linear regression

26
06/27/22 http:// numericalmethods.eng.usf.edu 1 Linear Regression Mechanical Engineering Majors Authors: Autar Kaw, Luke Snyder http://numericalmethods.eng.u sf.edu Transforming Numerical Methods Education for STEM Undergraduates

Upload: malachi-cooley

Post on 03-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Linear Regression. Mechanical Engineering Majors Authors: Autar Kaw, Luke Snyder http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates. Linear Regression http://numericalmethods.eng.usf.edu. What is Regression?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Linear Regression

04/20/23http://

numericalmethods.eng.usf.edu 1

Linear Regression

Mechanical Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

Undergraduates

Page 2: Linear Regression

Linear Regression

http://numericalmethods.eng.usf.edu

Page 3: Linear Regression

http://numericalmethods.eng.usf.edu3

What is Regression?

What is regression? Given n data points

),( , ... ),,(),,( 2211 nn yxyx yx

best fit )(xfy to the data. The best fit is generally based onminimizing the sum of the square of the

residuals, rS

Residual at a point is

)( iii xfy

n

i

iir xfyS1

2))((),( 11 yx

),( nn yx

)(xfy

Figure. Basic model for regression

Sum of the square of the residuals

.

Page 4: Linear Regression

http://numericalmethods.eng.usf.edu4

Linear Regression-Criterion#1

),( , ... ),,(),,( 2211 nn yxyx yx

Given n data points

best fit xaay 10

to the data.

Does minimizing

n

ii

1

work as a criterion, where )( 10 iii xaay

x

iiixaay

10

11, yx

22, yx

33, yx

nnyx ,

iiyx ,

iiixaay

10

y

Figure. Linear regression of y vs. x data showing residuals at a typical

point, xi .

Page 5: Linear Regression

http://numericalmethods.eng.usf.edu5

Example for Criterion#1

x y

2.0 4.0

3.0 6.0

2.0 6.0

3.0 8.0

Example: Given the data points (2,4), (3,6), (2,6) and (3,8), best fit the data to a straight line using Criterion#1

Figure. Data points for y vs. x data.

Table. Data Points

0

2

4

6

8

10

0 1 2 3 4

x

y

Page 6: Linear Regression

http://numericalmethods.eng.usf.edu6

Linear Regression-Criteria#1

04

1

i

i

x y ypredicted ε = y - ypredicted

2.0 4.0 4.0 0.0

3.0 6.0 8.0 -2.0

2.0 6.0 4.0 2.0

3.0 8.0 8.0 0.0

Table. Residuals at each point for regression model y = 4x – 4.

Figure. Regression curve for y=4x-4, y vs. x data

0

2

4

6

8

10

0 1 2 3 4

x

y

Using y=4x-4 as the regression curve

Page 7: Linear Regression

http://numericalmethods.eng.usf.edu7

Linear Regression-Criteria#1

x y ypredicted ε = y - ypredicted

2.0 4.0 6.0 -2.0

3.0 6.0 6.0 0.0

2.0 6.0 6.0 0.0

3.0 8.0 6.0 2.0

04

1

i

i

0

2

4

6

8

10

0 1 2 3 4

x

y

Table. Residuals at each point for y=6

Figure. Regression curve for y=6, y vs. x data

Using y=6 as a regression curve

Page 8: Linear Regression

http://numericalmethods.eng.usf.edu8

Linear Regression – Criterion #1

04

1

i

i for both regression models of y=4x-4 and y=6.

The sum of the residuals is as small as possible, that is zero, but the regression model is not unique.

Hence the above criterion of minimizing the sum of the residuals is a bad criterion.

Page 9: Linear Regression

http://numericalmethods.eng.usf.edu9

Linear Regression-Criterion#2

x

iiixaay

10

11, yx

22, yx

33, yx

nnyx ,

iiyx ,

iiixaay

10

y

Figure. Linear regression of y vs. x data showing residuals at a typical

point, xi .

Will minimizing

n

ii

1

work any better?

Page 10: Linear Regression

http://numericalmethods.eng.usf.edu10

Linear Regression-Criteria 2

x y ypredicted |ε| = |y - ypredicted|

2.0 4.0 4.0 0.0

3.0 6.0 8.0 2.0

2.0 6.0 4.0 2.0

3.0 8.0 8.0 0.0

 

0

2

4

6

8

10

0 1 2 3 4

x

y

Table. The absolute residuals employing the y=4x-4 regression model

Figure. Regression curve for y=4x-4, y vs. x data

44

1

i

i

Using y=4x-4 as the regression curve

Page 11: Linear Regression

http://numericalmethods.eng.usf.edu11

Linear Regression-Criteria#2

x y ypredicted |ε| = |y – ypredicted|

2.0 4.0 6.0 2.0

3.0 6.0 6.0 0.0

2.0 6.0 6.0 0.0

3.0 8.0 6.0 2.0

44

1

i

i

Table. Absolute residuals employing the y=6 model

0

2

4

6

8

10

0 1 2 3 4

x

y

Figure. Regression curve for y=6, y vs. x data

Using y=6 as a regression curve

Page 12: Linear Regression

http://numericalmethods.eng.usf.edu12

Linear Regression-Criterion#2

Can you find a regression line for which

44

1

i

i and has unique

regression coefficients?

for both regression models of y=4x-4 and y=6.

The sum of the errors has been made as small as possible, that is 4, but the regression model is not unique.

Hence the above criterion of minimizing the sum of the absolute value of the residuals is also a bad criterion.

44

1

i

i

Page 13: Linear Regression

http://numericalmethods.eng.usf.edu13

Least Squares Criterion

The least squares criterion minimizes the sum of the square of the residuals in the model, and also produces a unique line.

2

110

1

2

n

iii

n

iir xaayS

x

iiixaay

10

11, yx

22, yx

33, yx

nnyx ,

iiyx ,

iiixaay

10

y

Figure. Linear regression of y vs. x data showing residuals at a typical

point, xi .

Page 14: Linear Regression

http://numericalmethods.eng.usf.edu14

Finding Constants of Linear Model

2

110

1

2

n

iii

n

iir xaayS Minimize the sum of the square of the

residuals:To find

0121

100

n

iii

r xaaya

S

021

101

n

iiii

r xxaaya

S

giving

i

n

iii

n

ii

n

i

xyxaxa

1

2

11

10

0a and

1a we minimize

with respect to

1a 0aand

rS .

n

iii

n

i

n

i

yxaa11

11

0

)( 10 xaya

Page 15: Linear Regression

http://numericalmethods.eng.usf.edu15

Finding Constants of Linear Model

0a

Solving for

2

11

2

1111

n

ii

n

ii

n

ii

n

ii

n

iii

xxn

yxyxn

a

and

2

11

2

1111

2

0

n

ii

n

ii

n

iii

n

ii

n

ii

n

ii

xxn

yxxyx

a

1aand directly yields,

)( 10 xaya

Page 16: Linear Regression

http://numericalmethods.eng.usf.edu16

Example 1

Temperature,

T

Coefficient of Thermal Expansion,

80

60

40

20

0

−20

−40

−60

−80

−100

−120

−140

−160

−180

−200

−220

−240

−260

−280

−300

−320

−340

F0 Finin 0/610470.6 610360.6 610240.6 610120.6 610000.6 610860.5 610720.5 610580.5 610430.5 610280.5

610090.5 610910.4 610720.4 610520.4 610300.4 610080.4 610830.3 610580.3 610330.3 610070.3 610760.2 610450.2

The coefficient of thermal expansion of steel is given at discrete values of temperature, as shown in the table.

Table. Data points for thermal expansion vs. temperature

If the data is regressed to a first order polynomial,

Tkk 21 Find the constants of the model.

Page 17: Linear Regression

http://numericalmethods.eng.usf.edu17

Example 1 cont.The necessary summations are

calculated as286022

1

i

iT

422

1

105070.1

i

i

222

1

100416.1

i

iiT

000,72622

1

2 i

T

F0

Finin 0//

inin /

20 F

Page 18: Linear Regression

http://numericalmethods.eng.usf.edu18

Example 1 cont.We can now calculate the value of using

2k

222

1

22

1

2

22

1

22

1

22

12

ii

ii

ii

ii

iii

TTn

TTnk

2

42

)2860()726000(22

)100570.1)(2860()100416.1(22

91038689 . 20 )/(/ Finin

Page 19: Linear Regression

http://numericalmethods.eng.usf.edu19

Example 1 cont.The value

for 1k can be calculated using

_

2

_

1 Tkk where

ni

i

22

1_

6108045.4 Finin 0/

n

TT i

i

22

1_

130 F0

_

2

_

1 Tkk

)130)(103868.9(108045.4 96

6100248.6 Finin //

The regression model is now given by

T96 103868.9100248.6

Page 20: Linear Regression

http://numericalmethods.eng.usf.edu20

Question: Can you find the decrease in the diameter of a

solid cylinder of radius 12” if the cylinder is cooled from a room temperature of 80°F to a dry-

ice/alcohol bath with temperatures of −108°F?

What would be the error if you used the thermal expansion

coefficient at room temperature to find the answer?

Example 1 cont.

Figure. Linear regression of Coefficient of Thermal expansion vs.

Temperature data

Page 21: Linear Regression

http://numericalmethods.eng.usf.edu21

Example 2

Strain Stress

(%) (MPa)

0 0

0.183 306

0.36 612

0.5324 917

0.702 1223

0.867 1529

1.0244 1835

1.1774 2140

1.329 2446

1.479 2752

1.5 2767

1.56 2896

To find the longitudinal modulus of composite, the following data is collected. Find the longitudinal modulus, Table. Stress vs. Strain data

E using the regression model E and the sum of the square of

the

0.0E+00

1.0E+09

2.0E+09

3.0E+09

0 0.005 0.01 0.015 0.02

Strain, ε (m/m)

Str

ess,

σ (

Pa)

residuals.

Figure. Data points for Stress vs. Strain data

Page 22: Linear Regression

http://numericalmethods.eng.usf.edu22

Example 2 cont.

iii E Residual at each point is given by

The sum of the square of the residuals then is

n

iirS

1

2

n

iii E

1

2

0)(21

i

n

iii

r EE

S

Differentiate with respect to

E

n

ii

n

iii

E

1

2

1

Therefore

Page 23: Linear Regression

http://numericalmethods.eng.usf.edu23

Example 2 cont.

i ε σ ε 2 εσ

1 0.0000 0.0000 0.0000 0.0000

2 1.8300×10−3 3.0600×108 3.3489×10−6 5.5998×105

3 3.6000×10−3 6.1200×108 1.2960×10−5 2.2032×106

4 5.3240×10−3 9.1700×108 2.8345×10−5 4.8821×106

5 7.0200×10−3 1.2230×109 4.9280×10−5 8.5855×106

6 8.6700×10−3 1.5290×109 7.5169×10−5 1.3256×107

7 1.0244×10−2 1.8350×109 1.0494×10−4 1.8798×107

8 1.1774×10−2 2.1400×109 1.3863×10−4 2.5196×107

9 1.3290×10−2 2.4460×109 1.7662×10−4 3.2507×107

10 1.4790×10−2 2.7520×109 2.1874×10−4 4.0702×107

11 1.5000×10−2 2.7670×109 2.2500×10−4 4.1505×107

12 1.5600×10−2 2.8960×109 2.4336×10−4 4.5178×107

1.2764×10−3 2.3337×108

Table. Summation data for regression model

12

1i

12

1

32 102764.1i

i

With

and

12

1

8103337.2i

ii

Using

12

1

2

12

1

ii

iii

E

3

8

102764.1

103337.2

GPa84.182

Page 24: Linear Regression

http://numericalmethods.eng.usf.edu24

Example 2 Results 84.182The

equation

Figure. Linear regression for Stress vs. Strain data

describes the data.

Page 25: Linear Regression

Additional ResourcesFor all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/linear_regression.html

Page 26: Linear Regression

THE END

http://numericalmethods.eng.usf.edu