lesson 16: inverse trigonometric functions (slides)

87
. . SecƟon 3.6 Inverse Trigonometric FuncƟons V63.0121.011: Calculus I Professor MaƩhew Leingang New York University March 28, 2011

Upload: matthew-leingang

Post on 04-Dec-2014

2.089 views

Category:

Technology


5 download

DESCRIPTION

We cover the inverses to the trigonometric functions sine, cosine, tangent, cotangent, secant, cosecant, and their derivatives. The remarkable fact is that although these functions and their inverses are transcendental (complicated) functions, the derivatives are algebraic functions. Also, we meet my all-time favorite function: arctan.

TRANSCRIPT

Page 1: Lesson 16: Inverse Trigonometric Functions (slides)

..

Sec on 3.6Inverse Trigonometric Func ons

V63.0121.011: Calculus IProfessor Ma hew Leingang

New York University

March 28, 2011

Page 2: Lesson 16: Inverse Trigonometric Functions (slides)

AnnouncementsI Midterm has been returned. Please seeFAQ on Blackboard (under ”Exams andQuizzes”)

I Quiz 3 this week in recita on onSec on 2.6, 2.8, 3.1, 3.2

I Quiz 4 April 14–15 on Sec ons 3.3, 3.4,3.5, and 3.7

I Quiz 5 April 28–29 on Sec ons 4.1, 4.2,4.3, and 4.4

Page 3: Lesson 16: Inverse Trigonometric Functions (slides)

Objectives

I Know the defini ons, domains, ranges,and other proper es of the inversetrignometric func ons: arcsin, arccos,arctan, arcsec, arccsc, arccot.

I Know the deriva ves of the inversetrignometric func ons.

Page 4: Lesson 16: Inverse Trigonometric Functions (slides)

Outline

Inverse Trigonometric Func ons

Deriva ves of Inverse Trigonometric Func onsArcsineArccosineArctangentArcsecant

Applica ons

Page 5: Lesson 16: Inverse Trigonometric Functions (slides)

What is an inverse function?Defini onLet f be a func on with domain D and range E. The inverse of f is thefunc on f−1 defined by:

f−1(b) = a,

where a is chosen so that f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

Page 6: Lesson 16: Inverse Trigonometric Functions (slides)

What is an inverse function?Defini onLet f be a func on with domain D and range E. The inverse of f is thefunc on f−1 defined by:

f−1(b) = a,

where a is chosen so that f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

Page 7: Lesson 16: Inverse Trigonometric Functions (slides)

What functions are invertible?

In order for f−1 to be a func on, there must be only one a in Dcorresponding to each b in E.

I Such a func on is called one-to-oneI The graph of such a func on passes the horizontal line test:any horizontal line intersects the graph in exactly one point if atall.

I If f is con nuous, then f−1 is con nuous.

Page 8: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing the inverse functionI If b = f(a), then f−1(b) = a.

I So if (a, b) is on the graph of f,then (b, a) is on the graph of f−1.

I On the xy-plane, the point (b, a)is the reflec on of (a, b) in theline y = x.

I Therefore:

..x

.

y

..

(a, b)

..

(b, a)

.

y = x

FactThe graph of f−1 is the reflec on of the graph of f in the line y = x.

Page 9: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing the inverse functionI If b = f(a), then f−1(b) = a.I So if (a, b) is on the graph of f,then (b, a) is on the graph of f−1.

I On the xy-plane, the point (b, a)is the reflec on of (a, b) in theline y = x.

I Therefore:

..x

.

y

..

(a, b)

..

(b, a)

.

y = x

FactThe graph of f−1 is the reflec on of the graph of f in the line y = x.

Page 10: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing the inverse functionI If b = f(a), then f−1(b) = a.I So if (a, b) is on the graph of f,then (b, a) is on the graph of f−1.

I On the xy-plane, the point (b, a)is the reflec on of (a, b) in theline y = x.

I Therefore:

..x

.

y

..

(a, b)

..

(b, a)

.

y = x

FactThe graph of f−1 is the reflec on of the graph of f in the line y = x.

Page 11: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing the inverse functionI If b = f(a), then f−1(b) = a.I So if (a, b) is on the graph of f,then (b, a) is on the graph of f−1.

I On the xy-plane, the point (b, a)is the reflec on of (a, b) in theline y = x.

I Therefore:

..x

.

y

..

(a, b)

..

(b, a)

.

y = x

FactThe graph of f−1 is the reflec on of the graph of f in the line y = x.

Page 12: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing the inverse functionI If b = f(a), then f−1(b) = a.I So if (a, b) is on the graph of f,then (b, a) is on the graph of f−1.

I On the xy-plane, the point (b, a)is the reflec on of (a, b) in theline y = x.

I Therefore:

..x

.

y

..

(a, b)

..

(b, a)

.

y = x

FactThe graph of f−1 is the reflec on of the graph of f in the line y = x.

Page 13: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing the inverse functionI If b = f(a), then f−1(b) = a.I So if (a, b) is on the graph of f,then (b, a) is on the graph of f−1.

I On the xy-plane, the point (b, a)is the reflec on of (a, b) in theline y = x.

I Therefore:..

x.

y

..

(a, b)

..

(b, a)

.

y = x

FactThe graph of f−1 is the reflec on of the graph of f in the line y = x.

Page 14: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing the inverse functionI If b = f(a), then f−1(b) = a.I So if (a, b) is on the graph of f,then (b, a) is on the graph of f−1.

I On the xy-plane, the point (b, a)is the reflec on of (a, b) in theline y = x.

I Therefore:..

x.

y

..

(a, b)

..

(b, a)

.

y = x

FactThe graph of f−1 is the reflec on of the graph of f in the line y = x.

Page 15: Lesson 16: Inverse Trigonometric Functions (slides)

arcsinArcsin is the inverse of the sine func on a er restric on to[−π/2, π/2].

.. x.

y

.sin

..

−π

2

..π

2

.

y = x

...

arcsin

I The domain of arcsin is [−1, 1]I The range of arcsin is

[−π

2,π

2

]

Page 16: Lesson 16: Inverse Trigonometric Functions (slides)

arcsinArcsin is the inverse of the sine func on a er restric on to[−π/2, π/2].

.. x.

y

.sin

....

−π

2

..π

2

.

y = x

...

arcsin

I The domain of arcsin is [−1, 1]I The range of arcsin is

[−π

2,π

2

]

Page 17: Lesson 16: Inverse Trigonometric Functions (slides)

arcsinArcsin is the inverse of the sine func on a er restric on to[−π/2, π/2].

.. x.

y

.sin

....

−π

2

..π

2

.

y = x

...

arcsin

I The domain of arcsin is [−1, 1]I The range of arcsin is

[−π

2,π

2

]

Page 18: Lesson 16: Inverse Trigonometric Functions (slides)

arcsinArcsin is the inverse of the sine func on a er restric on to[−π/2, π/2].

.. x.

y

.sin

....

−π

2

..π

2

.

y = x

...

arcsin

I The domain of arcsin is [−1, 1]I The range of arcsin is

[−π

2,π

2

]

Page 19: Lesson 16: Inverse Trigonometric Functions (slides)

arccosArccos is the inverse of the cosine func on a er restric on to [0, π]

.. x.

y

.cos

..0..

π

.

y = x

...

arccos

I The domain of arccos is [−1, 1]I The range of arccos is [0, π]

Page 20: Lesson 16: Inverse Trigonometric Functions (slides)

arccosArccos is the inverse of the cosine func on a er restric on to [0, π]

.. x.

y

.cos

....0..

π

.

y = x

...

arccos

I The domain of arccos is [−1, 1]I The range of arccos is [0, π]

Page 21: Lesson 16: Inverse Trigonometric Functions (slides)

arccosArccos is the inverse of the cosine func on a er restric on to [0, π]

.. x.

y

.cos

....0..

π.

y = x

...

arccos

I The domain of arccos is [−1, 1]I The range of arccos is [0, π]

Page 22: Lesson 16: Inverse Trigonometric Functions (slides)

arccosArccos is the inverse of the cosine func on a er restric on to [0, π]

.. x.

y

.cos

....0..

π

.

y = x

...

arccos

I The domain of arccos is [−1, 1]I The range of arccos is [0, π]

Page 23: Lesson 16: Inverse Trigonometric Functions (slides)

arctanArctan is the inverse of the tangent func on a er restric on to(−π/2, π/2).

.. x.

y

.

tan

.

−3π2

.−π

2

2

.3π2

.

y = x

.

arctan

.

−π

2

.

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 24: Lesson 16: Inverse Trigonometric Functions (slides)

arctanArctan is the inverse of the tangent func on a er restric on to(−π/2, π/2).

.. x.

y

.

tan

.

−3π2

.−π

2

2

.3π2

.

y = x

.

arctan

.

−π

2

.

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 25: Lesson 16: Inverse Trigonometric Functions (slides)

arctanArctan is the inverse of the tangent func on a er restric on to(−π/2, π/2).

.. x.

y

.

tan

.

−3π2

.−π

2

2

.3π2

.

y = x

.

arctan

.

−π

2

.

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 26: Lesson 16: Inverse Trigonometric Functions (slides)

arctanArctan is the inverse of the tangent func on a er restric on to(−π/2, π/2).

.. x.

y

.

tan

.

−3π2

.−π

2

2

.3π2

.

y = x

.

arctan

.

−π

2

.

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

Page 27: Lesson 16: Inverse Trigonometric Functions (slides)

arcsecArcsecant is the inverse of secant a er restric on to[0, π/2) ∪ [π, 3π/2).

.. x.

y

.

sec

.

−3π2

.−π

2

2

.3π2

.

y = x

...

π

2.

3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

Page 28: Lesson 16: Inverse Trigonometric Functions (slides)

arcsecArcsecant is the inverse of secant a er restric on to[0, π/2) ∪ [π, 3π/2).

.. x.

y

.

sec

.

−3π2

.−π

2

2

.3π2

..

.

y = x

...

π

2.

3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

Page 29: Lesson 16: Inverse Trigonometric Functions (slides)

arcsecArcsecant is the inverse of secant a er restric on to[0, π/2) ∪ [π, 3π/2).

.. x.

y

.

sec

.

−3π2

.−π

2

2

.3π2

...

y = x

...

π

2.

3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

Page 30: Lesson 16: Inverse Trigonometric Functions (slides)

arcsecArcsecant is the inverse of secant a er restric on to[0, π/2) ∪ [π, 3π/2).

.. x.

y

.

sec

.

−3π2

.−π

2

2

.3π2

..

.

y = x

...

π

2.

3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

Page 31: Lesson 16: Inverse Trigonometric Functions (slides)

Values of Trigonometric Functions

x 0 π/6 π/4 π/3 π/2

sin x 0 1/2√2/2

√3/2 1

cos x 1√3/2

√2/2 1/2 0

tan x 0 1/√3 1

√3 undef

cot x undef√3 1 1/

√3 0

sec x 1 2/√3 2/

√2 2 undef

csc x undef 2 2/√2 2/

√3 1

Page 32: Lesson 16: Inverse Trigonometric Functions (slides)

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solu on

6I −π

4I

3π4

Page 33: Lesson 16: Inverse Trigonometric Functions (slides)

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solu on

6

I −π

4I

3π4

Page 34: Lesson 16: Inverse Trigonometric Functions (slides)

What is arctan(−1)?

.....

3π/4

..

−π/4

.

sin(3π/4) =√22

.

cos(3π/4) = −√22

.

sin(π/4) = −√22

.cos(π/4) =

√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whosetangent is−1 is−π

4, and

this is in the right range.I So arctan(−1) = −π

4

Page 35: Lesson 16: Inverse Trigonometric Functions (slides)

What is arctan(−1)?

.....

3π/4

..

−π/4

.

sin(3π/4) =√22

.

cos(3π/4) = −√22

.

sin(π/4) = −√22

.cos(π/4) =

√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whosetangent is−1 is−π

4, and

this is in the right range.I So arctan(−1) = −π

4

Page 36: Lesson 16: Inverse Trigonometric Functions (slides)

What is arctan(−1)?

.....

3π/4

..

−π/4

.

sin(3π/4) =√22

.

cos(3π/4) = −√22

.

sin(π/4) = −√22

.cos(π/4) =

√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)

I Another angle whosetangent is−1 is−π

4, and

this is in the right range.I So arctan(−1) = −π

4

Page 37: Lesson 16: Inverse Trigonometric Functions (slides)

What is arctan(−1)?

.....

3π/4

..

−π/4

.

sin(3π/4) =√22

.

cos(3π/4) = −√22

.

sin(π/4) = −√22

.cos(π/4) =

√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whosetangent is−1 is−π

4, and

this is in the right range.

I So arctan(−1) = −π

4

Page 38: Lesson 16: Inverse Trigonometric Functions (slides)

What is arctan(−1)?

.....

3π/4

..

−π/4

.

sin(3π/4) =√22

.

cos(3π/4) = −√22

.

sin(π/4) = −√22

.cos(π/4) =

√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whosetangent is−1 is−π

4, and

this is in the right range.I So arctan(−1) = −π

4

Page 39: Lesson 16: Inverse Trigonometric Functions (slides)

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solu on

6I −π

4

I3π4

Page 40: Lesson 16: Inverse Trigonometric Functions (slides)

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solu on

6I −π

4I

3π4

Page 41: Lesson 16: Inverse Trigonometric Functions (slides)

Caution: Notational ambiguity

..sin2 x = (sin x)2. sin−1 x = (sin x)−1

I sinn xmeans the nth power of sin x, except when n = −1!I The book uses sin−1 x for the inverse of sin x, and never for(sin x)−1.

I I use csc x for1

sin xand arcsin x for the inverse of sin x.

Page 42: Lesson 16: Inverse Trigonometric Functions (slides)

Outline

Inverse Trigonometric Func ons

Deriva ves of Inverse Trigonometric Func onsArcsineArccosineArctangentArcsecant

Applica ons

Page 43: Lesson 16: Inverse Trigonometric Functions (slides)

The Inverse Function TheoremTheorem (The Inverse Func on Theorem)

Let f be differen able at a, and f′(a) ̸= 0. Then f−1 is defined in anopen interval containing b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

In Leibniz nota on we have

dxdy

=1

dy/dx

Page 44: Lesson 16: Inverse Trigonometric Functions (slides)

Illustrating the IFTExample

Use the inverse func on theorem to find the deriva ve of thesquare root func on.

Page 45: Lesson 16: Inverse Trigonometric Functions (slides)

Illustrating the IFTExample

Use the inverse func on theorem to find the deriva ve of thesquare root func on.

Solu on (Newtonian nota on)

Let f(x) = x2 so that f−1(y) =√y. Then f′(u) = 2u so for any b > 0

we have(f−1)′(b) =

12√b

Page 46: Lesson 16: Inverse Trigonometric Functions (slides)

Illustrating the IFTExample

Use the inverse func on theorem to find the deriva ve of thesquare root func on.

Solu on (Leibniz nota on)

If the original func on is y = x2, then the inverse func on is definedby x = y2. Differen ate implicitly:

1 = 2ydydx

=⇒ dydx

=1

2√x

Page 47: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsineLet y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a right triangle:

cos(arcsin x) =√

1− x2

SoFact

ddx

arcsin(x) =1√

1− x2.

.... y = arcsin x.

1

.

x

.√1− x2

Page 48: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsineLet y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a right triangle:

cos(arcsin x) =√

1− x2

SoFact

ddx

arcsin(x) =1√

1− x2

.

.... y = arcsin x.

1

.

x

.√1− x2

Page 49: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsineLet y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a right triangle:

cos(arcsin x) =√

1− x2

SoFact

ddx

arcsin(x) =1√

1− x2

..... y = arcsin x

.

1

.

x

.√1− x2

Page 50: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsineLet y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a right triangle:

cos(arcsin x) =√

1− x2

SoFact

ddx

arcsin(x) =1√

1− x2

..... y = arcsin x.

1

.

x

.√1− x2

Page 51: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsineLet y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a right triangle:

cos(arcsin x) =√

1− x2

SoFact

ddx

arcsin(x) =1√

1− x2

..... y = arcsin x.

1

.

x

.√1− x2

Page 52: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsineLet y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a right triangle:

cos(arcsin x) =√

1− x2

SoFact

ddx

arcsin(x) =1√

1− x2

..... y = arcsin x.

1

.

x

.√1− x2

Page 53: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsineLet y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a right triangle:

cos(arcsin x) =√

1− x2

SoFact

ddx

arcsin(x) =1√

1− x2..... y = arcsin x.

1

.

x

.√1− x2

Page 54: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing arcsin and its derivative

I The domain of f is [−1, 1],but the domain of f′ is(−1, 1)

I limx→1−

f′(x) = +∞

I limx→−1+

f′(x) = +∞ ..| .−1

. |.1

...

arcsin

.

1√1− x2

Page 55: Lesson 16: Inverse Trigonometric Functions (slides)

Composing with arcsinExample

Let f(x) = arcsin(x3 + 1). Find f′(x).

Solu onWe have

ddx

arcsin(x3 + 1) =1√

1− (x3 + 1)2ddx

(x3 + 1)

=3x2√

−x6 − 2x3

Page 56: Lesson 16: Inverse Trigonometric Functions (slides)

Composing with arcsinExample

Let f(x) = arcsin(x3 + 1). Find f′(x).

Solu onWe have

ddx

arcsin(x3 + 1) =1√

1− (x3 + 1)2ddx

(x3 + 1)

=3x2√

−x6 − 2x3

Page 57: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arccosLet y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

To simplify, look at a right triangle:

sin(arccos x) =√

1− x2

SoFact

ddx

arccos(x) = − 1√1− x2

..

1

.

√1− x2

.x

.. y = arccos x

Page 58: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arccosLet y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

To simplify, look at a right triangle:

sin(arccos x) =√

1− x2

SoFact

ddx

arccos(x) = − 1√1− x2

..

1

.

√1− x2

.x

.. y = arccos x

Page 59: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing arcsin and arccos

..| .−1

. |.1

...

arcsin

...

arccos

Note

cos θ = sin(π2− θ)

=⇒ arccos x =π

2− arcsin x

So it’s not a surprise that theirderiva ves are opposites.

Page 60: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing arcsin and arccos

..| .−1

. |.1

...

arcsin

...

arccos Note

cos θ = sin(π2− θ)

=⇒ arccos x =π

2− arcsin x

So it’s not a surprise that theirderiva ves are opposites.

Page 61: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arctanLet y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a right triangle:

cos(arctan x) =1√

1+ x2

SoFact

ddx

arctan(x) =1

1+ x2.

.... y = arctan x.

x

.1

.

√1+ x2

Page 62: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arctanLet y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a right triangle:

cos(arctan x) =1√

1+ x2

SoFact

ddx

arctan(x) =1

1+ x2

.

.... y = arctan x.

x

.1

.

√1+ x2

Page 63: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arctanLet y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a right triangle:

cos(arctan x) =1√

1+ x2

SoFact

ddx

arctan(x) =1

1+ x2

..... y = arctan x

.

x

.1

.

√1+ x2

Page 64: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arctanLet y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a right triangle:

cos(arctan x) =1√

1+ x2

SoFact

ddx

arctan(x) =1

1+ x2

..... y = arctan x.

x

.1

.

√1+ x2

Page 65: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arctanLet y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a right triangle:

cos(arctan x) =1√

1+ x2

SoFact

ddx

arctan(x) =1

1+ x2

..... y = arctan x.

x

.1

.

√1+ x2

Page 66: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arctanLet y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a right triangle:

cos(arctan x) =1√

1+ x2

SoFact

ddx

arctan(x) =1

1+ x2

..... y = arctan x.

x

.1

.

√1+ x2

Page 67: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arctanLet y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a right triangle:

cos(arctan x) =1√

1+ x2

SoFact

ddx

arctan(x) =1

1+ x2..... y = arctan x.

x

.1

.

√1+ x2

Page 68: Lesson 16: Inverse Trigonometric Functions (slides)

Graphing arctan and its derivative

.. x.

y

.

arctan

.

11+ x2.

π/2

.

−π/2

I The domain of f and f′ are both (−∞,∞)I Because of the horizontal asymptotes, lim

x→±∞f′(x) = 0

Page 69: Lesson 16: Inverse Trigonometric Functions (slides)

Composing with arctanExample

Let f(x) = arctan√x. Find f′(x).

Solu on

ddx

arctan√x =

1

1+(√

x)2 d

dx√x =

11+ x

· 12√x

=1

2√x+ 2x

√x

Page 70: Lesson 16: Inverse Trigonometric Functions (slides)

Composing with arctanExample

Let f(x) = arctan√x. Find f′(x).

Solu on

ddx

arctan√x =

1

1+(√

x)2 d

dx√x =

11+ x

· 12√x

=1

2√x+ 2x

√x

Page 71: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first.

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1 .

.

x

.1

.. y = arcsec x.

√x2 − 1

Page 72: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1 .

.

x

.1

.. y = arcsec x.

√x2 − 1

Page 73: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1

.

.

x

.1

.. y = arcsec x.

√x2 − 1

Page 74: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1

.

.

x

.1

.. y = arcsec x.

√x2 − 1

Page 75: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1

.

.

x

.1

.. y = arcsec x

.

√x2 − 1

Page 76: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1

..

x

.1

.. y = arcsec x

.

√x2 − 1

Page 77: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1

..

x

.1

.. y = arcsec x.

√x2 − 1

Page 78: Lesson 16: Inverse Trigonometric Functions (slides)

The derivative of arcsecTry this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a right triangle:

tan(arcsec x) =√x2 − 11

SoFact

ddx

arcsec(x) =1

x√x2 − 1 ..

x

.1

.. y = arcsec x.

√x2 − 1

Page 79: Lesson 16: Inverse Trigonometric Functions (slides)

Another ExampleExample

Let f(x) = earcsec 3x. Find f′(x).

Solu on

f′(x) = earcsec 3x · 13x√(3x)2 − 1

· 3

=3earcsec 3x

3x√9x2 − 1

Page 80: Lesson 16: Inverse Trigonometric Functions (slides)

Another ExampleExample

Let f(x) = earcsec 3x. Find f′(x).

Solu on

f′(x) = earcsec 3x · 13x√(3x)2 − 1

· 3

=3earcsec 3x

3x√9x2 − 1

Page 81: Lesson 16: Inverse Trigonometric Functions (slides)

Outline

Inverse Trigonometric Func ons

Deriva ves of Inverse Trigonometric Func onsArcsineArccosineArctangentArcsecant

Applica ons

Page 82: Lesson 16: Inverse Trigonometric Functions (slides)

ApplicationExampleOne of the guiding principles of mostsports is to “keep your eye on theball.” In baseball, a ba er stands 2 ftaway from home plate as a pitch isthrown with a velocity of 130 ft/sec(about 90mph). At what rate doesthe ba er’s angle of gaze need tochange to follow the ball as it crosseshome plate?

Page 83: Lesson 16: Inverse Trigonometric Functions (slides)

Solu onLet y(t) be the distance from the ball to home plate, and θ the anglethe ba er’s eyes make with home plate while following the ball. Weknow y′ = −130 and we want θ′ at the moment that y = 0.

We have θ = arctan(y/2). Thusdθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130, then

dθdt

∣∣∣∣y=0

=1

1+ 0· 12(−130) = −65 rad/sec

The human eye can only track at 3 rad/sec!

..2

.

y

.

130 ft/sec

..θ

Page 84: Lesson 16: Inverse Trigonometric Functions (slides)

Solu onLet y(t) be the distance from the ball to home plate, and θ the anglethe ba er’s eyes make with home plate while following the ball. Weknow y′ = −130 and we want θ′ at the moment that y = 0.We have θ = arctan(y/2). Thus

dθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130, then

dθdt

∣∣∣∣y=0

=1

1+ 0· 12(−130) = −65 rad/sec

The human eye can only track at 3 rad/sec!

..2

.

y

.

130 ft/sec

..θ

Page 85: Lesson 16: Inverse Trigonometric Functions (slides)

Solu onLet y(t) be the distance from the ball to home plate, and θ the anglethe ba er’s eyes make with home plate while following the ball. Weknow y′ = −130 and we want θ′ at the moment that y = 0.We have θ = arctan(y/2). Thus

dθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130, then

dθdt

∣∣∣∣y=0

=1

1+ 0· 12(−130) = −65 rad/sec

The human eye can only track at 3 rad/sec!

..2

.

y

.

130 ft/sec

..θ

Page 86: Lesson 16: Inverse Trigonometric Functions (slides)

Solu onLet y(t) be the distance from the ball to home plate, and θ the anglethe ba er’s eyes make with home plate while following the ball. Weknow y′ = −130 and we want θ′ at the moment that y = 0.We have θ = arctan(y/2). Thus

dθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130, then

dθdt

∣∣∣∣y=0

=1

1+ 0· 12(−130) = −65 rad/sec

The human eye can only track at 3 rad/sec!..

2.

y

.

130 ft/sec

..θ

Page 87: Lesson 16: Inverse Trigonometric Functions (slides)

Summary

y y′ y y′

arcsin x1√

1− x2arccos x − 1√

1− x2

arctan x1

1+ x2arccot x − 1

1+ x2

arcsec x1

x√x2 − 1

arccsc x − 1x√x2 − 1

I Remarkable that the deriva ves of these transcendentalfunc ons are algebraic (or even ra onal!)