lesson 22: applications to business and economics

32
. . . . . . Section 4.7 Applications to Business and Economics Math 1a Introduction to Calculus April 2, 2008 Announcements Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 Midterm II: 4/11 in class . . Image: Flickr user Pulpolux

Upload: matthew-leingang

Post on 29-May-2015

6.578 views

Category:

Economy & Finance


0 download

DESCRIPTION

Calculus and economics have an interesting interplay. The laws of economics can be expressed in terms of calculus, and find extreme points can be a lucrative operation!

TRANSCRIPT

Page 1: Lesson 22: Applications to Business and Economics

. . . . . .

Section4.7ApplicationstoBusinessand

Economics

Math1aIntroductiontoCalculus

April2, 2008

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass

..Image: FlickruserPulpolux

Page 2: Lesson 22: Applications to Business and Economics

. . . . . .

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass

Page 3: Lesson 22: Applications to Business and Economics

. . . . . .

Outline

Lasttime

Cost

Marketing

UtilityMaximization

Nexttime

Page 4: Lesson 22: Applications to Business and Economics

. . . . . .

Theorem(L’Hopital’sRule)Suppose f and g aredifferentiablefunctionsand g′(x) ̸= 0 near a(exceptpossiblyat a). Supposethat

limx→a

f(x) = 0 and limx→a

g(x) = 0

or

limx→a

f(x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f(x)g(x)

= limx→a

f′(x)g′(x)

,

ifthelimitontheright-handsideisfinite, ∞, or −∞.

L’Hôpital’srulealsoappliesforlimitsoftheform∞∞

.

Page 5: Lesson 22: Applications to Business and Economics

. . . . . .

Theorem(L’Hopital’sRule)Suppose f and g aredifferentiablefunctionsand g′(x) ̸= 0 near a(exceptpossiblyat a). Supposethat

limx→a

f(x) = 0 and limx→a

g(x) = 0

or

limx→a

f(x) = ±∞ and limx→a

g(x) = ±∞

Then

limx→a

f(x)g(x)

= limx→a

f′(x)g′(x)

,

ifthelimitontheright-handsideisfinite, ∞, or −∞.

L’Hôpital’srulealsoappliesforlimitsoftheform∞∞

.

Page 6: Lesson 22: Applications to Business and Economics

. . . . . .

SummaryForm Method

00 L’Hôpital’sruledirectly

∞∞ L’Hôpital’sruledirectly

0 · ∞ jiggletomake 00 or

∞∞ .

∞−∞ factortomakeanindeterminateproduct

00 take ln tomakeanindeterminateproduct

∞0 ditto

1∞ ditto

Page 7: Lesson 22: Applications to Business and Economics

. . . . . .

Outline

Lasttime

Cost

Marketing

UtilityMaximization

Nexttime

Page 8: Lesson 22: Applications to Business and Economics

. . . . . .

Someeconomicsterms

DefinitionThe (total)cost functionofagoodistheamountthatmustbespentto produce x itemsofagood.

Thisisincontrastto

DefinitionThe price functionofagoodistheamountthatmustbespenttopurchase anitemofagoodif x itemsaresuppliedtothemarket.

Theunitsofcostaredollars(orothercurrency), whiletheunitsofpricearedollarsperitem(orothermeasureofquantity).

Page 9: Lesson 22: Applications to Business and Economics

. . . . . .

Cost

Let C(x) bethecostofproducing x unitsofaproduct. Whatshapeshouldthegraphof C have?

Page 10: Lesson 22: Applications to Business and Economics

. . . . . .

Since C′ > 0 always, what’smoreinterestingisthe averagecostfunction

c(x) =C(x)x

.

Assumingthatwecanselleverythingwemake, wewanttominimizethecostsofproduction.Whenistheaveragecostminimized?

c′(x) =xC′(x) − C(x)

x2=

C′(x) − c(x)x

,

so c′(x) = 0 ifandonlyif C′(x) = c(x). Inotherwords,

TheoremAtthepointofminimalaveragecostofproduction, theaveragecostequalsthemarginalcost.

Page 11: Lesson 22: Applications to Business and Economics

. . . . . .

Since C′ > 0 always, what’smoreinterestingisthe averagecostfunction

c(x) =C(x)x

.

Assumingthatwecanselleverythingwemake, wewanttominimizethecostsofproduction.

Whenistheaveragecostminimized?

c′(x) =xC′(x) − C(x)

x2=

C′(x) − c(x)x

,

so c′(x) = 0 ifandonlyif C′(x) = c(x). Inotherwords,

TheoremAtthepointofminimalaveragecostofproduction, theaveragecostequalsthemarginalcost.

Page 12: Lesson 22: Applications to Business and Economics

. . . . . .

Since C′ > 0 always, what’smoreinterestingisthe averagecostfunction

c(x) =C(x)x

.

Assumingthatwecanselleverythingwemake, wewanttominimizethecostsofproduction.Whenistheaveragecostminimized?

c′(x) =xC′(x) − C(x)

x2=

C′(x) − c(x)x

,

so c′(x) = 0 ifandonlyif C′(x) = c(x). Inotherwords,

TheoremAtthepointofminimalaveragecostofproduction, theaveragecostequalsthemarginalcost.

Page 13: Lesson 22: Applications to Business and Economics

. . . . . .

Since C′ > 0 always, what’smoreinterestingisthe averagecostfunction

c(x) =C(x)x

.

Assumingthatwecanselleverythingwemake, wewanttominimizethecostsofproduction.Whenistheaveragecostminimized?

c′(x) =xC′(x) − C(x)

x2=

C′(x) − c(x)x

,

so c′(x) = 0 ifandonlyif C′(x) = c(x). Inotherwords,

TheoremAtthepointofminimalaveragecostofproduction, theaveragecostequalsthemarginalcost.

Page 14: Lesson 22: Applications to Business and Economics

. . . . . .

Since C′ > 0 always, what’smoreinterestingisthe averagecostfunction

c(x) =C(x)x

.

Assumingthatwecanselleverythingwemake, wewanttominimizethecostsofproduction.Whenistheaveragecostminimized?

c′(x) =xC′(x) − C(x)

x2=

C′(x) − c(x)x

,

so c′(x) = 0 ifandonlyif C′(x) = c(x). Inotherwords,

TheoremAtthepointofminimalaveragecostofproduction, theaveragecostequalsthemarginalcost.

Page 15: Lesson 22: Applications to Business and Economics

. . . . . .

ExampleLet C(x) = 16, 000 + 200x + 4x3/2. Find

(a) thecost, averagecost, andmarginalcostataproductionlevelof1000units,

(b) theproductionlevelthatwillminimizeaveragecost

(c) theminimumaveragecost.

Solution

(a) 8000(27 + 5

√10

), 8

(27 + 5

√10

), 200 + 60

√10, or

342, 491, 342.491, 389.737

(b) 400

(c) 300

Page 16: Lesson 22: Applications to Business and Economics

. . . . . .

ExampleLet C(x) = 16, 000 + 200x + 4x3/2. Find

(a) thecost, averagecost, andmarginalcostataproductionlevelof1000units,

(b) theproductionlevelthatwillminimizeaveragecost

(c) theminimumaveragecost.

Solution

(a) 8000(27 + 5

√10

), 8

(27 + 5

√10

), 200 + 60

√10, or

342, 491, 342.491, 389.737

(b) 400

(c) 300

Page 17: Lesson 22: Applications to Business and Economics

. . . . . .

Outline

Lasttime

Cost

Marketing

UtilityMaximization

Nexttime

Page 18: Lesson 22: Applications to Business and Economics

. . . . . .

Marketing

Let p(x) bethepricefunction. Whatshouldtheshapeof p be?

DefinitionThe revenue functionisthetotalamounttakeninfromthesaleofx itemsofagood.

WehaveR(x) = x · p(x)

andthe profitP(x) = R(x) − C(x).

Clearly, profitismaximizedwhen P′(x) = 0.

TheoremAtthepointofmaximalprice, themarginalrevenueequalsthemarginalcost.

Page 19: Lesson 22: Applications to Business and Economics

. . . . . .

Marketing

Let p(x) bethepricefunction. Whatshouldtheshapeof p be?

DefinitionThe revenue functionisthetotalamounttakeninfromthesaleofx itemsofagood.

WehaveR(x) = x · p(x)

andthe profitP(x) = R(x) − C(x).

Clearly, profitismaximizedwhen P′(x) = 0.

TheoremAtthepointofmaximalprice, themarginalrevenueequalsthemarginalcost.

Page 20: Lesson 22: Applications to Business and Economics

. . . . . .

Marketing

Let p(x) bethepricefunction. Whatshouldtheshapeof p be?

DefinitionThe revenue functionisthetotalamounttakeninfromthesaleofx itemsofagood.

WehaveR(x) = x · p(x)

andthe profitP(x) = R(x) − C(x).

Clearly, profitismaximizedwhen P′(x) = 0.

TheoremAtthepointofmaximalprice, themarginalrevenueequalsthemarginalcost.

Page 21: Lesson 22: Applications to Business and Economics

. . . . . .

Marketing

Let p(x) bethepricefunction. Whatshouldtheshapeof p be?

DefinitionThe revenue functionisthetotalamounttakeninfromthesaleofx itemsofagood.

WehaveR(x) = x · p(x)

andthe profitP(x) = R(x) − C(x).

Clearly, profitismaximizedwhen P′(x) = 0.

TheoremAtthepointofmaximalprice, themarginalrevenueequalsthemarginalcost.

Page 22: Lesson 22: Applications to Business and Economics

. . . . . .

Marketing

Let p(x) bethepricefunction. Whatshouldtheshapeof p be?

DefinitionThe revenue functionisthetotalamounttakeninfromthesaleofx itemsofagood.

WehaveR(x) = x · p(x)

andthe profitP(x) = R(x) − C(x).

Clearly, profitismaximizedwhen P′(x) = 0.

TheoremAtthepointofmaximalprice, themarginalrevenueequalsthemarginalcost.

Page 23: Lesson 22: Applications to Business and Economics

. . . . . .

ExampleA manufacturerhasbeenselling1000televisionsetsaweekat$450each. A marketsurveyindicatesthatforeach$10rebateofferedtothebuyer, thenumberofsetssoldwillincreaseby100perweek.

(a) Findthedemandfunction

(b) Howlargearebateshouldthecompanyofferthebuyerinordertomaximizerevenue?

(c) Ifitsweeklycostfunctionis C(x) = 68, 000 + 150x, howshouldthemanufacturersetthesizeoftherebateinordertomaximizeitsprofit?

Page 24: Lesson 22: Applications to Business and Economics

. . . . . .

Solution

(a) Tofind p(x) wehave p(1000) = 450, p(1100) = 440. So

p(x) =p(1100) − p(1000)

1100− 1000(x− 1000) + p(1000)

= − 110

(x− 1000) + 450 = − 110

x + 550

(b) Thesalesfunctionis R(x) = xp(x) = − 110

x2 + 550x. Marginal

revenueistherefore

R′(x) = −15x + 550.

Revenueismaximizedwhen R′(x) = 0, orx = 550× 5 = 2750. Now p(2750) = −275 + 550 = 275,sotherevenue-optimizingrebateis$275.

Page 25: Lesson 22: Applications to Business and Economics

. . . . . .

Solution

(a) Tofind p(x) wehave p(1000) = 450, p(1100) = 440. So

p(x) =p(1100) − p(1000)

1100− 1000(x− 1000) + p(1000)

= − 110

(x− 1000) + 450 = − 110

x + 550

(b) Thesalesfunctionis R(x) = xp(x) = − 110

x2 + 550x. Marginal

revenueistherefore

R′(x) = −15x + 550.

Revenueismaximizedwhen R′(x) = 0, orx = 550× 5 = 2750. Now p(2750) = −275 + 550 = 275,sotherevenue-optimizingrebateis$275.

Page 26: Lesson 22: Applications to Business and Economics

. . . . . .

Solution(Continued)

(c) Nowwehave

P(x) = R(x) − C(x) = − 110

x2 + 550x− (68, 000 + 150x)

= − 110

x2 + 400x− 68, 000

Marginalprofitis

P′(x) = −15x + 400

whichiszerowhen x = 2000. Thiscorrespondstoarebateof$100.

Page 27: Lesson 22: Applications to Business and Economics

. . . . . .

Outline

Lasttime

Cost

Marketing

UtilityMaximization

Nexttime

Page 28: Lesson 22: Applications to Business and Economics

. . . . . .

UtilityMaximization

A studentderivesutility(happiness)fromconsumingburritosandchipsaccordingtothefunction

u(x, y) = 10x1/2y2/5

where x isthenumberofburritosconsumedand y isthenumberofbasketsofchipsconsumedeveryweek. Burritoscost$5apieceandbasketsofchipscost$2apiece.Ifthestudenthasafixedbudgetof$18withwhichtobuyhisMexicanfood, whatquantitiesofburritosandchipsshouldhebuytomaximizehisutility?

Page 29: Lesson 22: Applications to Business and Economics

. . . . . .

SolutionWeneedtomaximize u subjecttotheconstraintthat5x + 2y = 60. So

u(x) = 10x1/2(18− 5x

2

)2/5

dudx

= 1022/5

{12x

−1/2(18− 5x)2/5 + x1/2 25(18− 5x)−3/5(−5)

}=

10

22/5x−1/2(18− 5x)−3/5 {1

2(18− 5x) − 2x}

=10

22/5x−1/2(18− 5x)−3/5 (

9− 92x

)So u′(x) = 0 when x = 2. Then y = 4.

Page 30: Lesson 22: Applications to Business and Economics

. . . . . .

SolutionWeneedtomaximize u subjecttotheconstraintthat5x + 2y = 60. So

u(x) = 10x1/2(18− 5x

2

)2/5

dudx

= 1022/5

{12x

−1/2(18− 5x)2/5 + x1/2 25(18− 5x)−3/5(−5)

}=

10

22/5x−1/2(18− 5x)−3/5 {1

2(18− 5x) − 2x}

=10

22/5x−1/2(18− 5x)−3/5 (

9− 92x

)So u′(x) = 0 when x = 2. Then y = 4.

Page 31: Lesson 22: Applications to Business and Economics

. . . . . .

Outline

Lasttime

Cost

Marketing

UtilityMaximization

Nexttime

Page 32: Lesson 22: Applications to Business and Economics

. . . . . .

NexttimeNewton’sMethod