lesson 18: indeterminate forms and l'hôpital's rule

72
. . . . . . Section 3.7 Indeterminate Forms and L’Hôpital’s Rule V63.0121.034, Calculus I November 2, 2009 Announcements I No office hours today I Spring forward, fall back, yadda yadda yadda

Upload: matthew-leingang

Post on 03-Jul-2015

2.273 views

Category:

Technology


0 download

DESCRIPTION

L'Hôpital's Rule is not a magic bullet (or a sledgehammer) but it does allow us to find limits of indeterminate forms such as 0/0 and ∞/∞. With some algebra we can use it to resolve other indeterminate forms such as ∞-∞ and 0^0.

TRANSCRIPT

Page 1: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Section3.7IndeterminateFormsandL’Hôpital’s

Rule

V63.0121.034, CalculusI

November2, 2009

Announcements

I NoofficehourstodayI Springforward, fallback, yaddayaddayadda

Page 2: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 3: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 4: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 5: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 6: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 7: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 8: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 9: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 10: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Experimentswithfunnylimits

I limx→0+

sin2 xx

= 0

I limx→0

xsin2 x

doesnotexist

I limx→0

sin2 xsin(x2)

= 1

I limx→0

sin 3xsin x

= 3

.

Alloftheseareoftheform00, andsincewecangetdifferent

answersindifferentcases, wesaythisformis indeterminate.

Page 11: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Outline

IndeterminateForms

L’Hôpital’sRuleRelativeRatesofGrowthApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

Page 12: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

I Limitofasumisthesumofthelimits

I LimitofadifferenceisthedifferenceofthelimitsI LimitofaproductistheproductofthelimitsI Limitofaquotientisthequotientofthelimits... whoops!Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 13: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

I LimitofasumisthesumofthelimitsI Limitofadifferenceisthedifferenceofthelimits

I LimitofaproductistheproductofthelimitsI Limitofaquotientisthequotientofthelimits... whoops!Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 14: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

I LimitofasumisthesumofthelimitsI LimitofadifferenceisthedifferenceofthelimitsI Limitofaproductistheproductofthelimits

I Limitofaquotientisthequotientofthelimits... whoops!Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 15: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Recall

RecallthelimitlawsfromChapter2.

I LimitofasumisthesumofthelimitsI LimitofadifferenceisthedifferenceofthelimitsI LimitofaproductistheproductofthelimitsI Limitofaquotientisthequotientofthelimits... whoops!Thisistrueaslongasyoudon’ttrytodividebyzero.

Page 16: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

I Weknowdividingbyzeroisbad.I Mostofthetime, ifanexpression’snumeratorapproachesafinitenumberanddenominatorapproacheszero, thequotientapproachessomekindofinfinity. Forexample:

limx→0+

1x

= +∞ limx→0−

cos xx3

= −∞

I Anexceptionwouldbesomethinglike

limx→∞

11x sin x

= limx→∞

x csc x.

whichdoesn’texist.I Evenlesspredictable: numeratoranddenominatorbothgotozero.

Page 17: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

I Weknowdividingbyzeroisbad.I Mostofthetime, ifanexpression’snumeratorapproachesafinitenumberanddenominatorapproacheszero, thequotientapproachessomekindofinfinity. Forexample:

limx→0+

1x

= +∞ limx→0−

cos xx3

= −∞

I Anexceptionwouldbesomethinglike

limx→∞

11x sin x

= limx→∞

x csc x.

whichdoesn’texist.

I Evenlesspredictable: numeratoranddenominatorbothgotozero.

Page 18: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

I Weknowdividingbyzeroisbad.I Mostofthetime, ifanexpression’snumeratorapproachesafinitenumberanddenominatorapproacheszero, thequotientapproachessomekindofinfinity. Forexample:

limx→0+

1x

= +∞ limx→0−

cos xx3

= −∞

I Anexceptionwouldbesomethinglike

limx→∞

11x sin x

= limx→∞

x csc x.

whichdoesn’texist.I Evenlesspredictable: numeratoranddenominatorbothgotozero.

Page 19: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

LanguageNoteItdependsonwhatthemeaningoftheword“is”is

I Becarefulwiththelanguagehere. Wearenot sayingthatthelimit

ineachcase“is”00, and

thereforenonexistentbecausethisexpressionisundefined.

I Thelimit isoftheform00, whichmeanswe

cannotevaluateitwithourlimitlaws.

Page 20: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

IndeterminateformsarelikeTugOfWar

Whichsidewinsdependsonwhichsideisstronger.

Page 21: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Outline

IndeterminateForms

L’Hôpital’sRuleRelativeRatesofGrowthApplicationtoIndeterminateProductsApplicationtoIndeterminateDifferencesApplicationtoIndeterminatePowersSummary

Page 22: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

TheLinearCase

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2

Page 23: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

TheLinearCase

QuestionIf f and g arelinesand f(a) = g(a) = 0, whatis

limx→a

f(x)g(x)

?

SolutionThefunctions f and g canbewrittenintheform

f(x) = m1(x− a)

g(x) = m2(x− a)

Sof(x)g(x)

=m1

m2

Page 24: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

TheLinearCase, Illustrated

. .x

.y

.y = f(x)

.y = g(x)

..a

..x

.f(x).g(x)

f(x)g(x)

=f(x) − f(a)g(x) − g(a)

=(f(x) − f(a))/(x− a)(g(x) − g(a))/(x− a)

=m1

m2

Page 25: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Whatthen?

I Butwhatifthefunctionsaren’tlinear?

I Canweapproximateafunctionnearapointwithalinearfunction?

I Whatwouldbetheslopeofthatlinearfunction?

Page 26: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Whatthen?

I Butwhatifthefunctionsaren’tlinear?I Canweapproximateafunctionnearapointwithalinearfunction?

I Whatwouldbetheslopeofthatlinearfunction?

Page 27: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Whatthen?

I Butwhatifthefunctionsaren’tlinear?I Canweapproximateafunctionnearapointwithalinearfunction?

I Whatwouldbetheslopeofthatlinearfunction?

Page 28: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Theorem(L’Hopital’sRule)Suppose f and g aredifferentiablefunctionsand g′(x) ̸= 0 near a(exceptpossiblyat a). Supposethat

limx→a

f(x) = 0 and limx→a

g(x) = 0

or

limx→a

f(x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f(x)g(x)

= limx→a

f′(x)g′(x)

,

ifthelimitontheright-handsideisfinite, ∞, or −∞.

Page 29: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

MeettheMathematician: L’Hôpital

I wantedtobeamilitaryman, butpooreyesightforcedhimintomath

I didsomemathonhisown(solvedthe“brachistocroneproblem”)

I paidastipendtoJohannBernoulli, whoprovedthistheoremandnameditafterhim! GuillaumeFrançoisAntoine,

MarquisdeL’Hôpital(1661–1704)

Page 30: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 31: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 32: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 33: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 34: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 35: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 36: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x.

.numerator → 0

sin x2.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 37: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x.

.numerator → 0

sin x2.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)

H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 38: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)

H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 39: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x.

.numerator → 0

(cos x2) (�2x.

.denominator → 0

)

H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 40: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x.

.numerator → 0

(cos x2) (�2x.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 41: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 42: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x.

.numerator → 1

cos x2 − 2x2 sin(x2).

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 43: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 44: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Revisitingthepreviousexamples

Example

limx→0

sin2 xx

H= lim

x→0

2 sin x

.

.sin x → 0

cos x1

= 0

Example

limx→0

sin2 x

.

.numerator → 0

sin x2

.

.denominator → 0

H= lim

x→0

�2 sin x cos x

.

.numerator → 0

(cos x2) (�2x

.

.denominator → 0

)H= lim

x→0

cos2 x− sin2 x

.

.numerator → 1

cos x2 − 2x2 sin(x2)

.

.denominator → 1

= 1

Example

limx→0

sin 3xsin x

H= lim

x→0

3 cos 3xcos x

= 3.

Page 45: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

ExampleFind

limx→0

xcos x

SolutionThelimitofthedenominatoris 1, not 0, so L’Hôpital’sruledoesnotapply. Thelimitis 0.

Page 46: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

BewareofRedHerrings

ExampleFind

limx→0

xcos x

SolutionThelimitofthedenominatoris 1, not 0, so L’Hôpital’sruledoesnotapply. Thelimitis 0.

Page 47: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

Forexample, if r = 3, threeinvocationsofL’Hôpital’sRulegiveus

limx→∞

ex

x3H= lim

x→∞

ex

3 · x2H= lim

x→∞

ex

2 · 3xH= lim

x→∞

ex

1 · 2 · 3= ∞

Page 48: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ex

xr= ∞.

Proof.If r isapositiveinteger, thenapplyL’Hôpital’srule r timestothefraction. Youget

limx→∞

ex

xrH= . . .

H= lim

x→∞

ex

r!= ∞.

Forexample, if r = 3, threeinvocationsofL’Hôpital’sRulegiveus

limx→∞

ex

x3H= lim

x→∞

ex

3 · x2H= lim

x→∞

ex

2 · 3xH= lim

x→∞

ex

1 · 2 · 3= ∞

Page 49: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

If r isnotaninteger, let m bethesmallestintegergreaterthan r.Thenif x > 1, xr < xm, so

ex

xr>

ex

xm.

Theright-handsidetendsto ∞ bythepreviousstep.

Forexample, if r = 1/2, r < 1 sofor x > 1

ex

x1/2>

ex

x

whichgetsarbitrarilylarge.

Page 50: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

If r isnotaninteger, let m bethesmallestintegergreaterthan r.Thenif x > 1, xr < xm, so

ex

xr>

ex

xm.

Theright-handsidetendsto ∞ bythepreviousstep. Forexample, if r = 1/2, r < 1 sofor x > 1

ex

x1/2>

ex

x

whichgetsarbitrarilylarge.

Page 51: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ln xxr

= 0.

Proof.OneapplicationofL’Hôpital’sRuleheresuffices:

limx→∞

ln xxr

H= lim

x→∞

1/xrxr−1 = lim

x→∞

1rxr

= 0.

Page 52: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

TheoremLet r beanypositivenumber. Then

limx→∞

ln xxr

= 0.

Proof.OneapplicationofL’Hôpital’sRuleheresuffices:

limx→∞

ln xxr

H= lim

x→∞

1/xrxr−1 = lim

x→∞

1rxr

= 0.

Page 53: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

Thislimitisoftheform 0 · (−∞).

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x

= limx→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 54: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

Thislimitisoftheform 0 · (−∞).

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x

= limx→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 55: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

Thislimitisoftheform 0 · (−∞).

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 56: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

Thislimitisoftheform 0 · (−∞).

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 57: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

Thislimitisoftheform 0 · (−∞).

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x

= 0

Page 58: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminateproducts

ExampleFind

limx→0+

√x ln x

Thislimitisoftheform 0 · (−∞).

SolutionJury-rigtheexpressiontomakeanindeterminatequotient. ThenapplyL’Hôpital’sRule:

limx→0+

√x ln x = lim

x→0+

ln x1/

√x

H= lim

x→0+

x−1

−12x

−3/2

= limx→0+

−2√x = 0

Page 59: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

= ∞

Thelimitis +∞ becuasethenumeratortendsto 1 whilethedenominatortendstozerobutremainspositive.

Page 60: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

= ∞

Thelimitis +∞ becuasethenumeratortendsto 1 whilethedenominatortendstozerobutremainspositive.

Page 61: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

= ∞

Thelimitis +∞ becuasethenumeratortendsto 1 whilethedenominatortendstozerobutremainspositive.

Page 62: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

= ∞

Thelimitis +∞ becuasethenumeratortendsto 1 whilethedenominatortendstozerobutremainspositive.

Page 63: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatedifferences

Example

limx→0

(1x− cot 2x

)Thislimitisoftheform ∞−∞.

SolutionAgain, rigittomakeanindeterminatequotient.

limx→0+

sin(2x) − x cos(2x)x sin(2x)

H= lim

x→0+

cos(2x) + 2x sin(2x)2x cos(2x) + sin(2x)

= ∞

Thelimitis +∞ becuasethenumeratortendsto 1 whilethedenominatortendstozerobutremainspositive.

Page 64: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Checkingyourwork

.

.limx→0

tan 2x2x

= 1, so for small x,

tan 2x ≈ 2x. So cot 2x ≈ 12x

and

1x− cot 2x ≈ 1

x− 1

2x=

12x

→ ∞

as x → 0+.

Page 65: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

ExampleFind lim

x→0+(1− 2x)1/x

Takethelogarithm:

ln(limx→0+

(1− 2x)1/x)

= limx→0+

ln((1− 2x)1/x

)= lim

x→0+

ln(1− 2x)x

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0+

ln(1− 2x)x

H= lim

x→0+

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 66: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

ExampleFind lim

x→0+(1− 2x)1/x

Takethelogarithm:

ln(limx→0+

(1− 2x)1/x)

= limx→0+

ln((1− 2x)1/x

)= lim

x→0+

ln(1− 2x)x

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0+

ln(1− 2x)x

H= lim

x→0+

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 67: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

ExampleFind lim

x→0+(1− 2x)1/x

Takethelogarithm:

ln(limx→0+

(1− 2x)1/x)

= limx→0+

ln((1− 2x)1/x

)= lim

x→0+

ln(1− 2x)x

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0+

ln(1− 2x)x

H= lim

x→0+

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 68: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Indeterminatepowers

ExampleFind lim

x→0+(1− 2x)1/x

Takethelogarithm:

ln(limx→0+

(1− 2x)1/x)

= limx→0+

ln((1− 2x)1/x

)= lim

x→0+

ln(1− 2x)x

Thislimitisoftheform00, sowecanuseL’Hôpital:

limx→0+

ln(1− 2x)x

H= lim

x→0+

−21−2x

1= −2

Thisisnottheanswer, it’sthelogoftheanswer! Sotheanswerwewantis e−2.

Page 69: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

Sotheansweris e0 = 1.

Page 70: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Example

limx→0

(3x)4x

Solution

ln limx→0+

(3x)4x = limx→0+

ln(3x)4x = limx→0+

4x ln(3x)

= limx→0+

ln(3x)1/4x

H= lim

x→0+

3/3x−1/4x2

= limx→0+

(−4x) = 0

Sotheansweris e0 = 1.

Page 71: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

SummaryForm Method

00 L’Hôpital’sruledirectly

∞∞ L’Hôpital’sruledirectly

0 · ∞ jiggletomake 00 or ∞

∞ .

∞−∞ factortomakeanindeterminateproduct

00 take ln tomakeanindeterminateproduct

∞0 ditto

1∞ ditto

Page 72: Lesson 18: Indeterminate Forms and L'Hôpital's Rule

. . . . . .

Finalthoughts

I L’Hôpital’sRuleonlyworksonindeterminatequotientsI Luckily, mostindeterminatelimitscanbetransformedintoindeterminatequotients

I L’Hôpital’sRulegiveswronganswersfornon-indeterminatelimits!