lesson 16: derivatives of logarithmic and exponential functions

48
. . . . . . Section 3.3 Derivatives of Exponential and Logarithmic Functions V63.0121.034, Calculus I October 21, 2009 Announcements I . . Image credit: heipei

Upload: matthew-leingang

Post on 18-Dec-2014

2.239 views

Category:

Education


2 download

DESCRIPTION

We show the the derivative of the exponential function is itself! And the derivative of the natural logarithm function is the reciprocal function. We also show how logarithms can make complicated differentiation problems easier.

TRANSCRIPT

Page 1: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Section3.3DerivativesofExponentialand

LogarithmicFunctions

V63.0121.034, CalculusI

October21, 2009

Announcements

I

..Imagecredit: heipei

Page 2: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

Page 3: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

DerivativesofExponentialFunctions

FactIf f(x) = ax, then f′(x) = f′(0)ax.

Proof.Followyournose:

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

ax+h − ax

h

= limh→0

axah − ax

h= ax · lim

h→0

ah − 1h

= ax · f′(0).

Toreiterate: thederivativeofanexponentialfunctionisaconstant times thatfunction. Muchdifferentfrompolynomials!

Page 4: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

DerivativesofExponentialFunctions

FactIf f(x) = ax, then f′(x) = f′(0)ax.

Proof.Followyournose:

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

ax+h − ax

h

= limh→0

axah − ax

h= ax · lim

h→0

ah − 1h

= ax · f′(0).

Toreiterate: thederivativeofanexponentialfunctionisaconstant times thatfunction. Muchdifferentfrompolynomials!

Page 5: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

DerivativesofExponentialFunctions

FactIf f(x) = ax, then f′(x) = f′(0)ax.

Proof.Followyournose:

f′(x) = limh→0

f(x + h) − f(x)h

= limh→0

ax+h − ax

h

= limh→0

axah − ax

h= ax · lim

h→0

ah − 1h

= ax · f′(0).

Toreiterate: thederivativeofanexponentialfunctionisaconstant times thatfunction. Muchdifferentfrompolynomials!

Page 6: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Thefunnylimitinthecaseof eRememberthedefinitionof e:

e = limn→∞

(1 +

1n

)n

= limh→0

(1 + h)1/h

Question

Whatis limh→0

eh − 1h

?

AnswerIf h issmallenough, e ≈ (1 + h)1/h. So

eh − 1h

≈[(1 + h)1/h

]h − 1h

=(1 + h) − 1

h=

hh

= 1

Sointhelimitwegetequality: limh→0

eh − 1h

= 1

Page 7: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Thefunnylimitinthecaseof eRememberthedefinitionof e:

e = limn→∞

(1 +

1n

)n

= limh→0

(1 + h)1/h

Question

Whatis limh→0

eh − 1h

?

AnswerIf h issmallenough, e ≈ (1 + h)1/h. So

eh − 1h

≈[(1 + h)1/h

]h − 1h

=(1 + h) − 1

h=

hh

= 1

Sointhelimitwegetequality: limh→0

eh − 1h

= 1

Page 8: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Thefunnylimitinthecaseof eRememberthedefinitionof e:

e = limn→∞

(1 +

1n

)n

= limh→0

(1 + h)1/h

Question

Whatis limh→0

eh − 1h

?

AnswerIf h issmallenough, e ≈ (1 + h)1/h. So

eh − 1h

≈[(1 + h)1/h

]h − 1h

=(1 + h) − 1

h=

hh

= 1

Sointhelimitwegetequality: limh→0

eh − 1h

= 1

Page 9: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofthenaturalexponentialfunction

From

ddx

ax =

(limh→0

ah − 1h

)ax and lim

h→0

eh − 1h

= 1

weget:

Theorem

ddx

ex = ex

Page 10: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

ExponentialGrowth

I Commonlymisusedtermtosaysomethinggrowsexponentially

I Itmeanstherateofchange(derivative)isproportionaltothecurrentvalue

I Examples: Naturalpopulationgrowth, compoundedinterest,socialnetworks

Page 11: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

Page 12: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

Page 13: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

Page 14: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Examples

ExamplesFindthesederivatives:

I e3x

I ex2

I x2ex

Solution

I ddx

e3x = 3e3x

I ddx

ex2

= ex2 ddx

(x2) = 2xex2

I ddx

x2ex = 2xex + x2ex

Page 15: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

Page 16: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

Page 17: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

Page 18: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

Page 19: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

Page 20: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

Page 21: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofthenaturallogarithmfunction

Let y = ln x. Thenx = ey so

eydydx

= 1

=⇒ dydx

=1ey

=1x

So:

Fact

ddx

ln x =1x

. .x

.y

.ln x

.1x

Page 22: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

TheTowerofPowers

y y′

x3 3x2

x2 2x1

x1 1x0

x0 0

? ?

x−1 −1x−2

x−2 −2x−3

I Thederivativeofapowerfunctionisapowerfunctionofonelowerpower

I Eachpowerfunctionisthederivativeofanotherpowerfunction, exceptx−1

I ln x fillsinthisgapprecisely.

Page 23: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

TheTowerofPowers

y y′

x3 3x2

x2 2x1

x1 1x0

x0 0

? x−1

x−1 −1x−2

x−2 −2x−3

I Thederivativeofapowerfunctionisapowerfunctionofonelowerpower

I Eachpowerfunctionisthederivativeofanotherpowerfunction, exceptx−1

I ln x fillsinthisgapprecisely.

Page 24: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

TheTowerofPowers

y y′

x3 3x2

x2 2x1

x1 1x0

x0 0

ln x x−1

x−1 −1x−2

x−2 −2x−3

I Thederivativeofapowerfunctionisapowerfunctionofonelowerpower

I Eachpowerfunctionisthederivativeofanotherpowerfunction, exceptx−1

I ln x fillsinthisgapprecisely.

Page 25: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

Page 26: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

Page 27: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

Page 28: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

Page 29: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Useimplicitdifferentiationtofindddx

ax.

SolutionLet y = ax, so

ln y = ln ax = x ln a

Differentiateimplicitly:

1ydydx

= ln a =⇒ dydx

= (ln a)y = (ln a)ax

Beforeweshowed y′ = y′(0)y, sonowweknowthat

ln 2 = limh→0

2h − 1h

≈ 0.693 ln 3 = limh→0

3h − 1h

≈ 1.10

Page 30: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x. Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

Page 31: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x.

Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

Page 32: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x. Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

Page 33: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Otherlogarithms

Example

Findddx

loga x.

SolutionLet y = loga x, so ay = x. Nowdifferentiateimplicitly:

(ln a)aydydx

= 1 =⇒ dydx

=1

ay ln a=

1x ln a

Anotherwaytoseethisistotakethenaturallogarithm:

ay = x =⇒ y ln a = ln x =⇒ y =ln xln a

Sodydx

=1ln a

1x.

Page 34: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Moreexamples

Example

Findddx

log2(x2 + 1)

Answer

dydx

=1ln 2

1x2 + 1

(2x) =2x

(ln 2)(x2 + 1)

Page 35: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Moreexamples

Example

Findddx

log2(x2 + 1)

Answer

dydx

=1ln 2

1x2 + 1

(2x) =2x

(ln 2)(x2 + 1)

Page 36: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Outline

DerivativeofthenaturalexponentialfunctionExponentialGrowth

Derivativeofthenaturallogarithmfunction

DerivativesofotherexponentialsandlogarithmsOtherexponentialsOtherlogarithms

LogarithmicDifferentiationThepowerruleforirrationalpowers

Page 37: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

A nastyderivative

Example

Let y =(x2 + 1)

√x + 3

x− 1. Find y′.

SolutionWeusethequotientrule, andtheproductruleinthenumerator:

y′ =(x− 1)

[2x

√x + 3 + (x2 + 1)12(x + 3)−1/2

]− (x2 + 1)

√x + 3(1)

(x− 1)2

=2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

Page 38: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

A nastyderivative

Example

Let y =(x2 + 1)

√x + 3

x− 1. Find y′.

SolutionWeusethequotientrule, andtheproductruleinthenumerator:

y′ =(x− 1)

[2x

√x + 3 + (x2 + 1)12(x + 3)−1/2

]− (x2 + 1)

√x + 3(1)

(x− 1)2

=2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

Page 39: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Anotherway

y =(x2 + 1)

√x + 3

x− 1

ln y = ln(x2 + 1) +12ln(x + 3) − ln(x− 1)

1ydydx

=2x

x2 + 1+

12(x + 3)

− 1x− 1

So

dydx

=

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)y

=

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

Page 40: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?I Whichdoyoulikebetter?I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

Page 41: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?

I Whichdoyoulikebetter?I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

Page 42: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?I Whichdoyoulikebetter?

I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

Page 43: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Compareandcontrast

I Usingtheproduct, quotient, andpowerrules:

y′ =2x

√x + 3

(x− 1)+

(x2 + 1)

2√x + 3(x− 1)

− (x2 + 1)√x + 3

(x− 1)2

I Usinglogarithmicdifferentiation:

y′ =

(2x

x2 + 1+

12(x + 3)

− 1x− 1

)(x2 + 1)

√x + 3

x− 1

I Arethesethesame?I Whichdoyoulikebetter?I Whatkindsofexpressionsarewell-suitedforlogarithmicdifferentiation?

Page 44: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativesofpowers

Let y = xx. Whichoftheseistrue?

(A) Since y isapowerfunction, y′ = x · xx−1 = xx.

(B) Since y isanexponentialfunction, y′ = (ln x) · xx

(C) Neither

Page 45: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativesofpowers

Let y = xx. Whichoftheseistrue?

(A) Since y isapowerfunction, y′ = x · xx−1 = xx.

(B) Since y isanexponentialfunction, y′ = (ln x) · xx

(C) Neither

Page 46: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

It’sneither! Orboth?

If y = xx, then

ln y = x ln x

1ydydx

= x · 1x

+ ln x = 1 + ln x

dydx

= xx + (ln x)xx

Eachofthesetermsisoneofthewronganswers!

Page 47: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofarbitrarypowers

Fact(Thepowerrule)Let y = xr. Then y′ = rxr−1.

Proof.

y = xr =⇒ ln y = r ln x

Nowdifferentiate:

1ydydx

=rx

=⇒ dydx

= ryx

= rxr−1

Page 48: Lesson 16: Derivatives of Logarithmic and Exponential Functions

. . . . . .

Derivativeofarbitrarypowers

Fact(Thepowerrule)Let y = xr. Then y′ = rxr−1.

Proof.

y = xr =⇒ ln y = r ln x

Nowdifferentiate:

1ydydx

=rx

=⇒ dydx

= ryx

= rxr−1