likelihood and asymptotic theory for statistical inference · 2012-11-12 · last week 1.likelihood...

36
Likelihood and Asymptotic Theory for Statistical Inference Nancy Reid 020 7679 1863 [email protected] [email protected] http://www.utstat.toronto.edu/reid/ltccF12.html LTCC Likelihood Theory Week 2 November 12, 2012 1/36

Upload: others

Post on 17-Apr-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Likelihood and Asymptotic Theory forStatistical Inference

Nancy Reid

020 7679 [email protected]

[email protected]

http://www.utstat.toronto.edu/reid/ltccF12.html

LTCC Likelihood Theory Week 2 November 12, 2012 1/36

Page 2: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Last week1. Likelihood – definition, examples, direct inference2. Derived quantities – score, mle, Fisher information, Bartlett

identities3. Inference from derived quantities – consistency of mle,

asymptotic normality4. Inference via pivotals – standardized score function,

standardized mle, likelihood ratio, likelihood root5. Nuisance parameters and parameters of interest;

invariance under parameter transformation6. Asymptotics for posteriors

LTCC Likelihood Theory Week 2 November 12, 2012 2/36

Page 3: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

This week1. Bayesian approximation

1.1 careful statement of asymptotic normality1.2 Laplace approximation to posterior density and cumulative

distribution function1.3 Laplace approximation to marginal posterior density and cdf1.4 relation to modified profile likelihood

2. Frequentist inference with nuisance parameters2.1 first order summaries; difficulties with profile likelihood2.2 marginal and conditional likelihood2.3 exponential families2.4 transformation families2.5 adjustments to profile likelihood

3. Notation

LTCC Likelihood Theory Week 2 November 12, 2012 3/36

Page 4: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Posterior is asymptotically normal

π(θ | y).∼ N{θ̂, j−1(θ̂)} θ ∈ R, y = (y1, . . . , yn)

careful statement

LTCC Likelihood Theory Week 2 November 12, 2012 4/36

Nancy
Nancy
Page 5: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

... posterior is asymptotically normal

π(θ | y).∼ N{θ̂, j−1(θ̂)} θ ∈ R, y = (y1, . . . , yn)

equivalently `π(θ) =

LTCC Likelihood Theory Week 2 November 12, 2012 5/36

Nancy
Nancy
Page 6: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

... posterior is asymptotically normalIn fact,

If π(θ) > 0 and π′(θ) is continuous in a neighbourhood of θ0,there exist constants D and ny s.t.

|Fn(ξ)− Φ(ξ)| < Dn−1/2, for all n > ny ,

on an almost-sure set with respect to f (y ; θ0), wherey = (y1, . . . , yn) is a sample from f (y ; θ0), and θ0 is anobservation from the prior density π(θ).

Fn(ξ) = Pr{(θ − θ̂)j1/2(θ̂) ≤ ξ | y}

Johnson (1970); Datta & Mukerjee (2004)

LTCC Likelihood Theory Week 2 November 12, 2012 6/36

Nancy
Nancy
Page 7: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Laplace approximation

π(θ | y).

=1

(2π)1/2 |j(θ̂)|+1/2 exp{`(θ; y)− `(θ̂; y)}π(θ)

π(θ̂)

π(θ | y) =1

(2π)1/2 |j(θ̂)|+1/2 exp{`(θ; y)−`(θ̂; y)}π(θ)

π(θ̂){1+Op(n−1)}

y = (y1, . . . , yn), θ ∈ R1

π(θ | y) =1

(2π)1/2 |jπ(θ̂π)|+1/2 exp{`π(θ; y)−`π(θ̂π; y)}{1+Op(n−1)}

LTCC Likelihood Theory Week 2 November 12, 2012 7/36

Nancy
Nancy
Nancy
Nancy
Page 8: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Posterior cdf∫ θ

−∞π(ϑ | y)dϑ .

=

∫ θ

−∞

1(2π)1/2 e`(ϑ;y)−`(ϑ̂;y)|j(ϑ̂)|1/2π(ϑ)

π(ϑ̂)dϑ

LTCC Likelihood Theory Week 2 November 12, 2012 8/36

Nancy
Nancy
Page 9: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Posterior cdf∫ θ

−∞π(ϑ | y)dϑ .

=

∫ θ

−∞

1(2π)1/2 e`(ϑ;y)−`(ϑ̂;y)|j(ϑ̂)|1/2π(ϑ)

π(ϑ̂)dϑ

SM, §11.3

LTCC Likelihood Theory Week 2 November 12, 2012 9/36

Nancy
Nancy
Page 10: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,
Nancy
Nancy
Page 11: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

BDR, Ch.3, Cauchy with flat prior

Nancy
Page 12: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Nuisance parametersy = (y1, . . . , yn) ∼ f (y ; θ), θ = (ψ, λ)

πm(ψ | y) =

∫π(ψ, λ | y)dλ

=

∫exp{`(ψ, λ; y)π(ψ, λ)dλ∫

exp{`(ψ, λ; y)π(ψ, λ)dψdλ

LTCC Likelihood Theory Week 2 November 12, 2012 12/36

Nancy
Nancy
Page 13: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

... nuisance parametersy = (y1, . . . , yn) ∼ f (y ; θ), θ = (ψ, λ)

πm(ψ | y) =

∫π(ψ, λ | y)dλ

=

∫exp{`(ψ, λ; y)π(ψ, λ)dλ∫

exp{`(ψ, λ; y)π(ψ, λ)dψdλ

|j(θ̂)| = |jψψ(θ̂)| |jλλ(θ̂)|

LTCC Likelihood Theory Week 2 November 12, 2012 13/36

Nancy
Nancy
Page 14: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Posterior marginal cdf, d = 1

Πm(ψ | y) =

∫ ψ

−∞πm(ξ | y)dξ

.=

∫ ψ

−∞

1(2π)1/2 e`P(ξ)−`P(ξ̂)j1/2

P (ξ̂)π(ξ, λ̂ξ)

π(ξ̂, λ̂)

|jλλ(ξ̂, λ̂)|1/2

|jλλ(ξ, λ̂ξ)|1/2dξ

LTCC Likelihood Theory Week 2 November 12, 2012 14/36

Page 15: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

... posterior marginal cdf, d = 1

Πm(ψ | y).

= Φ(r∗B) = Φ{r +1r

log(qB

r)}

r = r(ψ) =

qB = qB(ψ) =

LTCC Likelihood Theory Week 2 November 12, 2012 15/36

Nancy
Page 16: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

normal circle, k=2

ψψ

p−va

lue

LTCC Likelihood Theory Week 2 November 12, 2012 16/36

Nancy
Page 17: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

normal circle, k=2

ψψ

p−va

lue

LTCC Likelihood Theory Week 2 November 12, 2012 17/36

Page 18: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

normal circle, k=2

ψψ

p−va

lue

LTCC Likelihood Theory Week 2 November 12, 2012 18/36

Nancy
Page 19: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

normal circle, k = 2, 5, 10

ψψ

p−va

lue

LTCC Likelihood Theory Week 2 November 12, 2012 19/36

Page 20: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

normal circle, k = 2, 5, 10

ψψ

p−va

lue

LTCC Likelihood Theory Week 2 November 12, 2012 20/36

Page 21: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

normal circle, k = 2, 5, 10

ψψ

p−va

lue

LTCC Likelihood Theory Week 2 November 12, 2012 21/36

Page 22: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

normal circle, k = 2, 5, 10

ψψ

p−va

lue

LTCC Likelihood Theory Week 2 November 12, 2012 22/36

Page 23: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Posterior marginal and adjusted log-likelihoods

πm(ψ | y).

=1

(2π)d/2 e`P(ξ)−`P(ξ̂)j1/2P (ξ̂)

π(ξ, λ̂ξ)

π(ξ̂, λ̂)

|jλλ(ξ̂, λ̂)|1/2

|jλλ(ξ, λ̂ξ)|1/2

Πm(ψ | y) =

LTCC Likelihood Theory Week 2 November 12, 2012 23/36

Page 24: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,
Page 25: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Frequentist inference, nuisance parametersI first-order pivotal quantities

I ru(ψ) = `′P(ψ)jP(ψ̂)1/2 .∼ N(0,1),

I re(ψ) = (ψ̂ − ψ)jP(ψ̂)1/2 .∼ N(0,1),

I r(ψ) = sign(ψ̂ − ψ)2{`P(ψ̂)− `P(ψ)} .∼ N(0,1)

I all based on treating profile log-likelihood as aone-parameter log-likelihood

I example y = Xβ + ε, ε ∼ N(0, ψ)

I ψ̂ = (y − X β̂)T (y − X β̂)/n

LTCC Likelihood Theory Week 2 November 12, 2012 25/36

Page 26: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

3 4 5 6 7 8

-6-4

-20

ψ1 2

log-likelihood

Nancy
Page 27: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Eliminating nuisance parametersI by using marginal density

I f (y ;ψ, λ) ∝ fm(t1;ψ)fc(t2 | t1;ψ, λ)

I ExampleN(Xβ, σ2I) : f (y ;β, σ2) ∝ fm(RSS;σ2)fc(β̂ | RSS;β, σ2)

I by using conditional density

I f (y ;ψ, λ) ∝ fc(t1 | t2;ψ)fm(t2;ψ, λ)

I ExampleN(Xβ, σ2I) : f (y ;β, σ2) ∝ fc(RSS | β̂;σ2)fm(β̂;β, σ2)

LTCC Likelihood Theory Week 2 November 12, 2012 27/36

Nancy
Page 28: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Linear exponential familiesI conditional density free of nuisance parameterI f (yi ;ψ, λ) = exp{ψT s(yi) + λT t(yi)− k(ψ, λ)}h(yi)

I f (y ;ψ, λ) =

s = t =

I f (s, t ;ψ, λ) =

I f (s | t ;ψ) =

LTCC Likelihood Theory Week 2 November 12, 2012 28/36

Nancy
Page 29: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Saddlepoint approximation in linear exponentialfamilies

I no nuisance parameters f (yi ; θ) = exp{θT s(yi)− k(θ)}h(yi)

I f (s; θ) = exp{θT s − nk(θ)}h̃(s)

I `(θ; s) = θT s − nk(θ)

I f (s; θ).

=

I f (θ̂; θ).

=

LTCC Likelihood Theory Week 2 November 12, 2012 29/36

Nancy
Page 30: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,
Page 31: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Saddlepoint approximation to conditional densityI f (yi ;ψ, λ) = exp{ψT s(yi) + λT t(yi)− k(ψ, λ)}h(yi)

I f (s | t ;ψ) =

I f (ψ̂ | t ;ψ).

= c|jP(ψ̂)|1/2e`P(ψ)−`P(ψ̂)

SM §12.3

LTCC Likelihood Theory Week 2 November 12, 2012 31/36

Nancy
Page 32: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

Approximating distribution functionI f (θ̂; θ)

.= c|j(θ̂)|1/2 exp{`(θ; θ̂)− `(θ̂; θ̂)}

I∫ θ̂−∞ f (ϑ̂; θ)d ϑ̂ .

=

LTCC Likelihood Theory Week 2 November 12, 2012 32/36

Nancy
Nancy
Page 33: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,

SummaryI No nuisance parameters

I Bayesian p-value Φ(r∗B)I r∗B = r + 1

r log qBr

I Exponential family p-value Φ(r∗)I r∗ = r + 1

r log qr

I Nuisance parametersI Bayesian p-value Φ(r∗B)I r∗B = r + 1

r log qBr

I Exponential family p-value Φ(r∗)I r∗ = r + 1

r log qr

LTCC Likelihood Theory Week 2 November 12, 2012 33/36

Nancy
Page 34: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,
Page 35: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,
Page 36: Likelihood and Asymptotic Theory for Statistical Inference · 2012-11-12 · Last week 1.Likelihood – definition, examples, direct inference 2.Derived quantities – score, mle,