linear systems lect2 .pdf

Upload: santhosh-gs

Post on 07-Jan-2016

237 views

Category:

Documents


0 download

TRANSCRIPT

  • EL 625 Lecture 2 1

    EL 625 Lecture 2

    State equations of finite dimensional linear systems

    Continuous-time:

    x(t) = A(t)x(t) + B(t)u(t)

    y(t) = C(t)x(t) + D(t)u(t)

    Discrete-time:

    x(tk+1) = A(tk)x(tk) + B(tk)u(tk)

    y(tk) = C(tk)x(tk) + D(tk)u(tk)

    state x(t) - vector of length n 1input u(t) - r 1output y(t) - m 1

    A,B,C and D are matrices of sizes n n, n r,m n and m rrespectively.

    If A,B,C,D are functions of time timevaryingIf these matrices are constant with time time-invariant

  • EL 625 Lecture 2 2

    State Differential equations of circuits

    basic elements resistor, capacitor, inductor

    Resistor:

    vR(t) = R(t)iR(t)

    vR(t) : the voltage across the resistor

    iR(t) : the current through the resistor

    R(t) : the resistance

    A resistor is a zero-memory element.

    BBB

    BBBB

    BBBB

    BBBB

    R

    h h

    + vR

    -iR

    Any circuit with only resistors (a purely resistive network) has

    zero-memory and is of zero order (needs no states to describe it).

  • EL 625 Lecture 2 3

    Capacitor: iC(t) = qC(t) , qC(t) = C(t)vC(t) where:

    iC(t) : the current through the capacitor

    qC(t) : the electrical charge in the capacitor

    vC(t) : the voltage across the capacitor

    C(t) : the capacitance

    C(t)dvC(t)dt = iC(t) dC(t)dt vC(t)If the capacitance does not change with time,

    C dvC(t)dt = iC(t)

    C

    h h

    + vC

    -iC

  • EL 625 Lecture 2 4

    Inductor: vL(t) = (t) , (t) = L(t)iL(t) where:

    iL(t) : the current through the inductor

    vL(t) : the voltage across the inductor

    (t) : the flux stored in the inductor

    L(t) : the inductance

    L(t)diL(t)dt = vL(t) dL(t)dt iL(t)If the inductance does not change with time,

    LdiL(t)dt = vL(t)

    L

    h h

    + vL

    -iL

  • EL 625 Lecture 2 5

    Example:

    LC1

    PPPPPPPPP

    PP

    R1

    C2

    PPPPPPPPP

    PP

    R2

    &%

    '$

    &%

    '$

    +

    e1(t)

    e2(t)

    +

    +

    + +

    -

    iL(t)

    vL(t)

    ? ?i1(t) i2(t)

    v2(t)

    v1(t)

    Applying Kirchoffs current and voltage laws,

    iL = i1 + i2

    e1 = vL + i1R1 + v1

    e1 = vL + v2 + i2R2 + e2

    From the terminal relationships of the capacitors and the inductor,

    v1 =1C1i1

    v2 =1C2i2

    iL =1LvL

  • EL 625 Lecture 2 6

    The inputs are e1 and e2. The output is the voltage across the

    inductor, vL. Choosing as our states, iL, v1 and v2,

    x =

    iL

    v1

    v2

    , u =

    e1

    e2

    , y = [vL]

    Need to express x in terms of x and the inputs, e1 and e2,. . .

    iL =1LvL

    But, vL is not a state variable. . . we need to express vL in terms of

    the state variables and the inputs. . .

    vL = iL R1R2R1 +R2

    +v1 R2R1 + R2

    +v2 R1R1 + R2

    +e1+e2 R1R1 +R2

    iL = iL

    R1R2L(R1 + R2)

    + v1 R2L(R1 + R2)

    + v2 R1L(R1 +R2)

    +e1

    1L

    + e2 R1L(R1 + R2)

  • EL 625 Lecture 2 7

    Similarly,

    i1 = iL R2R1 +R2

    + v1 1R1 +R2

    + v2 1R1 +R2

    + e2 1R1 + R2

    v1 =1C1i1

    = iL

    R2C1(R1 + R2)

    + v1 1C1(R1 + R2)

    + v2 1C1(R1 + R2)

    +e2

    1C1(R1 +R2)

    i2 = iL R1R1 +R2

    + v1 1R1 +R2

    + v2 1R1 +R2

    + e2 1R1 + R2

    v2 =1C2i2

    = iL

    R1C2(R1 + R2)

    + v1 1C2(R1 + R2)

    + v2 1C2(R1 + R2)

    +e2

    1C2(R1 +R2)

  • EL 625 Lecture 2 8

    x = Ax + Bu

    y = Cx + Du

    where

    A =

    R1R2L(R1+R2)

    R2L(R1+R2)

    R1L(R1+R2)

    R2C1(R1+R2)

    1C1(R1+R2)

    1C1(R1+R2)

    R1C2(R1+R2)

    1C2(R1+R2)

    1C2(R1+R2)

    B =

    1L

    R1L(R1+R2)

    0 1C1(R1+R2)

    0 1C2(R1+R2)

    C =[R1R2R1+R2

    R2R1+R2

    R1R1+R2

    ]

    D =[

    1 R1R1+R2]

  • EL 625 Lecture 2 9

    State Differential Equations of Mechanical Systems

    Spring:

    fK(t) = K(t)[z2(t) z1(t)]Hookes Law where:

    z1(t) and z2(t) : the displacements of the two ends of the spring

    fK(t) : the force applied

    K(t) : the spring constant K-

    z1 z2 fK

    Damping Element:

    fD(t) = D(t)[v2(t) v1(t)]where:

    v1(t) and v2(t) : the velocities of the two ends of the damping element

    fD(t) : the force applied

    D(t) : the damping coefficient.

    D

    -v1 v2fD

  • EL 625 Lecture 2 10

    Mass:

    M(t)dv(t)dt = fM(t) dM(t)dt v(t)where:

    v(t) : the velocity of the mass

    fM(t) : the force applied

    M(t) : the mass.If mass does not change with time,

    M dv(t)dt = fM(t)

    .

    M -v

    fM

  • EL 625 Lecture 2 11

    Example:

    D

    M1 KM2

    - -x1 x2

    - f(t)

    f (t) is the input and x2(t) is the output. u = [f (t)],y = [x2]

    Choose as the state variables

    x1, x2, v1 and v2 where

    v1 = x1 and v2 = x2.

    = x =

    x1

    x2

    v1

    v2

    M2v2 = f(t) + K(x1 x2)M1v1 = K(x2 x1) + D(v1)

  • EL 625 Lecture 2 12

    x = Ax +Bu

    y = Cx + Du

    where

    A =

    0 0 1 0

    0 0 0 1

    KM1

    KM1

    DM1

    0

    KM2

    KM2

    0 0

    B =

    0

    0

    0

    1M2

    C =

    [0 1 0 0

    ]D = [0]

  • EL 625 Lecture 2 13

    Choice of state variables is not unique

    Let xa(t) be a valid set of state variables with

    xa = Aaxa +Bau

    y = Caxa +Dau. (1)

    Consider xb(t) = Txa(t) where T is an nn nonsingular matrix.xb = T xa = TAaT1xb + TBau

    y = CaT1xb + Dau. (2)

    xb(t) is also a valid set of state variables!

    xb = Abxb + Bbu

    y = Cbxb +Dbu (3)

    where:

    Ab = TAaT1

    Bb = TBb

    Cb = CaT1

    Db = Da (4)

    Similarity Transformation: xb = Txa

  • EL 625 Lecture 2 14

    Convenient choice of state variables :

    inductor currents and capacitor voltages for fixed net-

    works

    inductor fluxes and capacitor charges for time-varying net-

    works

    differences in displacements of the ends of springs

    from their equilibrium positions and velocities of masses

    for mechanical systems

    Simulation Diagrams:

    Basic Simulator Elements:

    1. Dynamic element

    (a) integrator : for analog systems

    -

    -u(t) y(t) = y(t0) + tt0u() d

    y = D1u

    (b) delay : for discrete-time systems

    - -u(tk) y(tk) = u(tk1)

    y = E1u

  • EL 625 Lecture 2 15

    2. Summing element - adder

    &%

    '$

    --+u1(t)1+u2(t) ... 6+

    ur(t)

    y(t) =ri=1

    ui(t)

    3. Scaling Element (Amplifier or Attenuator)

    -

    HHHHH -u(t) y(t) = K(t) u(t)K(t)

    Minimal Realization: Fewest possible number of dynamic el-

    ements.

    Convenient choice of state variables Outputs of integrators

    and delay elements

    Example:

    y... + 3ty + 2y + (t)y = u + etu + u

    D3y + 3tD2y + 2Dy + (t)y = D2u + etDu + u

    (D is the derivative operator)

    y = D3{D2u 3tD2y + etDu 2Dy + u (t)y}

    y = D1{D2(D2u 3tD2y) + D1{D1(etDu 2Dy)

  • EL 625 Lecture 2 16

    +D1{u (t)y}}}= D1

    {uD2(3tD2y) + D1{D1(etDu) 2y

    +D1{u (t)y}}}

    Using integration by parts,

    D2(3tD2y) = D1(3tDy D1(3Dy))= D1(3tDy 3y)= 3ty D1(3y)D1(3y)= 3ty D1(6y)

    D1(etDu) = etu +D1(uet)

    Thus,

    y = D1{u 3ty +D16y + D1{etu + D1(uet) 2y

    +D1{u (t)y}}}= D1

    {u 3ty + D1{etu + +4y +D1{u + uet (t)y}}}

  • EL 625 Lecture 2 17

    Simulation Diagram:

    - -

    HHHHHH

    1 + et

    -

    - -

    - -

    -

    ?

    ?

    AAAAAA

    (t)?

    ?

    AAAAAA

    4?

    ?

    AAAAAA

    3t

    6

    6

    6

    AAAAAA

    et

    u y+ + + +

    + +x1x2x3

    Choosing the outputs of the integrators as the states, we have

    x1 = u 3tx1 + x2x2 = 4x1 + x3 + etu

    x3 = u(1 + et) (t)x1y = x1

    x =

    x1

    x2

    x3

    x = A(t)x + B(t)u

    y = C(t)x + D(t)u

    A(t) =

    3t 1 04 0 1

    (t) 0 0

    ; B(t) =

    1

    et

    1 + et

    ; C(t) =

    1

    0

    0

    T

    ; D(t) = [0]

  • EL 625 Lecture 2 18

    Example:

    y(k + 3) + 3ky(k + 2) + 2y(k + 1) + (k)y(k) = u(k + 2) + eku(k + 1)

    +u(k)

    E3y(k) + 3kE2y(k) + 2Ey(k) + (k)y(k) = E2u(k) + ekEu(k)

    +u(k)

    where E is the delay operator.

    y(k) = E3{E2u(k) 3kE2y(k) + ekEu(k) 2Ey(k) + u(k)

    (k)y(k)}= E1

    {E2(E2u(k) 3kE2y(k)) + E1{E1(ekEu(k) 2Ey(k))

    +E1{u(k) (k)y(k)}}}

    E2(3kE2y(k)) = 3(k 2)y(k)E1(ekEu(k)) = ek1u(k)

    Thus,

    y(k) = E1{u(k) 3(k 2)y(k) + E1{e(k1)u(k) 2y(k)

    +E1{u(k) (k)y(k)}}}

  • EL 625 Lecture 2 19

    Simulation Diagram:

    -

    -- -- --

    ?

    ?

    AAAAAA

    (k)?

    ?

    AAAAAA

    2?

    ?

    AAAAAA

    3(k 2)

    6

    6

    6

    AAAAAA

    e(k1)

    u(k) y(k)+ + +

    + +x1x2x3

    Choosing the outputs of the delay elements as the states, we have

    x1(k + 1) = u(k) 3(k 2)x1(k) + x2(k)x2(k + 1) = e(k1)u(k) 2x1(k) + x3(k)x3(k + 1) = u(k) (k)x1(k)

    y(k) = x1(k)

    x(k) =

    x1(k)

    x2(k)

    x3(k)

    x(k + 1) = A(k)x(k) + B(k)u(k)

    y(k) = C(k)x(k) + D(k)u(k)

  • EL 625 Lecture 2 20

    A(k) =

    3(k 2) 1 02 0 1(k) 0 0

    B(k) =

    1

    e(k1)

    1

    C(k) =[

    1 0 0]

    D(k) = [0]

  • EL 625 Lecture 2 21

    Simpler method if no derivatives of the input are in the equation:

    y(n)+n1(t)y(n1)+n2(t)y(n2)+. . .+1(t)y(1)+0(t)y = (t)u(t)

    (y(i) ith derivative of y(t))Choose,

    x1 = y

    x2 = y(1)

    x3 = y(2)

    ...

    xn = y(n1)

    x =

    x1

    x2

    x3...

    xn

    x1 = x2

    x2 = x3...

    xn1 = xn

    xn = n1(t)xn n2(t)xn1 . . . 0(t)x1+(t)u(t)

    y = x1

  • EL 625 Lecture 2 22

    x =

    0 1 0 . . . 0... . . . . . . . . . ...... . . . . . . 0

    0 . . . . . . 0 1

    0 1 . . . n2 n1

    A

    x +

    0

    0......

    B

    u

    A is in companion matrix form.

    y =[

    1 0 0 . . . 0]

    C

    x + [0]D

    u

    Another method: Let 0, 1, . . . , n1 and be constants.

    Dny + n1Dn1y + n2Dn2y + . . . + 1Dy + 0y = u

    Dny = n1Dn1y n2Dn2y . . . 1Dy 0y + uy = Dn

    {n1Dn1y n2Dn2y . . . 1Dy 0y + u}= D1

    { n1y + D1{ n2y + D1{ . . .+D1(0y + u ) . . . }

    }}

    n

  • EL 625 Lecture 2 23

    z1 = n1z1 + z2z2 = n2z1 + z3

    ...

    zn1 = 1z1 + xnzn = 0z1 + uy = z1

    z =

    z1

    z2...

    zn1zn

    z =

    n1 1 0 . . . . . . 0n2 0 1 0 . . . 0

    ... ... . . . . . . . . . ...

    2 ... 0 1 01 0 . . . . . . 0 10 0 . . . . . . . . . 0

    A

    z +

    0

    0...

    0

    0

    B

    u

    y =[

    1 0 0 . . . 0]

    C

    z + [0]Du

    This method gave different A and B matrices . . . - z and x are

    related through a similarity transformation.

  • EL 625 Lecture 2 24

    z = Tx

    where

    T =

    1 0 . . . . . . 0

    n1 1 0 . . . ...... . . . . . . . . . ...

    2 . . . n1 1 0

    1 . . . . . . n1 1

    It can be checked that A = TAT1, B = TB, C = CT1 and

    D = D.

    The D matrix does not change under a similarity transforma-

    tion.

    A non-singular D matrix = the impulse response has an impulse.

  • EL 625 Lecture 2 25

    MIMO systems:

    y1 + t2y2 + y1 + ty1 + y2 = tu1 + u2

    y2 + ty1 + y2 y1 = tu1 + u2From the first equation,

    D2y1 + t2Dy2 + Dy1 + ty1 + y2 = tu1 + Du2

    y1 = D2{ t2Dy2 Dy1 +Du2 + tu1 ty1 y2}

    = D1{D1(t2Dy2 Dy1 + Du2) + D1{tu1 ty1 y2}

    }

    D1(t2Dy2) = t2y2 D1(2ty2)Thus,

    y1 = D1{u2 y1 t2y2 + D1{2ty2 + tu1 ty1 y2}

    }Similarly, from second equation,

    D2y2 + tDy1 + y2 y1 = tDu1 + u2

    y2 = D2{tDu1 tDy1 + u2 + y1 y2

    }= D1

    {D1(tDu1 tDy1) + D1{u2 + y1 y2}

    }

  • EL 625 Lecture 2 26

    D1(tDu1) = tu1 D1u1D1(tDy1) = ty1 D1y1

    y2 = D1{tu1 ty1 + D1{2y1 y2 u1 + u2}

    }

    State-space realization:

    x1 = x1 +x2 t2x3 +u2x2 = tx1 +(2t 1)x3 +tu1x3 = tx1 +x4 +tu1x4 = 2x1 x3 u1 +u2y1 = x1

    y2 = x2

  • EL 625 Lecture 2 27

    Simulation Diagram

    -

    -

    -

    -

    -

    -

    -

    -

    ?

    ?

    AAAAAA

    t?

    ?

    AAAAAA

    2

    ?

    ?

    ?

    AAAAAA

    t

    6

    6

    AAAAAA

    2t 16

    6

    AAAAAA

    t2

    - -

    HHHHHH

    t

    6

    6

    AAAAAA

    t

    @@R

    6

    @@@R

    y1

    y2

    u1

    u2

    x1

    x3

    x2

    x4

    +

    +

    +

    +

    ++

    +

    +