linearized equations and modes of motion.pdf

Upload: gustavojorge12

Post on 02-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    1/15

    Linearized Equationsand Modes of Motion

    Robert Stengel, Aircraft Flight DynamicsMAE 331, 2012

    Linearization of nonlinear dynamic models Nominal ight path

    Perturbations about the nominal ight path

    Modes of motion Longitudinal

    Lateral-directional

    Copyright 2012 by Robert Stengel. A ll rights reserved. For education al use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    The Mystery Airplane: Convair XF-92A (1948)

    ! Precursor to F-102, F-106, B-58, and F2Y ! M = 1.05 in a dive; under-powered, pre-area rule ! Landed at ! = 45, V = 67 mph (108 km/h) ! Violent pitchup during high-speed turns, alleviated by

    wing fences ! Poor high-speed and good low-speed handling qualities

    Nominal and ActualFlight Paths

    Nominal and Actual Trajectories Nominal (or reference) trajectory and

    control history

    x N (t ), u N (t ), w N (t ){ } for t in [ t o , t f ]

    Actual trajectory perturbed by Small initial condition variation, xo(t o ) Small control variation, u( t )

    x (t ), u (t ), w (t ){ } for t in [ t o , t f ]= x

    N (t ) + ! x (t ), u N (t ) + ! u (t ), w N (t ) + ! w (t ){ }

    x : dynamic stateu : control input w : disturbance input

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    2/15

    Both Paths Satisfy theDynamic Equations

    Dynamic models for the actual and thenominal problems are the same

    !x N (t ) = f [x N (t ), u N (t ), w N (t )], x N t o( ) given

    !x (t ) = f [x (t ), u (t ), w (t )], x t o( ) given

    !x (t ) = !x N (t ) + ! !x (t )x (t ) " x N (t ) + ! x (t )

    #$%

    &%

    '(%

    )% in t o , t f *+ ,-

    ! x (t o ) = x (t o ) " x N (t o )

    ! u (t ) = u (t ) " u N (t )! w (t ) = w (t ) " w N (t )

    #$%

    &%

    '(%

    )% in t o , t f *+ ,-

    Differences in initialcondition and forcing ...

    ... perturb rate ofchange and the state

    Approximate NeighboringTrajectory as a Linear Perturbation

    to the Nominal Trajectory

    !x (t ) = !x N (t ) + ! !x (t )

    " f [x N (t ), u N (t ), w N (t ), t ] +# f

    # x! x (t ) +

    # f

    # u! u (t ) +

    # f

    # w! w (t )

    Approximate the new trajectory as the sum of thenominal path plus a linear perturbation

    !x N (t ) = f [x N (t ), u N (t ), w N (t ), t ]!x (t ) = !x N (t ) + ! !x (t ) = f [x N (t ) + ! x (t ), u N (t ) + ! u (t ), w N (t ) + ! w (t ), t ]

    Linearized Equation ApproximatesPerturbation Dynamics

    Solve for the nominal and perturbation trajectories

    separately

    !x N (t ) = f [x N (t ), u N (t ), w N (t ), t ], x N t o( ) given

    ! !x (t ) " # f

    # x x = x N ( t )u = u N ( t )w = w N ( t )

    ! x (t )$

    %

    &&&

    '

    (

    )))

    +# f

    # u x = x N ( t )u = u N ( t )w = w N ( t )

    ! u (t )$

    %

    &&&

    '

    (

    )))

    +# f

    # w x = x N ( t )u = u N ( t )w = w N ( t )

    ! w (t )$

    %

    &&&

    '

    (

    )))

    " F (t )! x (t ) + G (t )! u (t ) + L (t )! w (t ), ! x t o( ) given

    dim( x ) = n ! 1

    dim( u ) = m ! 1

    dim( w ) = s ! 1

    dim( ! x ) = n " 1

    dim( ! u ) = m " 1

    dim( ! w ) = s " 1

    Nominal Equation

    Perturbation Equation

    Jacobian Matrices Express SolutionSensitivity to Small Perturbations

    Sensitivity to state perturbations: stability matrix, F, is square

    F (t ) =! f

    ! x x = x N ( t )u = u N ( t )w = w N ( t )

    =

    ! f 1 ! x1! ! f 1 ! xn

    ! ! !! f n

    ! x1! ! f n

    ! xn

    "

    #

    $$$$$

    %

    &

    '''''

    x = x N ( t )u = u N ( t )w = w N ( t )

    G (t ) =! f

    ! u x = x N ( t )u = u N ( t )

    w=

    w N ( t )

    L (t ) =! f

    ! w x = x N ( t )u = u N ( t )w = w N ( t )

    Sensitivity to control and disturbance perturbations issimilar, but matrices, G and L, may not be square

    dim( F ) = n ! n

    dim( G ) = n ! m dim( L ) = n ! s

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    3/15

    Linear and nonlinear, time-varying and time-invariant dynamic models Numerical integration ( time domain )

    Linear, time-invariant (LTI) dynamic models Numerical integration ( time domain ) State transition (

    time domain ) Transfer functions ( frequency domain )

    How Is SystemResponse Calculated?

    Numerical Integration :MATLAB Ordinary Differential Equation

    Solvers *

    Explicit Runge-KuttaAlgorithm

    Numerical DifferentiationFormula

    * http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/ode23.html. Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientic Computing , Vol. 18, 1997, pp 1-22.

    Adams-Bashforth-MoultonAlgorithm

    Modied RosenbrockMethod

    Trapezoidal Rule

    Trapezoidal Rule w/BackDifferentiation

    MATLAB Simulation of Linear andNonlinear Dynamic Systems

    MATLAB Main Script

    % Nonlinear and Linear Examples

    clear tspan = [0 10];xo = [0, 10]; [t1,x1 = ode23('NonLin',tspan,xo); xo = [0, 1]; [t2,x2] = ode23('NonLin',tspan,xo);xo = [0, 10]; [t3,x3] = ode23('Lin',tspan,xo); xo = [0, 1]; [t4,x4] = ode23('Lin',tspan,xo);

    subplot(2,1,1) plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g') ylabel('Position'), grid subplot(2,1,2) plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g') xlabel('Time'), ylabel('Rate'), grid

    Linear System

    function xdot = Lin(t,x) % Linear Ordinary Differential Equation % x(1) = Position % x(2) = Rate xdot = [x(2)

    -10*x(1) - x(2)];

    Nonlinear System

    function xdot = NonLin(t,x) % Nonlinear Ordinary Differential Equation % x(1) = Position % x(2) = Rate xdot = [x(2)

    -10*x(1) + 0.8*x(1)^3 - x(2)];

    x 1( t ) = x 2 ( t )

    x 2 ( t ) = " 10 x 1( t ) " x 2 ( t )

    x 1( t ) = x 2 ( t )

    x 2 ( t ) = " 10 x 1( t ) + 0.8 x 13 ( t ) " x 2 ( t )

    Comparison of DampedLinear and Nonlinear Systems

    ! x 1 (t ) = x 2 (t )

    ! x 2 (t ) = ! 10 x 1 (t ) ! 10 x 1

    3 (t ) ! x 2 (t )

    Linear plus Stiffening Cubic Spring

    Linear plus Weakening Cubic Spring

    ! x 1 (t ) = x 2 (t )

    ! x 2 (t ) = ! 10 x 1(t ) + 0.8 x 1

    3 (t ) ! x 2 (t )

    ! x 1 (t ) = x 2 (t )

    ! x 2 (t )=

    ! 10 x 1 (t ) ! x 2 (t )

    Linear Spring Spring Force vs.Displacement

    Spring Damper

    Displacement

    Rate of Change

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    4/15

    Linear and StiffeningCubic Springs: Small and

    Large Initial Conditions

    Linear and nonlinear responses are indistinguishable with small initial condition

    Linear and Weakening Cubic Springs: Small andLarge Initial Conditions

    Linear, Time-Varying (LTV)Approximation of

    Perturbation Dynamics

    Stiffening Linear-Cubic SpringExample

    ! Nonlinear, time-invariant (NTI) equation

    ! x1 (t ) = f 1 = x2 (t )

    ! x2 (t ) = f 2 = ! 10 x1 (t ) ! 10 x13 (t ) ! x2 (t )! Integrate equations to produce nominal path

    x1 N (0)

    x2 N (0)

    !

    "##

    $

    %&&'

    f 1 N f 2 N

    !

    "##

    $

    %&&dt '

    0

    t f

    ( x1 N (t )

    x2 N (t )

    !

    "##

    $

    %&&

    in 0, t f !" $%

    ! Analytical evaluation of partial derivatives

    ! f 1! x1

    = 0; ! f 1

    ! x2= 1

    ! f 2!

    x1= " 10 " 30 x1 N

    2 (t ); ! f 2

    ! x2

    = " 1

    ! f 1! u

    = 0; ! f 1

    ! w = 0

    ! f 2! u

    = 0; ! f 2

    ! w = 0

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    5/15

    Nominal (NTI) and Perturbation(LTV) Dynamic Equations

    !x N (t ) = f [x N (t )], x N (0) given

    ! x1 N (t ) = x2 N (t )! x2 N (t ) = ! 10 x1 N (t ) ! 10 x1 N

    3 (t ) ! x2 N (t )

    ! !x (t ) = F (t )! x (t ), ! x (0) given

    ! ! x1(t )! ! x2 (t )

    "

    #$$

    %

    &''

    =0 1

    ( 10 + 30 x1 N 2 (t )( ) ( 1

    "

    #$$

    %

    &''

    ! x1(t )! x2 (t )

    "

    #$$

    %

    &''

    x1 N (0)

    x2 N

    (0)

    !

    "##

    $

    %&&

    =09

    !"#

    $%&

    ! Nonlinear, time-invariant (NTI) nominal equation

    ! Perturbations approximated by linear, time-varying (LTV) equation

    ! x 1 (0)! x 2 (0)

    "

    #$$

    %

    &''

    =01

    "

    #$

    %

    &'

    Example

    Example

    Comparison of Approximate and Exact Solutions

    x N (t )

    ! x (t )

    x N (t ) + ! x (t )

    x (t )

    Initial Conditions

    x2 N (0) = 9

    ! x2 (0) = 1

    x2 N (t ) + ! x 2 (t ) = 10

    x 2 (t ) = 10

    !x N (t )

    ! !x (t )!x

    N (t ) + ! !x (t )!x (t )

    Suppose Nominal InitialCondition is Zero

    !x

    N (t )

    = f [

    x N (

    t )],

    x N (0)

    =

    0, x

    N (t )

    =

    0 in 0,!

    [ ]

    Nominal solution remains at equilibrium

    Perturbation equation is linear and time-invariant (LTI)

    ! ! x 1 (t )! ! x 2 (t )

    "

    #$$

    %

    &''

    =

    0 1

    ( 10 ( 30 0( )"# %& ( 1"

    #$$

    %

    &''

    ! x 1 (t )! x 2 (t )

    "

    #$$

    %

    &''

    Separation of theEquations of Motion intoLongitudinal and Lateral-

    Directional Sets

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    6/15

    Rigid-Body Equations ofMotion (Scalar Notation)

    Rate of change ofTranslational Position

    Rate of change ofAngular Position

    Rate of change ofTranslational Velocity

    Rate of change ofAngular Velocity(I xy = I yz = 0)

    x1

    x 2

    x 3

    x 4

    x 5

    x 6

    x 7

    x 8

    x 9

    x10

    x11

    x12

    !

    "

    ##################

    $

    %

    &&&&&&&&&&&&&&&&&&

    =

    u

    vw

    x

    y

    z

    p

    q

    r

    '

    ( )

    !

    "

    ################

    $

    %

    &&&&&&&&&&&&&&&&

    State Vector

    !u = X / m ! g sin " + rv ! qw!v = Y / m + g sin # cos " ! ru + pw!w = Z / m + g cos # cos " + qu ! pv

    ! x I = cos ! cos " ( )u + # cos $ sin " + sin $ sin ! cos " ( )v + sin $ sin " + cos $ sin ! cos " ( )w! y I = cos ! sin " ( )u + cos $ cos " + sin $ sin ! sin " ( )v + # sin $ cos " + cos $ sin ! sin " ( )w! z I = # sin ! ( )u + sin $ cos ! ( )v + cos $ cos ! ( )w

    !! = p + q sin ! + r cos ! ( )tan " !" = q cos ! # r sin ! !$ = q sin ! + r cos ! ( )sec "

    Grumman F9F

    ! p = I zz L + I xz N ! I xz I yy ! I xx ! I zz( ) p + I xz2 + I zz I zz ! I yy( )"# $%r{ }q( ) I xx I zz ! I xz2( )!q = M ! I xx ! I zz( ) pr ! I xz p 2 ! r 2( )"# $% I yy!r = I xz L + I xx N ! I xz I yy ! I xx ! I zz( )r + I xz2 + I xx I xx ! I yy( )"# $% p{ }q( ) I xx I zz ! I xz2( )

    Reorder the State Vector

    x1

    x2

    x3

    x4

    x5

    x6

    x7

    x8

    x9

    x10

    x11

    x12

    !

    "

    ###

    ###############

    $

    %

    &&&

    &&&&&&&&&&&&&&&

    new

    =

    x Lon

    x Lat ' Dir

    !

    "##

    $

    %&&

    =

    uw

    x zq

    ( v y

    p

    r)

    *

    !

    "

    ##

    ##############

    $

    %

    &&

    &&&&&&&&&&&&&&

    First six elements ofthe state arelongitudinal variables

    Second six elements of

    the state are lateral-directional variables

    x1

    x 2

    x 3

    x 4

    x 5

    x 6

    x 7

    x 8

    x 9

    x10

    x11

    x12

    !

    "

    ##################

    $

    %

    &&&&&&&&&&&&&&&&&&

    =

    u

    v

    w

    x

    y

    z

    p

    q

    r

    '

    ( )

    !

    "

    ################

    $

    %

    &&&&&&&&&&&&&&&&

    Longitudinal Equations of Motion Dynamics of position, velocity, angle, and

    angular rate in the vertical plane!u = X / m ! g sin " + rv ! qw = ! x1 = f 1!w = Z / m + g cos # cos " + qu ! pv = ! x2 = f 2! x I = cos " cos $ ( )u + ! cos # sin $ + sin # sin " cos $ ( )v + sin # sin $ + cos # sin " cos $ ( )w = ! x3 = f 3! z I = ! sin " ( )u + sin # cos " ( )v + cos # cos " ( )w = ! x4 = f 4!q = M ! I xx ! I zz( ) pr ! I xz p 2 ! r 2( )%& '( I yy = ! x5 = f 5!" = q cos # ! r sin # = ! x6 = f 6

    !x Lon (t ) = f [x Lon (t ), u Lon (t ), w Lon (t )]

    !v = Y / m + g sin ! cos " # ru + pw = ! x7 = f 7! y I = cos " sin $ ( )u + cos ! cos $ + sin ! sin " sin $ ( )v + # sin ! cos $ + cos ! sin " sin $ ( )w = ! x8 = f 8! p = I zz L + I xz N # I xz I yy # I xx # I zz( ) p + I xz2 + I zz I zz # I yy( )%& '( r{ }q( ) I xx I zz # I xz2( ) = ! x9 = f 9!r = I xz L + I xx N # I xz I yy # I xx # I zz( )r + I xz2 + I xx I xx # I yy( )%& '( p{ }q( ) I xx I zz # I xz2( ) = ! x10 = f 10!! = p + q sin ! + r cos ! ( )tan " = ! x11 = f 11!$ = q sin ! + r cos ! ( )sec " = ! x12 = f 12

    Lateral-DirectionalEquations of Motion

    Dynamics of position, velocity, angle, andangular rate out of the vertical plane

    !x LD (t ) = f [x LD (t ), u LD (t ), w LD (t )]

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    7/15

    Sensitivity to Small Motions (12 x 12) stability matrix for the entire system

    F (t ) =

    ! f 1! x1

    ! f 1! x2

    ... ! f 1! x12

    ! f 2! x1

    ! f 2! x2

    ... ! f 2! x12

    ... ... ... ...! f 12

    ! x1! f 12

    ! x2... ! f 12 ! x12

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    =

    ! !u! u

    ! !u! w ...

    ! !u!(

    ! !w! u

    ! !w! w ...

    ! !w!(

    ... ... ... ...! !(

    ! u! !(

    ! w ... ! !(

    !(

    "

    #

    $$$$

    $$$

    %

    &

    ''''

    '''

    Four (6 x 6) blocks distinguish longitudinal and lateral-directional effects

    F =F

    Lon F

    Lat ! Dir Lon

    F Lon

    Lat ! Dir F Lat ! Dir

    "

    #$$

    %

    &''

    Effects of longitudinal perturbationson longitudinal motion

    Effects of longitudinal perturbationson lateral-directional motion

    Effects of lateral-directionalperturbations on longitudinal motion

    Effects of lateral-directional perturbationson lateral-directional motion

    Sensitivity toControl Inputs

    Control input vector and perturbation

    Four (6 x 3) blocks distinguish longitudinal and lateral-directionalcontrol effects

    G =G

    Lon G

    Lat ! Dir Lon

    G Lon

    Lat ! Dir G Lat ! Dir

    "

    #$$

    %

    &''

    Effects of longitudinal controls onlongitudinal motion

    Effects of longitudinal controls onlateral-directional motion

    Effects of lateral-directional controlson longitudinal motion

    Effects of lateral-directional controls onlateral-directional motion

    u(t ) =

    ! E (t )! T (t )

    ! F (t )! A(t )! R(t )

    ! SF (t )

    "

    #

    $$

    $$$$$$

    %

    &

    ''

    ''''''

    Elevator , deg or rad

    Throttle ,%

    Flaps , deg or rad Ailerons , deg or rad

    Rudder , deg or rad

    SideForcePanels , deg or rad

    ! u (t ) =

    ! " E (t )! " T (t )

    ! " F (t )! " A (t )! " R (t )

    ! " SF (t )

    #

    $

    %%

    %%%%%%

    &

    '

    ((

    ((((((

    Decoupling Approximationfor Small Perturbationsfrom Steady, Level Flight

    Restrict the Nominal Flight Pathto the Vertical Plane

    Nominallongitudinalequations reduce to

    Nominal lateral-directional motions are zero x1

    x2

    x3

    x4

    x5

    x6

    x7

    x8

    x9

    x10

    x11

    x12

    !

    "

    #################

    #

    $

    %

    &&&&&&&&&&&&&&&&&

    & N

    =

    x Lon

    x Lat ' Dir

    !

    "##

    $

    %&&

    N

    =

    u N w N x N z N q N (

    N

    0

    0

    0

    0

    0

    0

    !

    "

    ################

    $

    %

    &&&&&&&&&&&&&&&&

    !u N = X / m ! g sin " N ! q N w N !w N = Z / m + g cos " N + q N u N ! x I N = cos " N ( )u N + sin " N ( )w N ! z I N = ! sin " N ( )u N + cos " N ( )w N !q N =

    M

    I yy!" N

    = q N

    !x Lat ! Dir N

    = 0

    x Lat ! Dir N

    = 0

    Nominal State Vector

    BUT, Lateral-directional

    perturbations neednot be zero

    ! !x Lat " Dir N

    # 0

    ! x Lat " Dir N # 0

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    8/15

    Restrict the Nominal Flight Path toSteady, Level Flight

    Calculate conditions for trimmed (equilibrium) ight See Flight Dynamics and FLIGHT program for a

    solution method

    0 = X / m ! g sin " N ! q N w N 0 = Z / m + g cos " N + q N u N V N = cos " N ( )u N + sin " N ( )w N 0 = ! sin "

    N ( )u N + cos " N ( )w N 0 =

    M

    I yy0 = q N

    Trimmed State Vector isconstant

    Specify nominal airspeed (V N ) and altitude (h N = z N )

    uw x zq!

    "

    #

    $$$$$$$

    %

    &

    '''''''

    Trim

    =

    uTrimwTrim

    V N t ( t 0( ) z N

    0

    ! Trim

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    Small Perturbation Effects areUncoupled in Steady, Symmetric,

    Level Flight Assume the airplane is symmetric and its nominal path

    is steady, level ight Small longitudinal and lateral-directional perturbationsare approximately uncoupled from each other

    (12 x 12) system is block diagonal constant, i.e., linear, time-invariant (LTI) decoupled into two separate (6 x 6) systems

    F =F

    Lon 0

    0 F Lat ! Dir

    "

    #$$

    %

    &''

    G =G

    Lon 0

    0 G Lat ! Dir

    "

    #$$

    %

    &''

    L =L

    Lon 0

    0 L Lat ! Dir

    "

    #$$

    %

    &''

    ! !x Lon (t ) = F Lon ! x Lon (t ) + G Lon ! u Lon (t ) + L Lon ! w Lon (t )

    ! x Lon =

    ! x1! x2! x3! x4! x5! x6

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    Lon

    =

    ! u! w! x! z! q! (

    "

    #

    $$$$$$$

    %

    &

    '''''''

    (6 x 6) LTI LongitudinalPerturbation Model

    ! u Lon =! " T ! " E ! " F

    #

    $

    %%%

    &

    '

    (((

    ! w Lon =! uwind ! wwind ! qwind

    "

    #

    $$$

    %

    &

    '''

    Dynamic Equation

    State Vector ControlVector

    Disturbance Vector

    (6 x 6) LTI Lateral-Directional Perturbation Model

    ! !x Lat " Dir (t ) = F Lat " Dir ! x Lat " Dir (t ) + G Lat " Dir ! u Lat " Dir (t ) + L Lat " Dir ! w Lat " Dir (t )

    ! x Lat " Dir =

    ! x1! x2! x3! x4! x5! x6

    #

    $

    %%%%%%%%

    &

    '

    ((((((((

    Lat " Dir

    =

    ! v! y! p! r! ) ! *

    #

    $

    %%%%%%%%

    &

    '

    ((((((((

    ! u Lat " Dir =! # A! # R

    ! # SF

    $

    %

    &&&

    '

    (

    )))

    ! w Lon =! vwind ! pwind ! rwind

    "

    #

    $$$

    %

    &

    '''

    Dynamic Equation

    State Vector ControlVector

    Disturbance Vector

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    9/15

    Frequency DomainDescription of LTISystem Dynamics

    Fourier Transform of aScalar Variable

    Transformation from time domain to frequency domain

    F ! x(t )[ ]= ! x( j " ) = ! x(t )e# j " t #$

    $

    % dt , " = frequency , rad / s

    ! x(t ) : real variable! x( j " ) : complex variable

    = a (" ) + jb (" )

    = A(" )e j # (" ) A : amplitude! : phase angle

    j ! : Imaginary operator, rad/s

    Fourier Transform of aScalar Variable

    ! x (t )

    ! x( j " ) = a (" ) + jb(" )

    Laplace Transform ofa Scalar Variable

    Laplace transformation from time domain to frequency domain

    L ! x(t )[ ]= ! x( s ) = ! x(t )e " st 0

    #

    $ dt

    s = ! + j "

    = Laplace (complex) operator, rad/s

    ! x(t ) : real variable! x(s) : complex variable

    = a (s ) + jb (s)

    = A(s)e j " ( s )

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    10/15

    Laplace Transformation is aLinear Operation

    L ! x1 (t ) + ! x 2 (t )[ ]= L ! x1 (t )[ ]+ L ! x 2 (t )[ ]= ! x1 (s ) + ! x 2 ( s )

    L a ! x (t )[ ]= aL ! x (t )[ ]= a ! x ( s )

    Sum of Laplace transforms

    Multiplication by a constant

    Laplace Transforms ofVectors and Matrices

    Laplace transform of a vector variable

    L ! x (t )[ ]= ! x ( s ) =

    ! x1 (s )

    ! x 2 ( s )...

    "

    #

    $$$

    %

    &

    '''

    Laplace transform of a matrix variable

    L A (t )[ ]= A (s ) =a

    11 (s ) a 12 (s ) ...

    a21 (s ) a 22 ( s ) ...

    ... ... ...

    !

    "

    ###

    $

    %

    &&&

    Laplace transform of a time-derivative

    L ! !x (t )[ ]= s ! x ( s ) " ! x (0)

    Laplace Transform ofa Dynamic System

    ! !x ( t ) = F ! x ( t ) + G ! u ( t ) + L ! w (t )

    System equation

    Laplace transform of system equation

    s ! x ( s ) " ! x (0) = F ! x ( s ) + G ! u ( s ) + L ! w ( s )

    dim( ! x ) = (n " 1)

    dim( ! u ) = (m " 1)

    dim( ! w ) = ( s " 1)

    Laplace Transform ofa Dynamic System

    Rearrange Laplace transform of

    dynamic equation

    s ! x ( s ) " F ! x ( s ) = ! x (0) + G ! u ( s ) + L ! w ( s )

    s I ! F[ ]" x ( s ) = " x (0) + G " u ( s ) + L " w ( s )

    ! x ( s ) = s I " F[ ]" 1

    ! x (0) + G ! u ( s ) + L ! w ( s )[ ]

    F to left, I.C. to right

    Combine terms

    Multiply both sides by inverse of (s I F)

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    11/15

    Matrix Inverse

    A[ ]! 1 = Adj A( )

    A=

    Adj A( )det A

    (n " n)(1 " 1)

    =

    C T

    det A; C = matrix of cofactors

    Cofactors aresigned minors of A

    ij th minor of A is thedeterminant of A with the i th row and

    j th column removed

    y = Ax ; x = A! 1y

    dim( x) = dim( y) = (n ! 1)

    dim( A ) = (n ! n )

    Forward Inverse

    Numerator is a square matrix Denominator is a scalar

    Matrix Inverse Examples

    A =a

    11 a

    12

    a21

    a22

    !

    "##

    $

    %&&

    ; A ' 1 =

    a22 ' a 21

    ' a 12 a 11

    !

    "##

    $

    %&&

    T

    a11

    a22 ' a 12 a 21

    =

    a22 ' a 12

    ' a 21 a 11

    !

    "##

    $

    %&&

    a11

    a22 ' a 12 a 21

    A =

    a11

    a12

    a13

    a21

    a22

    a23

    a31

    a32

    a33

    !

    "

    ###

    $

    %

    &&&

    ; A ' 1 =

    a22

    a33 ' a 23 a 32( ) ' a 21 a 33 ' a 23 a 31( ) a 21 a 32 ' a 22 a 31( )

    ' a 12 a 33 ' a 13 a 32( ) a 11 a 33 ' a 13 a 31( ) ' a 11 a 32 ' a 12 a 31( )a

    12a

    23 ' a 13 a 22( ) ' a 11 a 23 ' a 13 a 21( ) a 11 a 22 ' a 12 a 21( )

    !

    "

    ####

    $

    %

    &&&&

    T

    a11

    a22

    a33

    + a12

    a23

    a31

    + a13

    a21

    a32 ' a 13 a 22 a 31 ' a 12 a 21 a 33 ' a 11 a 23 a 32

    =

    a22

    a33 ' a 23 a 32( ) ' a 12 a 33 ' a 13 a 32( ) a 12 a 23 ' a 13 a 22( )

    ' a 21 a 33 ' a 23 a 31( ) a 11 a 33 ' a 13 a 31( ) ' a 11 a 23 ' a 13 a 21( )a

    21a

    32 ' a 22 a 31( ) ' a 11 a 32 ' a 12 a 31( ) a 11 a 22 ' a 12 a 21( )

    !

    "

    ####

    $

    %

    &&&&

    a11

    a22

    a33

    + a12

    a23

    a31

    + a13

    a21

    a32 ' a 13 a 22 a 31 ' a 12 a 21 a 33 ' a 11 a 23 a 32

    dim( A ) = (2 ! 2)

    dim( A ) = (3 ! 3)

    A = a ; A! 1

    =

    1

    a

    dim( A ) = (1 ! 1)

    Modes of Motion

    Characteristic Polynomialof a LTI Dynamic System

    sI ! F[ ]! 1

    =

    Adj sI ! F( )sI ! F

    (n x n)

    Characteristic polynomial of the system is a scalar denes the system s modes of motion

    s I ! F = det s I ! F( )" # ( s )= s

    n+ a

    n ! 1s

    n ! 1+ ... + a 1 s + a 0

    ! x ( s ) = s I " F[ ]" 1 ! x (0) + G ! u ( s ) + L ! w ( s )[ ] Inverse of characteristic matrix

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    12/15

    Eigenvalues (or Roots) ofa Dynamic System

    ! ( s ) = s n + a n " 1 sn " 1

    + ... + a 1 s + a 0 = 0

    = s " # 1( ) s " # 2( ) ...( ) s " # n( )= 0

    Characteristic equation of the system

    ... where i are the eigenvalues of F or the roots of the characteristic polynomial

    Eigenvalues are real or complex numbersthat can be plotted in the s plane

    s Plane

    ! i

    = " i

    + j # i

    Real root

    ! *

    i = "

    i # j $ i

    Positive real partrepresents instability

    Complex roots occur in conjugate pairs

    ! i

    = " i

    Rigid-Body Motion of a Linear,Time-Invariant Aircraft Model

    ! ( s ) = s 12 + a 11 s11

    + ... + a 1s + a 0 = 0

    = s " # 1( ) s " # 2( ) ...( ) s " # 12( )= 0

    12 th -order system of LTI equations 12 eigenvalues of the stability matrix, F 12 roots of the characteristic equation

    Characteristic equation of the system

    Up to 12 modes of motion

    In steady, level ight, longitudinal and lateral-directionalLTI models are uncoupled

    ! (s) = s " # 1( )! s " # 6( )$% &' long s " # 1( )! s " # 6( )$% &' lat "dir = 0

    Longitudinal Modes of Motion inSteady, Level Flight

    ! Lon (s) = s " # 1( ) s " # 2( ) ...( ) s " # 6( )= 0

    = s " # range( ) s " # height ( ) s " # phugoid ( ) s " # * phugoid ( ) s " # short period ( ) s " # *short period ( )

    ! !x Lon (t ) = F Lon ! x Lon (t ) + G Lon ! u Lon (t ) + L Lon ! w Lon (t )

    ! Lon (s ) = s " # ran( ) s " # hgt ( ) s2 + 2$ P% nP s + % nP2( ) s2 + 2$ SP% nSP s + % nSP2( )= 0

    6 roots of the longitudinal characteristic equation

    4 modes of motion (typical)

    Real Complex

    Range Height Phugoid Short Period

    Real Complex Complex Complex

    Complex Conjugate Roots Form aSingle Oscillatory Mode of Motion

    s ! " phugoid ( )

    s ! " * phugoid ( )

    = s ! # phugoid + j $ phugoid ( )%& '( s ! # phugoid ! j $ phugoid ( )%& '(= s2 + 2 ) P$ nP s + $ nP

    2( )

    s ! " short period ( ) s ! " *short period ( )= s ! # short period + j $ short period ( )%& '( s ! # short period ! j $ short period ( )%& '(

    = s2 + 2 ) SP

    $ nSP

    s + $ nSP

    2

    ( )

    Short Period Roots

    Phugoid Roots

    ! n

    : Natural frequency , rad/s ! : Damping ratio , -

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    13/15

    Longitudinal Modes of Motion Eigenvalues determine the damping and natural

    frequencies of the linear system

    s modes of motion

    ! ran : range mode " 0

    ! hgt : height mode " 0

    # P ,$ nP( ) : phugoid mode# SP ,$ nSP( ) : short - period mode

    Longitudinal characteristicequation has 6 eigenvalues 4 eigenvalues normally

    appear as 2 complex pairs Range and height modes

    usually inconsequential

    Lateral-Directional Modes ofMotion in Steady, Level Flight

    ! LD (s ) = s " # 1( ) s " # 2( ) ...( ) s " # 6( )= 0

    = s " # crossrange( ) s " # heading( ) s " # spiral( ) s " # roll( ) s " # Dutch roll( ) s " # * Dutch roll( )

    ! !x Lat " Dir (t ) = F Lat " Dir ! x Lat " Dir (t ) + G Lat " Dir ! u Lat " Dir (t ) + L Lat " Dir ! w Lat " Dir (t )

    ! LD ( s ) = s " # cr( ) s " # head ( ) s " # S ( ) s " # R( ) s 2 + 2$ DR % n DR s + % n DR2( )= 0

    Roots of the lateral-directional characteristic equation

    5 modes of motion (typical)

    Crossrange Heading Spiral Roll Dutch Roll

    Lateral-Directional Modes of Motion

    Lateral-directional characteristic

    equation has 6 eigenvalues 2 eigenvalues normally appear asa complex pair

    Crossrange and heading modesusually inconsequential

    ! cr : crossrange mode " 0

    ! head : heading mode " 0! S : spiral mode! R : roll mode

    # DR ,$ n DR( ) : Dutch roll mode

    Next Time:

    Longitudinal Dynamics Reading

    Flight Dynamics ,452-464, 482-486

    Virtual Textbook , Part 11

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    14/15

    Supplementalaterial

    Sensitivity to Small Control andDisturbance Perturbations

    Control-effect matrix

    G (t ) =! f

    ! u x = x N ( t )u = u N ( t )w = w N ( t )

    =

    ! f 1! u1

    ! f 1! u 2

    ... ! f 1

    ! um! f 2

    ! u1! f 2

    ! u2...

    ! f 2! um

    ... ... ... ...! f n

    ! u1! f n

    ! u2...

    ! f n! um

    "

    #

    $$$$$$$$

    %

    &

    '''''''' x = x N ( t )

    u = u N ( t )w = w N ( t )

    F (t ) =! f

    ! x x = x N ( t )u = u N ( t )w = w N ( t )

    ; G (t ) =! f

    ! u x = x N ( t )u = u N ( t )w = w N ( t )

    ; L (t ) =! f

    ! w x = x N ( t )u = u N ( t )w = w N ( t )

    Disturbance-effect matrix

    L (t ) =! f

    ! w x = x N ( t )u = u N ( t )w = w

    N ( t )

    =

    ! f 1! w1

    ! f 1! w2

    ... ! f 1

    ! ws! f 2

    ! w1! f 2

    ! w2...

    ! f 2! ws

    ... ... ... ...! f n

    ! w1! f n

    ! w2...

    ! f n! ws

    "

    #

    $$$$$$$$

    %

    &

    '''''''' x = x N ( t )

    u = u N ( t )w = w

    N ( t )

    How Do We Calculate the PartialDerivatives?

    Numerically First differences in f(x,u,w)

    Analytically Symbolic evaluation of analytical

    models of F, G, and L

    F(t )

    =

    ! f

    ! x x = x N ( t )u = u N ( t )w = w N ( t )

    G(t )

    =

    ! f

    ! u x = x N ( t )u = u N ( t )w = w N ( t )

    L(t )

    =

    ! f

    ! w x = x N ( t )u = u N ( t )w = w N ( t )

    Numerical Estimation of theJacobian Matrices

    F (t ) !

    f 1

    x1 + " x1( ) x2! xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f 1

    x1 ) " x1( ) x2! xn

    #

    $

    %%%%%

    &

    '

    (((((

    2" x1

    f 1

    x1

    x2 + " x2( )! xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f 1

    x1

    x2 + " x2( )! xn

    #

    $

    %%%%%

    &

    '

    (((((

    2 " x2!

    f 1

    x1

    x2!

    xn + " xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    ) f 1

    x1

    x2!

    xn + " xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    2" xn

    f 2

    x1 + " x1( ) x2! xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f 2

    x1 ) " x1( ) x2! xn

    #

    $

    %%%%%

    &

    '

    (((((

    2" x1

    f 2

    x1 x2 + " x2( )

    ! xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f 2

    x1 x2 + " x2( )

    ! xn

    #

    $

    %%%%%

    &

    '

    (((((

    2 " x2! !

    ! ! ! !

    f n

    x1 + " x1( ) x2! xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f n

    x1 ) " x1( ) x2! xn

    #

    $

    %%%%%

    &

    '

    (((((

    2" x1! !

    f n

    x1 x2!

    xn + " xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    ) f n

    x1 x2!

    xn + " xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    2" xn

    #

    $

    %

    %%%%%%%%%%%%%%%%%%%%%%%%%

    &

    '

    (

    (((((((((((((((((((((((((x = x N (t )

    u = u N (t )

    w = w N (t )

  • 8/11/2019 Linearized Equations and Modes of Motion.pdf

    15/15

    Sensitivity toDisturbance Inputs

    Disturbance input vector and perturbation

    Four (6 x 3) blocks distinguish longitudinal and lateral-directionaleffects

    L =L

    Lon L

    Lat ! Dir Lon

    L Lon

    Lat ! Dir L Lat ! Dir

    "

    #$$

    %

    &''

    Effects of longitudinal disturbanceson longitudinal motion

    Effects of longitudinal disturbanceson lateral-directional motion

    Effects of lateral-directionaldisturbances on longitudinal motion

    Effects of lateral-directional disturbanceson lateral-directional motion

    w (t ) =

    uw (t )

    ww(t )

    qw (t )

    vw (t )

    pw(t )

    rw (t )

    !

    "

    ########

    $

    %

    &&&&&&&&

    Axial wind, m / s

    Normal wind, m / s

    Pitching wind shear, deg / s or rad / s

    Lateral wind, m / s

    Rolling wind shear, deg / s or rad / s

    Yawing wind shear, deg / s or rad / s

    ! w (t ) =

    ! u w (t )! w w (t )! q w (t )! vw (t )! pw (t )! rw (t )

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    Integration Algorithms Rectangular (Euler) Integration

    x ( t k ) = x ( t k " 1) + # x ( t k " 1, t k )

    $ x ( t k

    "1) + f x ( t

    k "

    1), u ( t

    k "

    1), w ( t

    k "

    1)

    [ ]# t , # t = t

    k

    " t k

    "1

    Trapezoidal (modied Euler) Integration (~MATLAB s ode23 )

    x ( t k ) " x ( t k # 1) +12

    $ x1

    + $ x2[ ]

    where

    $ x1

    = f x ( t k # 1), u ( t k # 1), w ( t k # 1)[ ]$ t $ x

    2= f x ( t k # 1) + $ x 1,u ( t k ), w ( t k )[ ]$ t

    See MATLAB manual for descriptions of ode45 and ode15s