limits (l'hospital's rule)

Upload: fragilewindows

Post on 04-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Limits (L'Hospital's Rule)

    1/15

    Limits Indeterminate Forms and LHospitals Rule

    I. Indeterminate Form of the Type

    0

    0

    We have previously studied limits with the indeterminate form0

    0as shown in the

    following examples:

    Example 1: ( ) 42222

    )2)(2(

    2

    4limlimlim

    22

    2

    2

    =+=+=

    +=

    x

    x

    xx

    x

    x

    xxx

    Example 2: === xx

    x

    x

    xx

    x

    x

    xxx 2sin

    1

    3cos

    1

    1

    3sin

    2sin

    3cos3sin

    2sin

    3tanlimlimlim

    000

    2

    3)1)(1)(1(

    2

    3

    2sin

    2

    3cos

    1

    3

    3sin

    2

    3limlimlim

    02003

    ==

    x

    x

    xx

    x

    xxx

    [Note: We use the given limit 1sin

    lim0

    =

    .]

    Example 3:12

    1

    83

    1)8(

    28

    3 2

    3

    0lim ===

    +

    fh

    h

    h. [Note: We use the definition

    of the derivativeh

    afhafaf

    h

    )()()( lim

    0

    +=

    where 3)( xxf =

    and a = 8.]

    Example 4: ( ) ( ) 23

    3sin

    3

    3

    21cos

    lim3

    ===

    fx

    x

    x

    . [Note: We use the

    definition of the derivativeax

    afxfaf

    ax

    =

    )()()( lim where

    xxf cos)( = and 3=a .]

    1

  • 7/30/2019 Limits (L'Hospital's Rule)

    2/15

    However, there is a general, systematic method for determining limits with the

    indeterminate form0

    0. Suppose thatfandgare differentiable functions atx = a

    and that)(

    )(lim

    xg

    xf

    axis an indeterminate form of the type

    0

    0; that is, 0)(lim =

    xf

    ax

    and 0)(lim =

    xgax

    . Sincefandgare differentiable functions atx = a, thenfandg

    are continuous atx = a; that is, )()( lim xfafax

    = = 0 and )()( lim xgagax

    = = 0.

    Furthermore, sincefandgare differentiable functions atx = a, then = )(af

    ax

    afxf

    ax

    )()(lim and

    ax

    agxgag

    ax

    =

    )()()( lim . Thus, if 0)( ag , then

    )(

    )(

    )(

    )(

    )()(

    )()(

    )()(

    )()(

    )(

    )(limlimlimlim

    xg

    xf

    ag

    af

    ax

    agxgax

    afxf

    agxg

    afxf

    xg

    xf

    axaxaxax

    =

    =

    =

    =

    iff and

    g are continuous atx = a. This illustrates a special case of the technique known as LHospitals Rule.

    LHospitals Rule for Form0

    0

    Suppose thatfandgare differentiable functions on an open interval

    containingx = a, except possibly atx = a, and that 0)(lim =

    xfax

    and

    0)(lim = xgax . If )()(

    lim xg

    xf

    ax

    has a finite limit, or if this limit is + or

    , then)(

    )(

    )(

    )(limlim

    xg

    xf

    xg

    xf

    axax

    =

    . Moreover, this statement is also true

    in the case of a limit as ,,, + xaxax or as .+x

    In the following examples, we will use the following three-step process:

    Step 1. Check that the limit of)(

    )(

    xg

    xfis an indeterminate form of type

    00 . If it

    is not, then LHospitals Rule cannot be used.

    Step 2. Differentiatefandgseparately. [Note: Do not differentiate)(

    )(

    xg

    xf

    using the quotient rule!]

    2

  • 7/30/2019 Limits (L'Hospital's Rule)

    3/15

    Step 3. Find the limit of)(

    )(

    xg

    xf

    . If this limit is finite, + , or , then it is

    equal to the limit of)(

    )(

    xg

    xf. If the limit is an indeterminate form of type

    00 , then simplify )(

    )(

    xg

    xf

    algebraically and apply LHospitals Rule again.

    Example 1: 4)2(21

    2

    2

    4limlim

    2

    2

    2

    ===

    x

    x

    x

    xx

    Example 2:2

    3

    )1(2

    )1(3

    2cos2

    3sec3

    2sin

    3tan 2

    00limlim === x

    x

    x

    x

    xx

    Example 3:121

    )8(3

    1

    )8(3

    11

    )1()8(

    3

    1

    283

    23

    20

    32

    0

    3

    0limlimlim ==

    +=

    +=+

    h

    h

    hh

    hhh

    Example 4: ( )2

    3

    3sin

    1

    sin

    3

    21cos

    limlim33

    ==

    =

    x

    x

    x

    xx

    Example 5:2

    1

    22

    11limlimlim

    002

    0

    ==

    =

    x

    x

    x

    x

    x

    x

    e

    x

    e

    x

    xe[Use LHospitals Rule

    twice.]

    Example 6: ( ) ( )( ) ( ) 010

    1cos

    2

    11cos

    2

    1sin

    1

    limlimlim2

    32

    ===

    =

    +++x

    x

    xx

    x

    x

    x

    xxx

    , or

    ( )0

    1

    )0(2

    cos

    2

    sin1sin

    1

    limlimlim0

    2

    0

    2

    ====++ + y

    y

    y

    y

    x

    x

    yyx

    where xy 1= .

    Example 7: ( ) 0)0(0ln1

    ln limlim 00 === xxxx

    xx [This limit is not an indeterminate

    form of the type0

    0, so LHospitals Rule cannot be used.]

    3

  • 7/30/2019 Limits (L'Hospital's Rule)

    4/15

    II. Indeterminate Form of the Type

    We have previously studied limits with the indeterminate form

    as shown in the

    following examples:

    Example 1: =

    +

    +=

    +

    +

    ++222

    2

    222

    2

    2

    2

    132

    753

    132

    753limlim

    xx

    x

    x

    x

    xx

    x

    x

    x

    xx

    xx

    xx

    2

    3

    002

    003

    132

    753

    limlim

    2

    2=

    +

    +=

    +

    +

    ++ xxxx

    xx

    Example 2: =+

    1

    13

    2lim x

    x

    x =

    +

    22

    2

    22

    1

    13

    lim

    xx

    x

    xx

    x

    x 0

    1

    0

    01

    00

    11

    13

    2

    2

    lim ==+

    =+

    x

    xx

    x

    Example 3: =+

    12

    43

    2

    3

    limx

    x

    x

    =

    +

    33

    2

    33

    3

    12

    43

    lim

    xx

    x

    xxx

    x =

    +

    =+

    0

    3

    00

    03

    12

    43

    3

    3

    lim

    xx

    x

    x

    limit does not exist.

    Example 4: =++

    1

    14 2

    limx

    x

    x

    =+

    +

    x

    xx

    x

    x 1

    14 2

    lim

    x

    x

    x

    x

    x 1

    14

    2

    2

    lim +

    +

    xx =2(

    becausex < 0 and thus 2xx = ) = =+

    +

    x

    x

    x

    x

    x 1

    14

    2

    2

    lim

    4

  • 7/30/2019 Limits (L'Hospital's Rule)

    5/15

    21

    4

    11

    14

    2

    2

    lim =

    =+

    +

    x

    x

    x

    .

    However, we could use another version ofLHospitals Rule.

    LHospitals Rule for Form

    Suppose thatfandgare differentiable functions on an open interval

    containingx = a, except possibly atx = a, and that =

    )(lim xfax

    and

    = )(lim xgax . If )( )(lim xg xfax has a finite limit, or if this limit is + or

    , then)(

    )(

    )(

    )(limlim

    xg

    xf

    xg

    xf

    axax

    =

    . Moreover, this statement is also true

    in the case of a limit as ,,, + xaxax or as .+x

    Example 1:2

    3

    4

    6

    34

    56

    132

    753limlimlim 2

    2

    ==+

    =++

    +++ xxx x

    x

    xx

    xx

    Example 2: 0)0(2

    31

    2

    3

    2

    3

    1

    13limlimlim 2 ====+

    xxx

    x

    xxx

    Example 3: ===+

    4

    18

    4

    9

    12

    43limlimlim

    2

    2

    3 x

    x

    x

    x

    x

    xxx

    Example 4: +

    =+=++

    144

    1142

    8

    114

    2

    22

    limlimlimxxx

    x

    xx

    xxx

    LHospitals

    Rule does not help in this situation. We would find the limit as we

    did previously.

    5

  • 7/30/2019 Limits (L'Hospital's Rule)

    6/15

    Example 5:( )( ) 24

    4

    22

    3

    3

    2

    2

    3

    2

    33

    22

    13

    12

    1

    3

    1

    2

    )1ln(

    )1ln(limlimlimlim

    xx

    xx

    xx

    xx

    x

    x

    x

    x

    x

    x

    xxxx ++

    =++

    =

    +

    +=++

    ++++=

    3

    2

    72

    48

    72

    48

    636

    24

    612

    28

    limlimlim 2

    2

    3

    3

    ===+=++

    +++ x

    x

    x

    x

    xx

    x

    xxx

    Example 6: 02

    0

    222

    1

    1

    ln 22

    0

    3

    03

    02

    0limlimlimlim =

    =

    =

    =

    =++++

    x

    x

    x

    x

    x

    x

    x

    xxxx

    Example 7: 02

    )0(arctan1arctan

    limlimlim =

    =

    =

    +++

    x

    xx

    x

    xxx

    [This limit is

    not an indeterminate form of the type

    , so LHospitals Rule

    cannot be used.]

    III. Indeterminate Form of the Type 0

    Indeterminate forms of the type 0 can sometimes be evaluated by rewriting theproduct as a quotient, and then applying LHospitals Rule for the indeterminate

    forms of type

    0

    0or

    .

    Example 1: 0)(1

    1

    1

    lnln limlimlimlimlim

    0

    2

    02

    000

    ==

    =

    ==+++++

    xx

    x

    x

    x

    x

    xxx

    xxxxx

    Example 2: =

    =

    ==++++ x

    xx

    xx

    x

    x

    xxx

    xxxx

    tansin

    cotcsc

    1

    csc

    lnln)(sin limlimlimlim

    0000

    0)0)(1(tan

    sin

    limlim 00 ==

    ++ xx

    x

    xx

    Example 3: ( )(

    1sin

    1

    1sin1sin limlimlim

    0

    ===+++ y

    y

    x

    xx

    xyxx

    [Let xy 1= .]

    6

  • 7/30/2019 Limits (L'Hospital's Rule)

    7/15

    IV. Indeterminate Form of the Type

    A limit problem that leads to one of the expressions

    )()( ++ , )()( , )()( ++ , )()( ++

    is called an indeterminate form of type . Such limits are indeterminatebecause the two terms exert conflicting influences on the expression; one pushes

    it in the positive direction and the other pushes it in the negative direction. However,

    limits problems that lead to one the expressions

    )()( +++ , )()( + , )()( + , )()( +

    are not indeterminate, since the two terms work together (the first two produce alimit of + and the last two produce a limit of ). Indeterminate forms of thetype can sometimes be evaluated by combining the terms and manipulating

    the result to produce an indeterminate form of type00 or

    .

    Example 1: =+

    =

    =

    +++ xxx

    x

    xx

    xx

    xx xxx sincos

    1cos

    sin

    sin

    sin

    11limlimlim

    000

    02

    0

    coscossin

    sinlim

    0

    ==++

    + xxxx

    x

    x

    Example 2: ( )[ ] =

    =

    2

    0

    2

    0

    cos1lnln)cos1ln( limlim

    x

    xxx

    xx

    =

    =

    2

    1ln

    2

    sinln

    cos1ln limlim

    02

    0 x

    x

    x

    x

    xx

    V. Indeterminate Forms of the Types 1,,0 00

    Limits of the form [ ])(

    )(limxg

    ax

    xf

    [ ]

    )()(lim

    xg

    x

    xfor frequently give rise to

    indeterminate forms of the types 1,,0 00 . These indeterminate forms can

    sometimes be evaluated as follows:

    (1) [ ] )()( xgxfy =

    (2) [ ] [ ])(ln)()(lnln )( xfxgxfy xg ==

    (3) [ ] [ ]{ })(ln)(ln limlim xfxgyaxax

    =

    7

  • 7/30/2019 Limits (L'Hospital's Rule)

    8/15

    The limit on the righthand side of the equation will usually be an

    indeterminate limit of the type 0 . Evaluate this limit using the

    technique previously described. Assume that [ ]{ })(ln)(lim xfxgax

    =L.

    (4) Finally, [ ] L

    axaxax

    eyLyLy ==

    =

    limlimlim lnln .

    Example 1: Findx

    x

    xlim0+

    .

    This is an indeterminate form of the type 00 . Let === xx xyxy lnln

    xx ln . ( ) =====

    +++++ x

    x

    x

    x

    xxxy

    xxxxxlimlimlimlimlim

    02

    0000 1

    1

    1

    lnlnln 0.

    Thus, 10

    0lim ==

    +exx

    x.

    Example 2: Findxx

    x

    e2

    )1(lim

    ++ .

    This is an indeterminate form of the type 0 . Let +=

    xxey2

    )1(

    x

    eey

    x

    xx)1ln(2

    )1(lnln2 +

    =

    +=

    .

    x

    ey

    x

    xx

    )1ln(2ln limlim

    +=

    ++=

    22

    1

    2

    1

    12

    limlimlim =

    =+

    =

    +

    +++x

    x

    xx

    x

    x

    x

    x

    x e

    e

    e

    ee

    e

    . Thus,xx

    x

    e2

    )1(lim

    ++ =

    2e .

    Example 3: Find ( ) xx

    x1

    0

    coslim+

    .

    This is an indeterminate form of the type 1 . Let = xxy1

    )(cos

    x

    xxy x

    )ln(cos)(coslnln

    1

    =

    = . ==

    ++ x

    xy

    xx

    )ln(cosln limlim

    00

    ( ) 0tanlim0

    =+x

    x. Thus, ( ) x

    x

    x 1

    0

    coslim+

    = 10 =e .

    8

  • 7/30/2019 Limits (L'Hospital's Rule)

    9/15

    Practice Sheet for LHospitals Rule

    (1) =

    )2cos(1

    3

    0lim

    x

    xxex

    x

    (2) =+ 3)(ln

    limx

    x

    x

    (3) =

    )]ln()cos1[ln( 2

    0lim xxx

    (4) =

    +

    x

    x x

    32

    1lim

    (5) =

    + 12

    cos

    11

    cos

    lim

    x

    x

    x

    (6) =

    x

    xx

    x

    2

    0

    11lim

    (7) =

    2

    1

    0

    )(coslim xx

    x

    (8) =+

    ++

    1683

    275

    234

    234

    1lim

    xxx

    xxxx

    x

    (9) =

    x

    x

    x

    5819lim

    0

    (10)( ) =++ 15ln

    2ln3

    3

    limxx

    x

    (11) ( ) =+

    +

    xx

    x

    e2

    1lim

    9

  • 7/30/2019 Limits (L'Hospital's Rule)

    10/15

    (12) =

    30

    )2sin(2)4sin(lim

    x

    xx

    x

    (13) =

    xx

    x

    1

    sin

    1lim

    0

    (14) =

    +1

    1

    lim xx

    ex

    (15) =+

    xxx

    ln3

    0lim

    (16) =

    ++

    x

    x

    x

    x

    15

    12ln

    lim0

    (17) =

    +

    +

    21lim

    x

    x x

    e

    (18) = x

    x

    x

    )3arctan(sinlim

    0

    (19)( )

    =+

    3

    0

    2

    0

    sin

    limx

    dttx

    x

    (20) ( ) =+

    xx

    x

    xe1

    2

    0lim

    (21) =+ x

    x

    x

    arctanlim

    (22) = )tan2arcsin())3(arctan(sin

    lim0 x

    x

    x

    (23) = 20

    )ln(coslim

    x

    x

    x

    10

  • 7/30/2019 Limits (L'Hospital's Rule)

    11/15

    (24) =

    +

    +

    x

    x x2

    11lim

    (25) =+

    x

    x

    x1

    )(lnlim

    (26) ( =++

    xex

    x

    )1ln(lim

    Solution Key for LHospitals Rule

    (1) 2

    3

    4

    6

    2cos4

    339

    2sin2

    13

    )2cos(1

    333

    0

    33

    0

    3

    0 limlimlim ==++

    =+

    =

    x

    eexe

    x

    exe

    x

    xxexxx

    x

    xx

    x

    x

    x

    (2) ( ) ( )=====

    +++++ x

    x

    xxx

    x

    xxx

    x

    xxxxx ln61ln6

    1

    )(ln31)(ln3

    1

    )(lnlimlimlimlimlim 223

    ( )+==

    ++ 616

    1limlim

    x

    xxx

    (3) =

    =

    =

    2

    0

    2

    0

    2

    0

    cos1ln

    cos1ln)]ln()cos1[ln( limlimlim

    x

    x

    x

    xxx

    xxx

    2ln2

    1ln

    2

    sinln lim

    0

    =

    =

    x

    x

    x

    (4) Let =x

    y1

    ( ) yy

    x

    x

    yx

    3

    0

    3

    212

    1 limlim =

    ++. Now, let ( ) == zyz y ln21

    3

    ( )( )

    61

    21

    6

    )21ln(3ln

    21ln321ln limlimlim

    000

    3

    =

    =

    =

    =+++

    y

    y

    yz

    y

    yy

    yyy

    y. Thus,

    ==

    =

    +++

    6

    000limlimlim 6ln6ln ezzzyyy

    ( ) yy

    x

    x

    yx

    3

    0

    3

    2121 limlim =

    ++=

    6

    0lim

    =

    +ez

    y.

    11

  • 7/30/2019 Limits (L'Hospital's Rule)

    12/15

    (5) Let =x

    y1 =

    =

    =

    ++ + )2sin(2

    )sin(

    1)2cos(

    1)cos(

    12

    cos

    11

    cos

    limlimlim00 y

    y

    y

    y

    x

    x

    yyx

    41

    cos41

    cossin4sin limlim

    00== ++ yyy

    yyy

    .

    (6) =+

    +

    =

    2

    22

    0

    2

    0 11

    111111limlim

    xx

    xx

    x

    xx

    x

    xx

    xx

    ( ) ( )( ) ( ) 2

    1

    11

    1

    1111

    11

    202

    2

    02

    2

    0limlimlim =

    +

    =

    +

    =

    +

    xx

    x

    xxx

    xx

    xxx

    xx

    xxx.

    (7) Let ( ) ===== 200211

    )ln(cosln)ln(cos)ln(cosln)(cos limlim22

    xxy

    xxxyxy

    xx

    xx

    2

    1

    cos2

    1sin

    cos2

    sin

    2

    cos

    sin

    limlimlim000

    =

    =

    =

    xx

    x

    xx

    x

    x

    x

    x

    xxx

    . Thus, ( ) = 2

    1lnlim

    0

    yx

    ==

    21

    00limlim

    2

    1ln eyy

    xx

    21

    0

    1

    0limlim

    2

    )(cos

    == eyx

    x

    x

    x

    .

    (8) =+

    +=

    +

    +=

    +

    ++

    124836

    24260

    122412

    122120

    1683

    2752

    2

    123

    23

    1234

    234

    1

    limlimlimxx

    xx

    xxx

    xxx

    xxx

    xxxx

    xxx

    0

    20limit does not exist.

    (9) ( )=

    +

    =++

    =

    xx

    x

    x

    x

    x

    x

    x

    x

    xxx 5819

    )581(81

    5819

    581958195819limlimlim

    000

    ( ) 185

    5819

    5

    5819

    5limlim

    00

    =+

    =+ xxx

    x

    xx.

    (10)( )( )

    13015

    315

    )2(15

    )15(3

    15

    15

    2

    3

    15ln

    2ln3

    3

    3

    3

    3

    2

    3

    2

    3

    3

    limlimlimlim =+

    =+

    =

    +=+

    ++++ x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    xxxx

    12

  • 7/30/2019 Limits (L'Hospital's Rule)

    13/15

    (11) Let ( ) ( ) =+=+=+=+

    y

    x

    eeyey

    x

    x

    xxxx ln)1ln(2

    1lnln1 lim22

    2

    2

    1

    2

    1

    1

    2

    )1ln(2limlimlimlim =

    =

    +

    =+

    =+

    ++++x

    x

    xx

    x

    x

    x

    x

    x

    x

    x e

    e

    e

    ee

    e

    x

    e . Thus, =+

    yx

    lnlim

    ==

    ++

    2limlim 2ln2 eyyxx

    ( ) 22

    limlim 1

    +

    +==+ eye

    x

    xx

    x.

    (12) =+

    =

    =

    x

    xx

    x

    xx

    x

    xx

    xxx 6

    )2sin(8)4sin(16

    3

    )2cos(4)4cos(4)2sin(2)4sin(limlimlim

    02

    03

    0

    86

    48

    6

    )2cos(16)4cos(64lim

    0

    =

    =+

    xx

    x

    .

    (13) =+

    =

    =

    xxx

    x

    xx

    xx

    xx xxx sincos

    cos1

    sin

    sin1

    sin

    1limlimlim

    000

    02

    0

    coscossin

    sinlim

    0

    ==++ xxxx

    x

    x

    .

    (14)(

    .11

    1

    1

    11 0

    1

    2

    2

    11

    1

    limlimlimlim ===

    =

    =

    ++++ee

    x

    xe

    x

    eex x

    x

    x

    x

    x

    x

    x

    x

    (15) .0)3(3

    31

    1ln

    ln 3

    0

    34

    034

    031

    0

    3

    0limlimlimlimlim ==

    =

    ==

    +++++ x

    x

    x

    x

    x

    x

    xxx

    xxxxx

    (16)3

    )15)(12(

    3

    1

    )15(

    )12(5)15(2

    12

    15

    15

    12ln

    limlimlim0

    2

    00

    =++

    =

    +

    ++

    ++

    =

    ++

    xx

    x

    xx

    x

    x

    x

    x

    x

    xxx

    .

    (17) Let =x

    y 1 ( ) yy

    x

    x

    eyx

    e2

    1

    0

    2

    11 limlim +=

    +

    ++. Next, let ( ) =+= zeyz y ln1 2

    1

    ( )

    22

    1

    2

    )1ln(ln

    2

    )1ln(1ln limlimlim

    000

    21 eey

    e

    y

    eyz

    y

    eyey

    yyy

    y =+

    =+

    =+

    =++++

    . Thus,

    13

  • 7/30/2019 Limits (L'Hospital's Rule)

    14/15

    ==

    =

    +++

    2

    000limlimlim

    2ln

    2ln

    e

    yyy

    eze

    ze

    z ( ) yy

    x

    x

    eyx

    e2

    1

    0

    2

    11 limlim +=

    +

    ++=

    2

    0

    lime

    y

    ez=+

    . ( ) ( ) ( ) =+=+=+=

    y

    x

    xexeyxey

    x

    x

    xxxx lnln

    lnln lim0

    21

    21

    2

    (18)3

    1

    3sin1

    3cos3

    )3arctan(sin 2

    00limlim =

    +=

    x

    x

    x

    x

    xx

    .

    (19)( )

    3

    1

    3

    )cos(

    6

    )cos(2

    3

    )sin(sin 2

    0

    2

    02

    2

    03

    0

    2

    0limlimlimlim ====

    ++++

    x

    x

    xx

    x

    x

    x

    dtt

    xxx

    x

    x

    .

    (20) Let ( ) ( ) ( ) =+=+=+=

    yx

    xexeyxeyx

    x

    xxxx lnlnlnln lim0

    2

    1212

    ( )3

    1

    12

    ln 2

    2

    0

    2

    0limlim =+

    +

    =+

    xe

    e

    x

    xe x

    x

    x

    x

    x

    . Thus =

    =

    3ln3ln limlim

    00

    yyxx

    =

    3

    0lim eyx

    ( ) 30

    12

    0limlim eyxex

    xx

    x

    ==+

    .

    (21)0

    2arctan

    lim =+=+

    x

    x

    x

    .

    (22)2

    3

    121

    3

    tan41

    sec2

    3sin1

    3cos3

    )tan2arcsin(

    ))3(arctan(sin

    2

    2

    2

    00limlim ==

    +=

    x

    x

    x

    x

    x

    x

    xx.

    (23)

    2

    1

    cos2

    1sin

    2

    cos

    sin

    )ln(coslimlimlim

    002

    0

    =

    =

    = xx

    x

    x

    x

    x

    x

    x

    xxx

    .

    (24) Let =x

    y1

    .2

    11

    2

    11

    1

    0limlim

    y

    y

    x

    x

    yx

    +=

    +

    ++Let =

    += zyz

    y

    ln2

    11

    1

    14

  • 7/30/2019 Limits (L'Hospital's Rule)

    15/15

    .

    2

    1

    1

    211

    21

    2

    11ln

    ln2

    11ln

    2

    11ln limlimlim

    000

    1

    =+

    =

    +

    =

    +

    =

    +

    +++

    y

    y

    y

    zy

    y

    yyyy

    y

    Thus, ==

    =

    +++

    21

    000limlimlim

    2

    1ln

    2

    1ln ezzz

    yyy

    =

    +

    +

    x

    x x2

    11lim

    .2

    11 2

    1

    0

    1

    0limlim ezyy

    y

    y

    ==

    +

    ++

    (25) Let =====++ x

    xy

    x

    xxyxy

    xx

    xx)ln(ln

    ln)ln(ln

    )ln(lnln)(ln limlim11

    0

    ln

    1

    1

    ln1

    limlim ==++ xx

    xx

    xx

    . Thus, ==

    =

    +++yyy

    xxxlimlimlim 0ln0ln

    =10e 1)(ln limlim1

    ==++

    yxx

    x

    x.

    (26) ( ) ( )( ) =

    +=+=+

    +++x

    x

    x

    xx

    x

    x

    x e

    eeexe

    1lnln1ln)1ln( limlimlim

    01lnln1

    ln limlim ==

    =

    +

    ++x

    x

    xx

    x

    x e

    e

    e

    e.

    15