lesson 13: related rates of change

28
. . . . . . Section 2.7 Related Rates V63.0121.034, Calculus I October 19, 2009 Announcements I Midterm average 57.69/75 (77%), median 59/75 (79%), standard deviation 11% I Solutions soon.

Upload: matthew-leingang

Post on 23-Jun-2015

3.267 views

Category:

Technology


0 download

DESCRIPTION

In this section we look at problems where changing quantities are related. For instance, a growing oil slick is changing in diameter and volume at the same time. How are the rates of change of these quantities related? The chain rule for derivatives is the key.

TRANSCRIPT

Page 1: Lesson 13: Related Rates of Change

. . . . . .

Section2.7RelatedRates

V63.0121.034, CalculusI

October19, 2009

Announcements

I Midtermaverage57.69/75(77%), median59/75(79%),standarddeviation11%

I Solutionssoon.

Page 2: Lesson 13: Related Rates of Change

. . . . . .

“Isthereacurve?”

I MidtermI Meanwas77%and

standarddeviationwas11%

I Soscoresaveragearegood

I Scoresabove66/75(88%)aregreat

I Forfinallettergrades,refertosyllabus

Page 3: Lesson 13: Related Rates of Change

. . . . . .

Whatarerelatedratesproblems?

Todaywe’lllookatadirectapplicationofthechainruletoreal-worldproblems. Examplesofthesecanbefoundwheneveryouhavesomesystemorobjectchanging, andyouwanttomeasuretherateofchangeofsomethingrelatedtoit.

Page 4: Lesson 13: Related Rates of Change

. . . . . .

Problem

ExampleAnoilslickintheshapeofadiskisgrowing. Atacertaintime,theradiusis1kmandthevolumeisgrowingattherateof10,000literspersecond. Iftheslickisalways20cmdeep, howfastistheradiusofthediskgrowingatthesametime?

Page 5: Lesson 13: Related Rates of Change

. . . . . .

A solution

Thevolumeofthediskis

V = πr2h.

WearegivendVdt

, acertain

valueof r, andtheobjectis

tofinddrdt

atthatinstant.

. .r.h

Page 6: Lesson 13: Related Rates of Change

. . . . . .

Solution

SolutionDifferentiating V = πr2h withrespecttotimewehave

dVdt

= 2πrhdrdt

+ πr2����0

dhdt

=⇒ drdt

=1

2πrh· dVdt

.

Nowweevaluate:

drdt

∣∣∣∣r=1 km

=1

2π(1 km)(20 cm)· 10, 000 L

s

Convertingeverylengthtometerswehave

drdt

∣∣∣∣r=1 km

=1

2π(1000m)(0.2m)· 10m

3

s=

140π

ms

Page 7: Lesson 13: Related Rates of Change

. . . . . .

Solution

SolutionDifferentiating V = πr2h withrespecttotimewehave

dVdt

= 2πrhdrdt

+ πr2����0

dhdt

=⇒ drdt

=1

2πrh· dVdt

.

Nowweevaluate:

drdt

∣∣∣∣r=1 km

=1

2π(1 km)(20 cm)· 10, 000 L

s

Convertingeverylengthtometerswehave

drdt

∣∣∣∣r=1 km

=1

2π(1000m)(0.2m)· 10m

3

s=

140π

ms

Page 8: Lesson 13: Related Rates of Change

. . . . . .

Solution

SolutionDifferentiating V = πr2h withrespecttotimewehave

dVdt

= 2πrhdrdt

+ πr2����0

dhdt

=⇒ drdt

=1

2πrh· dVdt

.

Nowweevaluate:

drdt

∣∣∣∣r=1 km

=1

2π(1 km)(20 cm)· 10, 000 L

s

Convertingeverylengthtometerswehave

drdt

∣∣∣∣r=1 km

=1

2π(1000m)(0.2m)· 10m

3

s=

140π

ms

Page 9: Lesson 13: Related Rates of Change

. . . . . .

Solution

SolutionDifferentiating V = πr2h withrespecttotimewehave

dVdt

= 2πrhdrdt

+ πr2����0

dhdt

=⇒ drdt

=1

2πrh· dVdt

.

Nowweevaluate:

drdt

∣∣∣∣r=1 km

=1

2π(1 km)(20 cm)· 10, 000 L

s

Convertingeverylengthtometerswehave

drdt

∣∣∣∣r=1 km

=1

2π(1000m)(0.2m)· 10m

3

s=

140π

ms

Page 10: Lesson 13: Related Rates of Change

. . . . . .

Outline

Strategy

Examples

Page 11: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforProblemSolving

1. Understandtheproblem

2. Deviseaplan

3. Carryouttheplan

4. Reviewandextend

GyörgyPólya(Hungarian, 1887–1985)

Page 12: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 13: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 14: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 15: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 16: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 17: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 18: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 19: Lesson 13: Related Rates of Change

. . . . . .

StrategiesforRelatedRatesProblems

1. Readtheproblem.

2. Drawadiagram.

3. Introducenotation. Givesymbolstoallquantitiesthatarefunctionsoftime(andmaybesomeconstants)

4. Expressthegiveninformationandtherequiredrateintermsofderivatives

5. Writeanequationthatrelatesthevariousquantitiesoftheproblem. Ifnecessary, usethegeometryofthesituationtoeliminateallbutoneofthevariables.

6. UsetheChainRuletodifferentiatebothsideswithrespecttot.

7. Substitutethegiveninformationintotheresultingequationandsolvefortheunknownrate.

Page 20: Lesson 13: Related Rates of Change

. . . . . .

Outline

Strategy

Examples

Page 21: Lesson 13: Related Rates of Change

. . . . . .

Anotherone

ExampleA manstartswalkingnorthat4ft/sec fromapoint P. Fiveminuteslaterawomanstartswalkingsouthat4ft/sec fromapoint500ftdueeastof P. Atwhatratearethepeoplewalkingapart15minafterthewomanstartswalking?

Page 22: Lesson 13: Related Rates of Change

. . . . . .

Diagram

.

.m

.500

.w.w

.500

.s

.4ft/sec

.4ft/sec

.s =

√(m + w)2 + 5002

Page 23: Lesson 13: Related Rates of Change

. . . . . .

Diagram

.

.m

.500

.w

.w

.500

.s

.4ft/sec

.4ft/sec

.s =

√(m + w)2 + 5002

Page 24: Lesson 13: Related Rates of Change

. . . . . .

Diagram

.

.m

.500

.w

.w

.500

.s

.4ft/sec

.4ft/sec

.s =

√(m + w)2 + 5002

Page 25: Lesson 13: Related Rates of Change

. . . . . .

Diagram

.

.m

.500

.w.w

.500

.s

.4ft/sec

.4ft/sec

.s =

√(m + w)2 + 5002

Page 26: Lesson 13: Related Rates of Change

. . . . . .

Diagram

.

.m

.500

.w.w

.500

.s

.4ft/sec

.4ft/sec

.s =

√(m + w)2 + 5002

Page 27: Lesson 13: Related Rates of Change

. . . . . .

Expressingwhatisknownandunknown

15minutesafterthewomanstartswalking, thewomanhastraveled (

4ftsec

)(60secmin

)(15min) = 3600ft

whilethemanhastraveled(4ftsec

)(60secmin

)(20min) = 4800ft

Wewanttoknowdsdt

when m = 4800, w = 3600,dmdt

= 4, and

dwdt

= 4.

Page 28: Lesson 13: Related Rates of Change

. . . . . .

Differentiation

Wehave

dsdt

=12

((m + w)2 + 5002

)−1/2(2)(m + w)

(dmdt

+dwdt

)=

m + ws

(dmdt

+dwdt

)Atourparticularpointintime

dsdt

=4800 + 3600√

(4800 + 3600)2 + 5002(4 + 4) =

672√7081

≈ 7.98587ft/s