  1  at  years  0,  4,  and  8,  and  find  the  value  of  Investment  2  every  year  from  0  to  8.  Be  sure  to  round  your  answers  to  three  decimal  places  Hint:  Even  though  your  initial  amount  may  be  different  from  your  classmates,  the  steps  to  find  the  values  of  the  investments  will  be  the  same.  

               

 STUDENT  NAME     DATE    

Page 2: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    2      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

Years  since  beginning  of  investment  

Investment  1   Investment  2  

0      1      2      3      4      5      6      7      8      

2   What  do  you  notice  about  the  value  of  each  investment  at  the  end  of  the  8  years?     3   Let’s  focus  on  Investment  2.  Can  Investment  2  be  modeled  with  a  linear  function?  Does  it  increase  

by  the  same  amount  each  year?            4   Develop  a  formula  for  the  value  of  Investment  2  over  time.  Let  B  represent  the  value  of  

Investment  2  and  let  t  represent  the  number  of  years  since  the  investment  began.  Hint:  the  formula  must  include  the  initial  amount  of  the  investment  and  the  yearly  growth  rate.  

                       

Page 3: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    3      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

NEXT  STEPS    In  Module  4  we  learned  about  exponential  curves.  An  exponential  curve  has  the  general  form:      

! = ! ∙ !!  

The  numbers  A  and  b  in  this  exponential  function  have  the  following  key  properties:    

• A  is  the  y-­‐intercept  of  the  curve.  It  is  the  y-­‐value  when  x  =  0.  It  is  also  the  initial  value.  

• If  b  >  1,  b  is  the  growth  factor.  If  0  <  b  <  1,  b  is  the  decay  factor.  

We  can  use  this  general  form  to  determine  an  exponential  function  for  real-­‐world  situations  based  on  written  descriptions.  Situations  that  use  exponential  functions  often  involve  percent  increases  or  decreases.  To  translate  a  written  description  to  an  exponential  function,  we  must  identify  the  initial  value  and  the  growth  factor  or  decay  factor.      Creating  an  Exponential  Function  using  a  Growth  Factor  and  an  Initial  Amount    In  the  previous  example,  Investment  2  grew  by  18.92%  each  year.  This  is  an  example  of  exponential  growth.  The  percent  increase  each  year  is  18.92%.  This  means  that  each  year,  the  value  of  the  investment  increases  by  18.92%  of  the  value  at  the  beginning  of  that  year.  The  growth  factor  is  equal  to  100% + !"#$"%&  !"#$%&'% = 100% + 18.92% = 118.92% = 1.1892.  Each  year  the  value  of  the  investment  is  multiplied  by  1.1892.  Recall  that  we  convert  the  percent  to  a  decimal  for  arithmetic  purposes.  To  do  this  we  move  the  decimal  left  two  places.      For  example,  suppose  the  initial  amount  of  your  investment  is  $300.  If  the  yearly  growth  factor  is  1.1892,  the  investment  will  increase  by  18.92%  in  the  first  year.  At  the  end  of  the  first  year  (1  year  since  the  beginning)  the  investment  will  be  worth   300 1.1892 = $356.76.  This  is  shown  in  the  second  row  of  the  table  on  the  next  page.    In  the  second  year,  the  investment  will  again  increase  by  18.92%.  At  the  end  of  the  second  year  (2  years  since  the  beginning)  the  investment  will  be  worth   356.76 1.1892 = $424.26.  Rather  than  using  the  value  after  1  year  (356.76),  we  will  instead  use  the  initial  value  (300)  to  find  the  value  of  the  investment  at  the  end  of  the  second  year.  To  do  this,  we  multiply  the  initial  amount  (300)  by  the  growth  factor  twice.  300 1.1892 1.1892    This  and  more  is  shown  in  the  third  row  of  the  table  below.    We  can  use  this  pattern  to  determine  the  value  of  the  investment  at  any  year.  To  determine  the  value  of  the  investment  after  t  years,  we  must  multiply  the  initial  amount  by  the  growth  factor  t  times.  This  generalization  leads  to  the  exponential  function,  ! = 300(1.1892)!,  where  A  is  the  amount  of  the  investment  t  years  since  the  beginning.  This  is  shown  in  the  last  row  of  the  table.          

Page 4: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    4      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

 

Years  since  beginning  

Value  of  Investment  

Value  of  Investment  in  Expanded  Form  

Value  of  Investment  

0   300   300   300  1   300 1.1892   300(1.1892)!   356.76  2   356.76 1.182   300 1.1892 1.1892 = 300(1.1892)!   424.26  

3   424.26 1.182   300 1.1892 1.1892 (1.892) = 300 1.1892 !   504.53  

t    

300 (1.1892)(1.1892)… (1.892)   300 1.1892 !  

   Decay  Factor    The  previous  problem  was  an  example  of  exponential  growth.  In  this  next  example  we  will  work  on  creating  an  exponential  function  with  a  decay  factor.  We  will  work  on  calculating  percent  decrease  over  time.      Whenever  you  take  medication  you  are  instructed  to  take  a  specific  amount  of  medication  every  number  of  hours.  The  reason  for  this  is  that  the  amount  of  medicine  in  our  bloodstream  decreases  exponentially  over  time.  Suppose  the  amount  of  drug  in  a  person’s  bloodstream  decreases  by  30%  each  hour.    Another  way  to  think  about  this  is  that  you  have  a  certain  amount  of  the  drug  in  your  system  at  the  beginning  of  the  hour.    By  the  end  of  the  hour,  there  will  be  30%  less  of  that  drug  in  your  body.      In  this  example,  the  decay  factor  is  equal  to  100% − !"#$"%&  !"#$"%&" = 100% − 30% = 70% = 0.70.  Each  hour,  30%  of  the  drug  is  lost,  and  70%  of  drug  remains.    If  the  initial  amount  of  drug  is  6  mg,  and  the  hourly  decay  factor  is  0.70,  the  function  for  the  exponential  model  is  ! = 6(0.70)!  where  h  represents  the  number  of  hours  since  the  drug  was  administered.    TRY  THESE    Use  your  knowledge  of  growth  and  decay  factors  to  write  exponential  functions  for  the  following  situations.      5   Cobalt  60  is  a  radioactive  element  which  decays  at  14%  per  year.  If  a  lab  has  35  grams  of  Cobalt  60  

on  Jan  1,  2003,  write  a  function  for  the  amount,  A,  of  Cobalt  60  they  have  t  years  after  Jan.  1,  2003.        

       

Page 5: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    5      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

6   Statisticians  have  estimated  that  the  world  population  increases  by  about  1.2%  each  year.  In  September  of  2012,  the  world  population  was  estimated  to  be  approximately  7.04  billion  people.  Write  a  function  for  the  estimated  world  population,  P,  t  years  after  September  2012.        

   7   Lake  Merritt  has  been  chemically  polluted  by  the  farms  in  its  watershed  and  is  now  in  the  process  

of  being  cleaned.  When  the  clean-­‐up  of  Lake  Merritt  started  on  June  1,  2011,  the  concentration  of  chemical  pollutant  was  810  microliters  per  milliliter  of  water.  The  mathematical  model  for  this  cleanup  says  that,  for  each  month  after  they  started,  the  amount  of  the  pollutant  in  the  lake  is  three-­‐quarters  of  the  amount  of  the  previous  month.    Write  the  function  for  the  concentration  of  pollutant  in  the  water,  P,  at  t  months  after  June  1,  2011.      

     8   The  function,  ! = 150,000 1.035 !,  describes  the  population  of  a  town,  P,  at  t  years  after  2000.  

Write  a  description  of  the  exponential  growth  or  exponential  decay  process  in  the  context  of  the  size  of  the  town’s  population.  Think  about  the  starting  population  of  the  town  and  how  fast  the  population  is  increasing  or  decreasing.  

           9   The  function,  ! = 26000 0.85 !,  describes  the  value,  V,  of  a  new  vehicle  t  years  after  it  is  

purchased  from  a  car  dealership.  Write  a  description  of  the  exponential  growth  or  exponential  decay  process  in  the  context  of  the  vehicle’s  value.  

       10   Describe  in  words  a  specific  example  of  something  that  grows  exponentially.  Think  about  

something  that  increases  by  the  same  percent  every  hour  or  month  or  year.                  

Page 6: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    6      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

11   Exchange  your  description  with  a  partner  and  then  find  the  function  for  your  partner’s  written  description.    

           12   Describe  in  words  a  specific  example  of  something  that  decays  exponentially.  Think  about  

something  that  decreases  by  the  same  percent  every  hour  or  month  or  year.          13   Exchange  your  description  with  a  different  partner  and  then  find  the  function  for  your  partner’s  

written  description.                        NEXT  STEPS    Doubling  Time    At  the  beginning  of  this  lesson  we  saw  two  different  descriptions  for  the  same  exponential  process.  The  first  description,  “doubling  every  four  years”,  provides  information  on  the  amount  of  time  required  for  the  investment  to  double.  This  is  an  example  of  a  doubling  time.  The  second  description,  “increases  by  18.92%  each  year”,  provides  information  on  the  yearly  growth  rate.    We  will  now  find  an  exponential  function  for  Investment  1  when  the  only  information  we  are  given  is  the  doubling  time.  Suppose  Investment  1  started  with  an  initial  amount  of  $1000.  Let’s  examine  how  Investment  1  changes  over  each  4-­‐year  period.    Let  n  be  the  number  of  4-­‐year  periods  after  the  beginning  of  the  investment.  We  will  double  the  amount  during  each  of  those  periods.    Here’s  a  table  to  illustrate  the  growth  of  the  investment  over  several  4-­‐year  periods.    

Page 7: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    7      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

t  =  years  since  beginning  n  =  number  of  four-­‐year  periods  since  beginning  

A  =  amount  in  Investment  1  

0   0   1000  4   1   1000·∙2  =  1000·∙21  =  2000  

8   2   1000·∙2·∙2  =  1000·∙22  =  4000  

12   3   1000·∙2·∙2·∙2  =  1000·∙23  =  8000  

4n   n   1000·∙2n  

The  last  row  of  the  table  shows  that  the  amount  of  money,  A,  in  Investment  1  after  n  4-­‐year  periods  since  the  beginning  of  the  investment  is:  

! = 1000(2)!  .      TRY  THESE    14   Use  the  pattern  in  the  n  and  t  columns  of  the  table  above  to  write  an  equation  that  shows  the  

relationship  between  n  and  t.            15   Use  the  equation  relating  n  and  t  in  question  14  to  replace  n  with  t  in  the  function  for  A.  This  will  

give  you  a  function  for  the  amount  of  Investment  1,  A,  t  years  since  the  beginning  of  the  investment.    

       16   Fill  in  the  table  below  by  finding  the  value  of  the  Investment  1  at  each  year  specified  in  the  table.  

Round  your  answers  to  one  decimal  place.    

t  =  years  since  beginning   A  =  amount  in  Investment  1  0    1    2    4    6    8    

         

Page 8: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    8      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

17   Graph  the  amount  of  the  investment  on  the  coordinate  plane  below.  Does  the  shape  of  the  graph  show  an  exponential  growth  relationship?  

 

   

 18   Use  the  graph  to  estimate  how  long  it  will  take  for  the  investment  to  reach  $3000.  It  will  help  if  

you  connect  the  points  with  a  smooth  curve.     When  we  are  given  the  doubling  time  of  an  exponential  process,  and  the  initial  amount,  we  can  create  an  exponential  function  to  model  what  is  happening.  In  the  following  examples,  we  will  use  an  exponential  function  to  determine  the  percent  increase  that  occurs  during  each  unit  of  time.   19   A  biology  research  scientist  is  growing  bacteria  in  a  petri  dish  in  a  lab.  His  model  says  that  under  

these  conditions,  the  bacteria  will  double  every  3  days.      

A   If  the  culture  starts  with  400  bacteria,  write  a  function  for  the  number  of  bacteria,  N,  after  t  days.  Use  your  answer  to  15  to  help  you  with  this  question.  

80 1 2 3 4 5 6 7

4,000

0

400

800

1200

1600

2000

2400

2800

3200

3600

Years since beginning

Am

ount

of

inve

stm

ent

($)

Page 9: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    9      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

B   Use  your  function  to  find  the  number  of  bacteria  after  6  days.  Is  your  function  correct?  Think  about  how  many  times  the  bacteria  should  double  in  6  days.  

     C   We  know  the  amount  of  bacteria  doubles  every  three  days,  but  how  much  does  it  increase  

each  day?  To  answer,  this  question,  we  can  calculate  the  percent  increase.  The  percent  increase  during  the  first  day  can  be  calculated  by  the  following  formula:  

%  !"#$%&'% =  !"#$%&'"  !"#$%  !"  !"#  1 − (!"#$%&'"  !"#$%  !"  !"#  0)

(!"#$%&'"  !"#$%  !"  !"#  0)  

 D   Calculate  the  percent  increase  from  day  0  to  day  1.          E   Calculate  the  percent  increase  from  day  1  to  day  2.  

       

 F   Calculate  the  percent  increase  from  day  4  to  day  5.  

       

G   What  do  you  notice  about  the  percent  increase?          

F   Use  the  percent  increase  to  write  an  exponential  function  for  the  amount  of  bacteria,  A,  in  the  petri  dish  after  t  days.    Write  the  function  using  the  growth  factor,  instead  of  the  doubling  time.  

             

Page 10: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    10      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

TRY  THESE   Half-­‐Life    20   Cesium  137  is  a  radioactive  chemical  element  that  is  released  into  the  environment  after  nuclear  tests  

and  nuclear  disasters.  It  has  a  half-­‐life  of  30  years.  This  means  that  every  30  years  the  amount  of  Cesium  137  will  decrease  by  half.    To  find  out  how  much  remains  we  multiply  by  ½.The  McIntosh  lab  had  8  grams  of  Cesium  137  on  January  1,  1975.  The  amount  of  Cesium  137,  A,  remaining  can  be  described  by  the  exponential  function  

! = 812

!!"  ,  

    Where  t  is  the  number  of  years  since  January  1,  1975.    

A   How  much  did  the  McIntosh  lab  have  on  Jan  1,  1992?          

B   When  would  this  Cesium  137  have  been  reduced  to  6  grams?  Complete  the  table  and  the  graph  below  to  help  you  answer  this  question.  

 t   A  0    

2    

4    

6    

8    

10    

12    

14    

16    

18    

20    

     

Page 11: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    11      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

     

C   As  you  can  see  from  the  graph,  Cesium  137  decreased  each  year.    What  is  the  percent  decrease  each  year?        

     

D   Write  the  exponential  function  for  the  amount  of  Cesium  137  remaining  after  t  years  using  the  decay  factor.    Hint:  Calculate  the  decay  factor  using  the  percent  decrease.  

   

 29   What  information  on  an  exponential  process  do  you  need  to  create  a  function  for  an  exponential  

model?                                

200 2 4 6 8 10 12 14 16 18

8

2

3

4

5

6

7

Years since January 1, 1975

Am

ount

of

Ces

ium

13

7

Page 12: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    12      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

 

 TAKE  IT  HOME   1   A  small  town  had  a  population  of  12,305  in  1995.  The  population  of  the  town  grew  by  5%  each  

year  over  the  next  decade.      

A   Find  a  function  for  the  population  of  the  town,  P,  for  t  =  years  since  1995.        

B   Find  the  population  of  the  town  in  2001.    

   

2   The  function  ! = 550 0.90 !,  measured  in  grams,  describes  the  amount  of  a  radioactive  

substance  remaining  t  years  after  a  study  began.      Write  a  description  of  this  relationship  in  words.          

3   The  function  ! = 2500 1.02 !,  measured  in  dollars,  describes  the  amount  of  money  in  the  bank  t  years  after  an  account  was  opened.      

 A   Write  a  description  of  this  relationship  in  words.    

     

B   Describe  what  you  would  do  to  answer  the  question  “When  will  the  account  have  $4000  in  it?”    (You  do  not  have  to  answer  that  question  –  just  describe  your  plan  to  answer  it.)    In  your  answer,  think  about  how  you  would  organize  and  display  the  information.    Also  think  about  how  you  would  label  the  information.      

 

STUDENT  NAME     DATE    

Page 13: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    13      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

4   Suppose  the  amount  of  money  in  a  bank  account  increases  by  6%  per  year.    

A   Write  a  function  for  A,  the  amount  of  money  in  the  account  t  years  after  $1500  was  deposited.      

       

B   How  much  money  is  in  the  bank  after  7  years?    

C   Graph  A,  the  amount  of  money  in  the  account  during  the  first  5  years.  Is  this  an  exponential  relationship?    

   

   

5   The  function  ! = 13523 2 !

!"  describes  the  population  of  a  town  at  t  years  after  1990.      

A   Write  a  description  of  this  relationship  in  words.    In  your  description,  think  about  how  many  people  live  in  the  town  and  the  rate  of  growth.      

 

50 1 2 3 4

2,000

1,400

1500

1600

1700

1800

1900

Years since beginning

Am

ount

of

mon

ey (

$)

Page 14: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    14      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

B   When  was  the  population  of  the  town  about  15,000?    Fill  in  the  table  below  to  help  you  answer  this  question.  

 T   P  0    

1    

2    

3    

4    

5    

6    

7    

8    

 C   The  population  of  the  town  is  growing  each  year?    What  is  the  percent  increase  each  year?  

       D   Create  an  exponential  function  based  on  the  growth  rate  for  the  population  of  this  town  t  

years  after  1990.          

       

6   The  radioactive  isotope  Sulfur-­‐35  has  a  half-­‐life  of  87  days.  Suppose  we  have  15  grams  of  this  chemical  element.  A  function  for  the  amount  of  Sulfur-­‐35,  A,  remaining  after  t  days  is    

! = 200 !!

!!".  

 A   Find  the  amount  remaining  after  50  days  and  after  100  days.    

Page 15: lesson 12.3.1 version 2.5-studentnebula2.deanza.edu/.../lesson_12.3.1_version_2.5-student.pdfSTATWAY®"STUDENTHANDOUT"""|"3""" Lesson"12.3.1"" Multiple!Representations!of!Exponential!Models!!!

STATWAY®  STUDENT  HANDOUT      |    15      

Lesson  12.3.1    Multiple  Representations  of  Exponential  Models  

 

 ©  2013  THE  CARNEGIE  FOUNDATION  FOR  THE  ADVANCEMENT  OF  TEACHING    A  PATHWAY  THROUGH  STATISTICS,  VERSION  2.5,  STATWAY®  -­‐  STUDENT  HANDOUT    

B   Find  the  percent  decrease  of  Sulfur-­‐35  each  day.    

       

C   Create  an  exponential  function  based  on  the  decay  rate  for  the  amount  of  Sulfur-­‐35  remaining  after  t  days.      

+++++  

This  lesson  is  part  of  STATWAY®,  A  Pathway  Through  College  Statistics,  which  is  a  product  of  a  Carnegie  Networked  Improvement  Community  that  seeks  to  advance  student  success.  The  original  version  of  this  work,  version  1.0,  was  created  by  The  Charles  A.  Dana  Center  at  The  University  of  Texas  at  Austin  under  sponsorship  of  the  Carnegie  Foundation  for  the  Advancement  of  Teaching.  This  version  and  all  subsequent  versions,  result  from  the  continuous  improvement  efforts  of  the  Carnegie  Networked  Improvement  Community.  The  network  brings  together  community  college  faculty  and  staff,  designers,  researchers  and  developers.  It  is  a  research  and  development  community  that  seeks    to  harvest  the  wisdom  of  its  diverse  participants  through  systematic  and  disciplined  inquiry  to  improve  developmental  mathematics  instruction.  For  more  information  on  the  Statway®  Networked  Improvement  Community,  please  visit  carnegiefoundation.org.  

+++++    

Statway®  is  a  trademark  of  the  Carnegie  Foundation  for  the  Advancement  of  Teaching.  It  may  be  retained  on  any  identical  copies  of  this  Work  to  indicate  its  origin.  If  you  make  any  changes  in  the  Work,  as  permitted  under  the  license  [CC  BY  NC],  you  must  remove  the  service  mark,  while  retaining  the  acknowledgment  of  origin  and  authorship.  Any  use  of  Carnegie’s  trademarks  or  service  marks  other  than  on  identical  copies  of  this  Work  requires  the  prior  written  consent  of  the  Carnegie  Foundation.    

This  work  is  licensed  under  a  Creative  Commons  Attribution-­‐NonCommercial  3.0  Unported  License.  (CC  BY-­‐NC)