literature study: - high order material point...

28
1 / 27 Literature study: High Order Material Point Method Roel Tielen February 11 2016

Upload: others

Post on 07-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

1 / 27

Literature study:High Order Material Point Method

Roel Tielen

February 11 2016

Page 2: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Outline

• Introduction master project

• Description MPM

• Numerical challenges with MPM

• Benchmark problems

• Prelimenary numerical results

• Outlook

2 / 27

Page 3: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Introduction master project

Objective:Development of a class of high-order material point methods that:

• solve/reduce some numerical challenges within classical MPM

• reduce computing times

• enable a more accurate prediction of physical quantities

3 / 27

Page 4: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Material point method

Combined particle-mesh approach:

• Material points represent acontinuum

• Equation of motion is solved onfixed background grid

• Material points move throughdomain over time

4 / 27

Page 5: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Description MPM

A time step of MPM consists of three steps:

1 Project particle properties onto nodes

2 Solve equation of motion on background grid

3 Update particle properties from solution at the nodes

5 / 27

Page 6: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Projection from particles to nodes

Construction of mass matrix Mt and force vector Fint,t

Mt(i ,j) =

∫Ωφi (x)φj(x)ρ(x)dx ≈

np∑p=1

φi (xtp)φj(x

tp)mp

Fint,t(i) =

∫Ωσ(x)∇φi (x)dx ≈

np∑p=1

σtp∇φi (x tp)V tp

6 / 27

Page 7: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Solving equation on background grid

• At each time step we obtain

Mtat = Ft .

• Determine lumped mass matrix

Mt →MLt .

• Solve equation of motion for i ∈ 1, . . . , nn

ati =Fti

MLt(i ,i)

.

7 / 27

Page 8: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Update particle properties

Update particle properties (velocity, stress, etc.) from nodal quantitiesby evaluating basis functions at particle positions.

Example:

v t+∆tp = v tp + ∆t

nn∑i=1

φi (xtp)ati

∆εt+∆tp =

nn∑i=1

∇φi (x tp)∆ut+∆ti

8 / 27

Page 9: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Numerical challenges with MPM

The quality of the MPM solution is affected by:

• Grid crossing errors

• Quadrature rule used in MPM

9 / 27

Page 10: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Grid crossing error

Grid crossing:The movement of a particle from one element to another element

Effect of grid crossing:

• Non-physical increase/decrease of internal force at node

• Influences quality of MPM solution

xi−1 xi+1xi

10 / 27

Page 11: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Grid crossing error

Internal force at node xi is determined by:

Fint,t(i) =

np∑p=1

σtp∇φi (x tp)V tp .

In standard MPM, ∇φi is discontinuous at element boundary:

φi

xi−1 xi xi+1

1

11 / 27

Page 12: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Quadrature rule MPM

Within MPM particles serve as integration points:

∫Ωφi (x)φj(x)ρ(x)dx ≈

np∑p=1

φi (xtp)φj(x

tp)mp

This numerical integration rule is in general not exact.

12 / 27

Page 13: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Benchmark problems

Three benchmark problems are considered:

• Vibrating string with initial velocity

• Soil column under self weight

• Vibrating bar with dynamic traction 1

1M. Steffen, R. M. Kirby, M. Berzins. Analysis and reduction of quadratureerrors in the material point method (MPM). Int. J. Numer. Methods. Engrg, 76(2008), pp. 922-948.

13 / 27

Page 14: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Vibrating string

v0(x)

x0 L

∂2u

∂t2=

E

ρ

∂2u

∂x2

Boundary conditions:

u(0, t) = 0

u(L, t) = 0

Initial conditions:

u(x , 0) = 0

∂u

∂t(x , 0) = v0 sin

(πxL

)

14 / 27

Page 15: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Soil column under self weight

soil

y

H

0

∂2u

∂t2=

E

ρ

∂2u

∂y2− g

Boundary conditions:

u(0, t) = 0

∂u

∂y(H, t) = 0

Initial conditions:

u(y , 0) = 0

∂u

∂t(y , 0) = 0

15 / 27

Page 16: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Implementation MPM

• Modified Lagrangian algorithm 2

• Euler-Cromer time integration scheme

• Piecewise linear basis functions

• 1D implementation in Matlab

2(AL)-Kafaji, I, Formulation of a dynamic material point method (MPM) forgeomechanical problems, Institut fur Geotechnik der Universitat Stuttgart, (2013)

16 / 27

Page 17: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Results

In this presentation focus on:

• Investigation of grid crossing error

• Spatial convergence

Numerical Approximation:

uex = unum +O(∆xn) +O(∆t)

RMS Error:

eRMS =√

1np

∑npp=1 (unum(xp, t)− uex(xp, t))2

17 / 27

Page 18: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Vibrating string

100 101 10210−6

10−5

10−4

10−3

10−2

Number of elements [−]

RM

S E

rror

[m]

4 PPC6 PPC8 PPC

18 / 27

Page 19: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Vibrating string

For the vibrating string problem, when particles (almost) stay equallydistributed:

• MPM shows 2nd order convergence in space.

• Increasing number of PPC, decreases the RMS error.

Order of convergence consistent with literature. 3

3M. Gong. Improving the Material Point Method. The University of NewMexico (2015)

19 / 27

Page 20: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Soil column under self weight

101 10210−4

10−3

10−2

Number of elements [−]

RM

S E

rror

[m]

4 PPC6 PPC8 PPC

20 / 27

Page 21: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Soil column under self weight

40 elements, no grid crossing

0 0.5 1 1.5 2 2.5−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

velo

city

[m/s

]

Velocity of particle 40

MPMExact

21 / 27

Page 22: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Soil column under self weight

80 elements, grid crossing

0 0.5 1 1.5 2 2.5−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

velo

city

[m/s

]

Velocity of particle 80

MPMExact

22 / 27

Page 23: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Soil column under self weight

• Convergence only for a low number of elements.

• Grid crossings seriously effect quality of the solution.

Similar observations by Bardenhagen et al.4 and Steffen et al.5

4S. G. Bardenhagen, E. M. Kober. The generalized interpolation material pointmethod. Comput Model Engrg Sci, 5 (2004), pp. 477-495.

5M. Steffen, R. M. Kirby, M. Berzins. Analysis and reduction of quadratureerrors in the material point method (MPM). Int. J. Numer. Methods. Engrg, 76(2008), pp. 922-948.

23 / 27

Page 24: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

High order MPM

Quadratic B-spline basis functions:

• are positive functions

• have continuous derivatives

• lead to lower quadrature errors 6

• possess partition of unity property

B-spline basis functions (seem) well suited for MPM!

6M. Steffen, R. M. Kirby, M. Berzins. Analysis and reduction of quadratureerrors in the material point method (MPM). Int. J. Numer. Methods. Engrg, 76(2008), pp. 922-948.

24 / 27

Page 25: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

B-splines

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

B spline basis functions

25 / 27

Page 26: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Outlook

B-spline MPM already implemented, next steps:

• Comparison with standard MPM (Benchmark problems)

• Apply an MLS approach to decrease quadrature error

• Decrease quadrature error with B-spline approximation

• Investigate 3rd order B-spline basis functions

• Extension of B-spline MPM to 2D

26 / 27

Page 27: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Linear vs. B-spline MPM

0 0.5 1 1.5 2 2.5−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

velo

city

[m/s

]

Velocity of particle 80

standard MPMExact solution

27 / 27

Page 28: Literature study: - High Order Material Point Methodta.twi.tudelft.nl/nw/users/vuik/numanal/tielen_presentation1.pdf · B-spline basis functions (seem) well suited for MPM! 6M. Ste

Linear vs. B-spline MPM

0 0.5 1 1.5 2 2.5−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

velo

city

[m/s

]

Velocity of particle 80

B−spline MPMExact solution

27 / 27