loaded wheel testers in the united states: state of the practice

Upload: prof-prithvi-singh-kandhal

Post on 30-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    1/18

    LOADEDWHEELTESTERSINTHE UNITEDSTATES:STATEOFTHE PRACTICE

    By

    L.AllenCooleyJr.

    PrithviS.KandhalM.ShaneBuchananFrankFeeAmyEpps

    PublishedinTransportationResearchBoard,TransportationResearchCircularE-C016,July2000

    277TechnologyParkway Auburn,AL36830

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    2/18

    LOADEDWHEELTESTERSINTHEUNITEDSTATES:STATEOFTHEPRACTICE

    By

    L.AllenCooleyJr.

    ResearchEngineerNationalCenterforAsphaltTechnology

    AuburnUniversity,Alabama

    PrithviS.Kandhal

    AssociateDirectorNationalCenterforAsphaltTechnology

    AuburnUniversity,Alabama

    M.ShaneBuchananSeniorResearchAssociate

    NationalCenterforAsphaltTechnologyAuburnUniversity,Alabama

    FrankFee

    AsphaltEngineerCITGOAsphalt

    Moylan,Pennsylvania

    AmyEpps

    AssistantProfessor

    TexasA&MUniversityCollegeStation,Texas

    PublishedinTransportationResearchBoard,TransportationResearchCircularE-C016,

    July2000

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    3/18

    DISCLAIMER

    Thecontentsofthisreportreflecttheviewsoftheauthorswhoaresolelyresponsibleforthefactsandtheaccuracyofthedatapresentedherein.ThecontentsdonotnecessarilyreflecttheofficialviewsandpoliciesoftheNationalCenterforAsphaltTechnologyofAuburnUniversity.Thisreportdoesnotconstituteastandard,specification,orregulation.

    i

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    4/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    LOADEDWHEELTESTERSINTHEUNITEDSTATES:STATEOFTHEPRACTICE

    L.AllenCooleyJr.,PrithviS.Kandhal,M.ShaneBuchanan,FrankFee,andAmyEpps

    FOREWORDLoadedwheeltesters(LWT)arebecomingincreasinglypopularwithtransportationagenciesastheyseektoidentifyhotmixasphaltmixturesthatmaybepronetorutting.ThisE-CircularprovidesthestateofthepracticeontheuseofLWTswithintheUnitedStatesasobtainedfromareviewofliterature.TheintentistoprovidebackgroundinformationonLWTsusedintheUnitedStatesanddescribethekeytestparameters,limitations,materialsensitivities,andboundaryconditionsutilizedbyvariousLWTs.

    INTRODUCTION

    Permanentdeformation,orrutting,inhotmixasphalt(HMA)pavementshasbeenandcontinues

    tobeamajorproblemintheUnitedStates.RuttingisdefinedastheaccumulationofsmallamountsofunrecoverablestrainresultingfromappliedwheelloadstoHMApavement.Thisdeformationiscausedbyconsolidationorlateralmovement,orboth,oftheHMAundertraffic.Shearfailure(lateralmovement)inaHMApavementgenerallyoccursinthetop100mm(4in)oftheHMAstructure(1).Ruttingnotonlydecreasestheusefullifeofapavementbutalsocreatesasafetyhazardforthetravelingpublic.Inrecentyears,thepotentialforruttingonthenation'shighwayshasincreasedduetohighertrafficvolumesandtheincreaseduseofradialtiresthattypicallyexhibithigherinflationpressures.

    Astandardizedlaboratoryequipmentandtestprocedurethatpredictsfield-ruttingpotential

    wouldbeofgreatbenefittotheHMAindustry.Currently,themostcommontypeoflaboratoryequipmentofthisnatureisaloadedwheeltester(LWT).

    InanefforttoidentifyHMAmixturesthatmaybepronetorutting,manytransportationagencieshavebegunusingLWTsassupplementstotheirmixdesignprocedure.TheLWTsallowforanacceleratedevaluationofruttingpotentialinthedesignedmixes.However,inorderfortheseagenciestouseLWTswithconfidence,thereneedstobeanacceptablecorrelationbetweenruttinginthelaboratoryandactualfieldrutting.SomeagenciesusingLWTshaverecognizedthisfactandhaveconductedresearchtodeterminethedegreeofcorrelationbetweenfieldperformanceandresultsfromlaboratoryLWTs.

    LOADEDWHEELTESTERSUSEDINTHEUNITEDSTATES

    SeveralLWTscurrentlyarebeingusedintheUnitedStates.TheyincludetheGeorgiaLoadedWheelTester(GLWT),AsphaltPavementAnalyzer(APA),HamburgWheelTrackingDevice(HWTD),LCPC(French)WheelTracker,PurdueUniversityLaboratoryWheelTrackingDevice

    (PURWheel),andone-thirdscaleModelMobileLoadSimulator(MMLS3).FollowingaredescriptionsforeachoftheseLWTs.

    GeorgiaLoadedWheelTester

    TheGLWT,showninFigure1,wasdevelopedduringthemid-1980sthroughacooperativeresearchstudybetweentheGeorgiaDepartmentofTransportationandtheGeorgiaInstituteofTechnology(2).DevelopmentoftheGLWTconsistedofmodifyingawheel-trackingdeviceoriginallydesignedbyC.R.BenedictofBenedictSlurrySeals,Inc.,totestslurryseals(3).TheprimarypurposefordevelopingtheGLWTwastoperformefficient,effective,androutinelaboratoryrutprooftestingandfieldproductionqualitycontrolofHMA(4).

    1

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    5/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    Figure1.GeorgiaLoadedWheelTester(GLWT)

    TheGLWTiscapableoftestingHMAbeamorcylindricalspecimens.Beamdimensionsare

    generally125mmwide,300mmlong,and75mmhigh(5inx12inx3in).CompactionofbeamspecimensfortestingintheGLWThasvariedgreatlyaccordingtotheliterature.TheoriginalworkbyLai(2)utilizeda"loadedfoot"kneadingcompactor.HeatedHMAwas"spooned"intoamoldasaloadedfootassemblycompactedthemixture.Aslidingrack,ontowhichthemoldwasplaced,wasemployedasthekneadingcompactorwasstationary.Westetal.(5)utilizedastaticcompressiveloadtocompactspecimens.HeatedHMAwasplacedintoamoldandacompressiveforceof267kN(60,000lbs)wasloadedacrossthetopofthesampleandthenreleased.Thisloadsequencewasperformedatotaloffourtimes.In1995,LaiandShami(6)describedanewmethodofcompactingbeamsamples.Thismethodutilizedarollingwheeltocompactbeamspecimens.

    Laboratorypreparedcylindricalspecimensaregenerally150mmindiameterand75mmhigh.

    Compactionmethodsforcylindricalspecimenshaveincludedthe"loadedfoot"kneading

    compactor(2)andaSuperpavegyratorycompactor(7).

    Bothspecimentypesaremostcommonlycompactedtoeither4or7percentairvoidcontent.

    However,someworkhasbeenaccomplishedintheGLWTatairvoidcontentsaslowas2percent(8).

    TestingofsampleswithintheGLWTgenerallyconsistsofapplyinga445-N(100-lb)loadontoa

    pneumaticlinearhosepressurizedto690kPa(100psi).Theloadisappliedthroughanaluminumwheelontothelinearhose,whichresidesonthesample.Testspecimensaretrackedbackandforthundertheappliedstationaryloading.Testingistypicallyaccomplishedforatotalof8,000loadingcycles(onecycleisdefinedasthebackwardandforwardmovementoversamplesbythewheel).However,someresearchershavesuggestedfewerloadingcyclesmaysuffice(5).

    2

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    6/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    TesttemperaturesfortheGLWThaverangedfrom35Cto60C(95Fto140F).Initialwork

    byLai(2)wasconductedat35C(95F).ThistemperaturewasselectedbecauseitwasGeorgia'smeansummerairtemperature( 3).Testtemperatureswithintheliteraturesubsequentlytendedtoincreaseto40.6C(105F)(3,5,9,10,11),46.1C(115F)(11),50C(122F)(3,8),

    and60C(140F)(8).Attheconclusionofthe8,000cycleloadings,permanentdeformation(rutting)ismeasured.Rutdepthsareobtainedbydeterminingtheaveragedifferenceinspecimensurfaceprofilebeforeandaftertesting.Atemplatewithsevenslotsthatfitsoverthesamplemoldandamicrometeraretypicallyusedtomeasurerutdepth( 2).

    AsphaltPavementAnalyzer

    TheAPA,showninFigure2,isamodificationoftheGLWTandwasfirstmanufacturedin1996byPavementTechnology,Inc.TheAPAhasbeenusedtoevaluatetherutting,fatigue,andmoistureresistanceofHMAmixtures.SincetheAPAisthesecondgenerationoftheGLWT,it

    followsthesameruttestingprocedure.Awheelisloadedontoapressurizedlinearhoseandtrackedbackandforthoveratestingsampletoinducerutting.SimilartotheGLWT,mosttestingiscarriedoutto8,000cycles.UnliketheGLWT,samplesalsocanbetestedwhilesubmergedinwater.

    Figure2.AsphaltPavementAnalyzer(APA)

    TestingspecimensfortheAPAcanbeeitherbeamorcylindrical.Currently,themostcommonmethodofcompactingbeamspecimensisbytheAsphaltVibratoryCompactor(12).However,somehaveusedalinearkneadingcompactorforbeams(13).ThemostcommoncompactorforcylindricalspecimensistheSuperpavegyratorycompactor(14).Beamsaremostoftencompactedto7percentairvoids,whilecylindricalsampleshavebeenfabricatedtoboth4and7

    3

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    7/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    percentairvoids(13).Testscanalsobeperformedoncoresorslabstakenfromanactual

    pavement.

    TesttemperaturesfortheAPAhaverangedfrom40.6Cto64C(105Fto147F).Themost

    recentworkhasbeenconductedatorslightlyaboveexpectedhighpavementtemperatures(14,15).

    WheelloadandhosepressurehavebasicallystayedthesameasfortheGLWT,445Nand690

    kPa(100lband100psi),respectively.Onerecentresearchstudy(15)diduseawheelloadof533N(120lb)andhosepressureof830kPa(120psi)withgoodsuccess.

    HamburgWheel-TrackingDevice

    TheHWTD,showninFigure3,wasdevelopedbyHelmut-WindIncorporatedofHamburg,Germany(16).ItisusedasaspecificationrequirementforsomeofthemosttraveledroadwaysinGermanytoevaluateruttingandstripping.TestswithintheHWTDareconductedonaslab

    thatis260mmwide,320mmlong,andtypically40mmhigh(10.2inx12.6inx1.6in).Theseslabsarenormallycompactedto71percentairvoidsusingalinearkneadingcompactor.

    Figure3.HamburgWheelTrackingDevice(HWTD)

    TestingintheHWTDisconductedunderwaterattemperaturesrangingfrom25Cto70C(77Fto158F),with50C(122F)beingthemostcommontemperature(17).LoadingofsamplesintheHWTDisaccomplishedbyapplyinga705-N(158-lb)forceontoa47-mm-widesteelwheel.Thesteelwheelisthentrackedbackandforthovertheslabsample.Testsamplesareloadedfor20,000passesoruntil20mmofdeformationoccurs.Thetravelspeedofthewheelisapproximately340mmpersecond(16).

    4

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    8/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    AsshowninFigure4,resultsobtainedfromtheHWTDconsistofrutdepth,creepslope,

    strippinginflectionpoint,andstrippingslope.Thecreepslopeistheinverseofthedeformationratewithinthelinearregionofthedeformationcurveafterpostcompactionandpriortostripping(ifstrippingoccurs).Thestrippingslopeistheinverseofthedeformationratewithinthelinear

    regionofthedeformationcurve,aftertheonsetofstripping.Thestrippinginflectionpointisthenumberofwheelpassescorrespondingtotheintersectionofthecreepslopeandthestrippingslope.ThisvalueisusedtoestimatetherelativeresistanceoftheHMAsampletomoisture-induceddamage(17).

    Figure4.TypicalHamburgWheelTrackerTestResults

    AslightmodificationoftheHWTDwasmadebytheSuperfosConstruction,U.S.(previouslyCouch,Inc.).Thisdevice,showninFigure5,wasreferredtoastheSuperfosConstructionRutTester(SCRT).TheSCRTusedslabspecimenswithsimilardimensionsastheHWTD.Theprimarydifferencebetweenthetwowastheloadingmechanism.TheSCRTappliedan82.6-kg(180-lb)verticalloadontoasolidrubberwheelwithadiameterof194mmandwidthof46mm.Thisloadingconfigurationresultedinacontactpressureofapproximately940kPa(140psi)andcontactareaof8.26cm2(1.28in2)whichwasappliedataspeedofapproximately556mmpersecond(18).

    Testtemperaturesrangingfrom45Cto60C(113Fto140F)havebeenusedwiththeSCRT.

    RecentresearchwiththeSCRThasused60Casthetesttemperature(18,19).Anairvoidcontentof6percentwasgenerallyusedfordense-gradedHMAsamples(18).

    5

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    9/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    Figure5.SuperfosConstructionRutTester(SCRT)

    ResultsfromtheSCRTareidenticaltothosefromtheHWTDandincluderutdepth,creepslope,

    strippingslope,andstrippinginflectionpoint.

    AnotherslightmodificationoftheHWTDistheEvaluatorofRuttingandStripping(ERSA)

    equipment.ThisdevicewasbuiltbytheDepartmentofCivilEngineeringattheUniversityofArkansas(20).

    TestingofcylindrialorbeamsamplesintheERSAcanbeconductedineitherwetordry

    conditions.A47-mmwidesteelwheelisusedtoloadspecimenswith705N(160lb)for20,000cyclesora20-mmrutdepth,whicheveroccursfirst.

    LCPC(French)WheelTracker

    TheLaboratoireCentraldesPontsetChauses(LCPC)wheeltracker[alsoknownastheFrench

    RuttingTester(FRT)],showninFigure6,hasbeenusedinFranceforover15yearstosuccessfullypreventruttinginHMApavements(21).Inrecentyears,theFRThasbeenusedintheUnitedStates,mostnotablyinthestateofColoradoandFHWA'sTurnerFairbankHighwayResearchCenter.

    TheFRTiscapableofsimultaneouslytestingtwoHMAslabs.Slabdimensionsaretypically180

    mmwide,50mmlong,and20to100mmthick(7.1inx19.7inx0.8to3.9in)(22).SamplesaregenerallycompactedwithaLCPClaboratory-tiredcompactor(23).

    Loadingofsamplesisaccomplishedbyapplyinga5000-N(1124-lb)loadontoa400x8Treb

    Smoothpneumatictireinflatedto600kPa(87psi).Duringtesting,thepneumatictirepassesoverthecenterofthesampletwicepersecond( 23).

    6

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    10/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    Figure6.LCPC(French)WheelTracker(FRT)

    WithinFrance,testtemperaturesforFRTtestingaregenerally60C(140F)forsurfacecourses

    and50C(122F)forbasecourses.However,ithasbeensuggestedthattemperatureslowerthan60C(140F)canbeusedforcolderregionswithintheUnitedStates(22).

    RutdepthswithintheFRTaredefinedbydeformationexpressedasapercentageoftheoriginal

    slabthickness.Deformationisdefinedastheaveragerutdepthfromaseriesof15measurements.Thesemeasurementsconsistofthreemeasurementstakenacrossthewidthofaspecimenatfivelocationsalongthelengthoftheslab.A"zero"rutdepthisgenerallydefinedbyloadingasampleatambienttemperaturefor1,000cycles(23).

    PurdueUniversityLaboratoryWheelTrackingDevice

    Asthenamestates,thePURWheel,showninFigure7,wasdevelopedatPurdueUniversity(24).PURWheeltestsslabspecimensthatcaneitherbecutfromtheroadwayorcompactedinthe

    laboratory.Slabspecimensare290mmwideby310mmlong(11.4inx12.2in)(25).Thicknessesofslabsamplesdependuponthetypemixturebeingtested.Forsurfacecoursemixes,asamplethicknessof38mm(1.5in)isusedwhilebinderandbasecoursemixesaretestedatthicknessesof51mmand76mm(2inand3in),respectively(25).

    LaboratorysamplesarecompactedusingalinearcompactoralsodevelopedbyPurdue

    University(25).ThiscompactorwasbaseduponasimilarcompactorownedbyKochMaterialsinpreparingsamplesfortheHWTD(26).TheprimarydifferencebeingthatthePurdueversioncancompactlargerspecimens.Samplesarecompactedtoanairvoidcontentrangeof6to8percent.

    7

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    11/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    Figure7.PurdueUniversityLaboratoryWheelTrackingDevice(PURWheel)

    PURWheelwasdesignedtoevaluateruttingpotentialand/ormoisturesensitivity(25).Testsamplescanbetestedineitherdryorwetconditions.Moisturesensitivityisdefinedastheratioofthenumberofcyclesto12.7mmofruttinginawetconditiontothenumberofcyclesto12.7mmofruttinginthedrycondition.The12.7-mmrutdepthisusedtodifferentiatebetweengoodandbadperformingmixeswithrespecttorutting(25).

    LoadingoftestsamplesinPURWheelisconductedutilizingapneumatictire.Agrosscontact

    pressureof620kPa(90psi)isappliedtothesample.Thisisaccomplishedbyapplyinga175-kg(385-lb)loadontothewheelthatispressurizedto793kPa(115psi).Aloadingrateof332mm/secisapplied.Testingisconductedto20,000wheelpassesoruntil20mmofruttingisdeveloped(24).

    PURWheelisverysimilartotheHWTD.However,oneinterestingfeatureaboutPURWheelisthatitcanincorporatewheelwanderintotesting(25).ThisfeatureisuniqueamongtheLWTscommonintheUnitedStates.

    ModelMobileLoadSimulator(MMLS3)

    Theone-thirdscaleMMLS3wasdevelopedrecentlyinSouthAfricafortestingHMAineitherthelaboratoryorfield.Thisprototypedevice,showninFigure8,issimilartothefull-scaleTexasMobileLoadSimulator(TxMLS)butscaledinsizeandload.Thescaledloadof2.1-kN(472-lb)isapproximatelyone-ninth(thescalingfactorsquared)oftheloadonasingletireofanequivalentsingleaxleloadcarriedondualtires(27).

    8

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    12/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    Figure8.ModelMobileLoadSimulator(MMLS3)

    TheMMLS3canbeusedfortestingsamplesindryorwetconditions.Anenvironmentalchambersurroundingthemachineisrecommendedtocontroltemperature.Temperaturesof50Cand60Chavebeenusedfordrytests,andwettestshavebeenconductedat30C.MMLS3samplesare1.2m(47in)inlengthand240mm(9.5in)inwidth,withthedeviceapplyingapproximately7200single-wheelloadsperhourbymeansofa300-mm(12-in)diameter,80-mm(3-in)widetireatinflationpressuresupto800kPa(116psi)withatypicalvalueof690kPa(100psi).Wandercanbeincorporateduptothefullsamplewidthof240mm.PerformancemonitoringduringMMLS3testingincludesmeasuringrutdepthfromtransverseprofilesanddeterminingSeismicAnalysisofSurfaceWavesmodulitoevaluateruttingpotentialanddamageduetocrackingormoisture,respectively.Rutdepthcriteriaforacceptableperformancearecurrentlybeingdeveloped( 28).

    Currentlythereisnostandardforlaboratoryspecimenfabrication,althoughresearchisbeing

    proposedtotheTexasDepartmentofTransportation.

    EFFECTOFTESTPARAMETERSANDMIXTUREPROPERTIESONLWTRESULTS

    AsshowninthepreviousdescriptionsonLWTs,allhavesimilaroperatingprinciples.Essentially,aloadistrackedbackandforthoveraHMAtestsample.Therefore,theeffectofvarioustestparametersandmaterialconstituentsshouldbesimilarforeach.FollowingaredescriptionsofhowdifferenttestparametersandconstituentscanaffectLWTresults.

    WithintheoperatingspecificationsforeachoftheLWTs,twotestparametersarealways

    specified:airvoidsandtesttemperature.Thisisprimarilyduetothefactthatthesetwo

    9

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    13/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    parametershavethemosteffectontestresults;especiallyrutdepths(29).Asairvoidsincrease,

    rutdepthsalsoincrease.Thishasbeenshownbyseveralresearchstudies(8,29).Likewise,astesttemperatureincreases,rutdepthsalsoincrease(8,30,31,32).Unfortunately,nothingcouldbefoundintheliteratureabouttheeffectofairvoidsandtesttemperatureonmoisture

    susceptibilityresults.AirvoidcontentsforeachoftheLWTsaregenerallyspecifiedbasedupontwoconcepts(12).First,somebelievethatspecimenairvoidcontentsshouldbeapproximately7percent,sincethisairvoidcontentrepresentstypicalas-constructeddensity.Othersbelievethattestspecimensshouldbecompactedto4percentairvoids,asactualshearfailureofmixesusuallytakesplacebelowapproximately3percent.

    Anothertestparameterthatcansignificantlyaffecttestresultsisthetypeandcompaction

    methodoftestsamples(29).Thetwopredominant"types"oftestspecimensarecylindersandbeams/slabs.Forruttingandmoisturesusceptibility,theliteratureindicatesthatthetwosampletypesdoprovidedifferentrutdepthsandstrippinginflectionpoints;however,bothtypes

    generallyrankmixessimilarly(20,33,34).Theprimaryreasonthesetwotypesofspecimensdonotproducethesamerutdepthsisthattheyaregenerallycompactedbydifferentmethods.Forinstance,cylindricalspecimensaretypicallycompactedusingtheSuperpavegyratorycompactorwhilebeamsamplesaregenerallycompactedwithavibratoryorkneadingcompactor.Themethodofcompactioninfluencesthedensity(airvoid)gradientsandaggregateorientationwithinsamples(35,36).

    Formoisturesusceptibility,researchhasshownthatdifferentsampletypesalsoyielddifferent

    strippinginflectionpoints,evenonsamplescompactedsimilarly(20).Severalresearchershaveevensawncylindricalsamplessothatthey"butt"upagainsteachotherandcomparedtobeamspecimens(20,32).Thissampleconfigurationhasalsoshowndifferencesinstrippinginflectionpointsbetweenbeamsandcylinders.However,similartorutting,thecylindricalandbeamsspecimenstendtorankmixessimilarlywithrespecttomoisturedamage.

    Anothertestparameterthatsignificantlyaffectstestresultsisthemagnitudeofloading.Awide

    rangeofloadingsareusedinthedifferentdevices.AlthougharecentstudyindicatedthatsmallchangesinthemagnitudeofloadingmaynotaffectLWTrutresults(29),previousresearchhasshownthatsignificantdifferencesinloadingscanaffecttestresults(2).

    Dependinguponwhetherruttingormoisturetestingistobeconducted,sampleconditioning

    priortoLWTtestingisdifferent.Forrutting,ithasbeenshownthatsixhoursatthetesttemperatureissufficient(29).Ifsamplesarenotpreheatedsufficiently,lowrutdepthscanbeexpected.Conditioningofsamplesformoisturetestingpurposesgenerallytakesplaceunderwater(12).Nospecifictimeintervalhasbeenrecommended.Someusershaveutilizedfreeze-thawcyclestoconditionspecimenspriortomoisturetestinginLWTs(31).Duringactualmixingandcompactingoftestsamples,ithasbeensuggestedthatsamplesbeshort-termagedusingthe

    Superpaveprotocols(14,32).Thisshort-termagingprocedureisbelievedtoagethemixturesimilartoagingthatoccursthroughfieldproductionandplacement.

    SeveralresearchstudieshaveshownthatLWTscandifferentiatebetweenasphaltbindertypes

    (7,8,14,32).ResearchershavecomparedidenticalaggregatesandgradationsbutusingdifferentbindergradesinLWTs.Whentestedatsimilartemperatures,mixescontainingstiffergradesofasphaltbinderwillprovidelowerrutdepths.RuttingtendstofollowtheG*/sin*ofthebinderwhentestedusingtheDynamicShearRheometer( 14,32).

    AnothermixturecharacteristicthataffectsLWTresultsisnominalmaximumaggregatesize(2).

    Foragivenaggregateandbindertype,mixeswithlargernominalmaximumaggregatesizegradationstendtoprovidelowerrutdepths.

    10

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    14/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    LWTRESULTSVERSUSFIELDPERFORMANCE

    NumerousstudieshavebeenconductedtocompareresultsofLWTtestingtoactualfieldperformance.MostofthesestudieshavebeentorelateLWTrutdepthstoactualfieldrutting.

    InthedevelopmentoftheGLWT,theresearchersusedfourmixesofknownfieldrutperformancefromGeorgia(2).Threeofthefourmixeshadshownatendencytorutinthefield.ResultsofthisworkshowedthattheGLWTwascapableofrankingmixturessimilartoactualfieldperformance.AsimilarstudyconductedinFlorida(5)usedthreemixesofknownfieldperformance.Oneofthesemixeshadverygoodruttingperformance,onewaspoor,andthethirdhadamoderatefieldhistory.Again,resultsfromtheGLWTwereabletorankthemixturessimilartotheactualfieldruttingperformance.

    TheUniversityofWyomingandWyomingDepartmentofTransportationparticipatedinastudy

    (11)toevaluatetheabilityoftheGLWTtopredictrutting.Forthisstudy,150-mmcoreswereobtainedfrom13pavementsthatprovidedarangeofruttingperformance.Resultsshowedthat

    theGLWTcorrelatedwellwithactualfieldruttingwhenprojectelevationandpavementsurfacetypewereconsidered.Theeffectofelevationonrutdepthswasmostlikelyduetodifferentclimatesatrespectiveelevationintervals.

    AftertheAPAcameonthemarket,theFloridaDepartmentofTransportationconductedastudy

    (34)similartotheGLWTstudydescribedpreviously(5).Again,threemixesofknownfieldperformanceweretestedintheAPA.Withinthisstudy,however,beamsandcylinderswerebothtested.Resultsshowedthatbothsampletypesrankedthemixessimilartothefieldperformancedata.Therefore,theauthorsconcludedthattheAPAhadthecapabilitytorankmixesaccordingtotheirruttingpotential.

    TheColoradoDepartmentofTransportationandtheFHWA'sTurnerFairbankHighway

    ResearchCenterparticipatedinaresearchstudytoevaluatetheFRTandactualfield

    performance(22).Atotalof33pavementsfromthroughoutColoradothatshowedarangeofruttingperformancewereused.TheresearchindicatedthattheFrenchruttingspecification(rutdepthoflessthan10percentofslabthicknessafter30,000passes)wastoosevereformanyofthepavementsinColorado.Byreducingthenumberofpassesforlow-volumeroadsanddecreasingthetesttemperatureforpavementslocatedinmoderatetohighelevations(i.e.,colderclimates),thecorrelationbetweentheFRTresultsandactualfieldruttingwasgreatlyincreased.

    AnotherresearchstudybytheLCPCcomparedrutdepthsfromtheFRTandfieldrutting(37).

    FourmixturesweretestedintheFRTandplacedonafull-scalecirculartesttrackinNantes,France.ResultsshowedthattheFRTcanbeusedasamethodofdeterminingwhetheramixturewillhavegoodruttingperformance.

    TheFHWAconductedafieldpavementstudyatTurner-FairbankHighwayResearchCenter(38)

    usinganacceleratedloadingfacility(ALF).HMAmixtureswereproducedandplacedoveranaggregatebaseonalineartestsection.ThreeLWTswereusedtotestmixesplacedontheALFinordertocompareLWTresultswithruttingaccumulatedundertheALF.ThethreeLWTsweretheFRT,GLWT,andHWTD.Baseduponthisstudy,theresultsfromtheLWTsdidnotalwaysrankthemixturessimilartotheALF.

    AjointstudybytheFHWAandVirginiaTransportationResearchCouncil(15)evaluatedthe

    abilityofthreeLWTstopredictruttingperformanceonmixturesplacedatthefull-scalepavementstudyWesTrack.ThethreeLWTsweretheAPA,FRT,andHWTD.Forthisresearch,10testsectionsfromWesTrackwereused.TherelationshipbetweenLWTandfieldruttingfor

    allthree2LWTswasstrong.TheHWTDhadthehighestcorrelation(R2=0.91),followedbythe

    APA(R=0.90)andFRT(R 2=0.83).

    11

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    15/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    Theonlystudyfoundintheliteraturedealingwithmoisturesusceptibilitywasconductedbythe

    ColoradoDepartmentofTransportation(16).ThisstudycomparedresultsfromtheHWTDwithknownfieldperformanceintermsofstripping.TwentypavementsfromthroughoutthestateofColoradowereevaluated.TestresultsfromtheHWTDindicatedthatthestrippinginflection

    pointandstrippingslopegenerallydistinguishedbetweengoodandpoorperformance.ThreestudiesbytheTexasDepartmentofTransportation(28,39,40)utilizedtheprototypeMMLS3todeterminetherelativeperformanceoftworehabilitationprocessesandestablishthepredictivecapabilityofthislaboratory-scaledevice.Forthefirsttwostudies,theMMLS3testedeightfull-scalepavementsectionsinthefieldadjacenttosectionstraffickedwiththeTxMLS.Fieldtestingcombinedwithadditionallaboratorytestingindicatedthatoneoftherehabilitationprocesseswasmoresusceptibletomoisturedamageandlessresistanttopermanentdeformationcomparedtothesecondprocess.Thissecondprocesswaslessresistanttofatiguecracking.Inaddition,acomparisonofpavementresponseunderfull-scale(TxMLS)andscaled(MMLS3)acceleratedloadingshowedgoodcorrelationwhenactualloadingandenvironmentalconditionswereconsidered.

    AnongoingthirdstudyaimstotieMMLS3resultswithactualmeasuredperformanceoffoursectionsatWesTrack(28).Ahightestingtemperature(60C)wasselectedbasedonthecriticaltemperatureforpermanentdeformationduringa5-daytraffickingperiodduringwhichfailureoccurredforthreeofthefoursections(41,42).LimitedlaboratorytestingusingtheHWTDandtheAPAisalsoincludedinthisstudy,butonlytherankingsfromHWTDresultsshowgoodcorrelationwithactualperformance.ResultsindicatethattheMMLS3iscapableofcorrectlyrankingperformanceofthefourWesTracksections.

    SUMMARY

    Baseduponreviewofthelaboratorywheeltrackingdevicesandtherelatedliteraturedetailingthelaboratoryandfieldresearchprojects,thefollowingobservationsareprovided.

    Bothcylindricalandbeamspecimens,dependinguponthetypeofwheeltrackingdevice,canbeusedtorankmixtureswithrespecttorutting.Resultsobtainedfromthewheeltrackingdevicesseemtocorrelatereasonablywellto

    actualfieldperformancewhenthein-serviceloadingandenvironmentalconditionsofthatlocationareconsidered.

    Thewheeltrackingdevicesseemtoreasonablydifferentiatebetweenperformancegradesofbinders.

    Wheeltrackingdevices,whenproperlycorrelatedtoaspecificsite'strafficandenvironmentalconditions,havethepotentialtoallowtheuseragencytheoptionofapass/failor"go/nogo"criteria.Theabilityofthewheeltrackingdevicestoadequatelypredictthemagnitudeoftheruttingforaparticularpavementhasnotbeendeterminedatthistime.

    Adevicewiththecapabilityofconductingwheel-trackingtestsinbothairandinasubmergedstatewilloffertheuseragencythemostoptionsofevaluatingtheirmaterials.

    12

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    16/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    REFERENCES

    1.

    2.3.4.5.6.

    7.8.9.

    10.

    11.12.13.14.

    15.

    16.17.

    18.

    Brown,E.R.,andS.A.Cross.ANationalStudyofRuttinginHotMixAsphalt(HMA)Pavements.Proc.,AssociationofAsphaltPavingTechnologists,Vol.61,1992.

    Lai,J.S.EvaluationofRuttingCharacteristicsofAsphaltMixesUsingLoadedWheelTester.ProjectNo.8609,GeorgiaDepartmentofTransportation,Dec.1986.Collins,R.,D.Watson,andB.Campbell.DevelopmentandUseoftheGeorgiaLoadedWheelTester.InTransportationResearchRecord1492,TRB,NationalResearchCouncil,Washington,D.C.,July1995,pp.202-207.Lai,J.S.DevelopmentofaLaboratoryRuttingResistanceTestingMethodforAsphaltMixes.ProjectN.8717,GeorgiaDepartmentofTransportation,Aug.1989.West,R.C.,G.C.Page,K.H.Murphy.EvaluationoftheLoadedWheelTester.ResearchReportFL/DOT/SMO/91-391,FloridaDepartmentofTransportation,Dec.1991.Lai,J.S.andH.Shami.DevelopmentofRollingCompactionMachineforPreparationofAsphaltBeamSamples.InTransportationResearchRecord1492,TRB,National

    ResearchCouncil,Washington,D.C.,July1995,pp.18-25.Hanson,D.I.andL.A.CooleyJr.StudyToImproveAsphaltMixesinSouthCarolina,VolumeIIIModifiedMixes.ReportNo.FHWA-SC-98-02,FHWA,USDOT,Jan.1999.Collins,R.,H.Shami,andJ.S.Lai.UseofGeorgiaLoadedWheelTesterToEvaluateRuttingofAsphaltSamplesPreparedbySuperpaveGyratoryCompactor.InTransportationResearchRecord1545,TRB,NationalResearchCouncil,Washington,D.C.,Nov.1996,pp.161-168.Lai,J.S.EvaluationoftheEffectofGradationofAggregateonRuttingCharacteristicsofAsphaltMixes.ProjectNo.8706,GeorgiaDepartmentofTransportation,Aug.1988.Lai,J.S.ResultsofRound-RobinTestProgramToEvaluateRuttingofAsphaltMixesUsingLoadedWheelTester.InTransportationResearchRecord1417,TRB,NationalResearchCouncil,Washington,D.C.,Oct.1993,pp.127-134.

    Miller,T.,K.Ksaibati,andM.Farrar.UtilizingtheGeorgiaLoaded-WheelTestertoPredictRutting.Presentedatthe74thAnnualMeetingoftheTransportationResearchBoard,Washington,D.C.,Jan.22-28,1995.Kandhal,P.S.andL.A.CooleyJr.NCHRPPhase1-InterimReport:AcceleratedLaboratoryRutting:AsphaltPavementAnalyzer,Project9-17,NationalCooperativeHighwayResearchProgram,TRB,NationalResearchCouncil,Washington,D.C.,Aug.1999.Neiderhauser,S.PresentedattheAsphaltPavementAnalyzerUserGroupMeeting,Auburn,Alabama,Sept.28-29,1999.Kandhal,P.S.,andR.B.Mallick.EvaluationofAsphaltPavementAnalyzerforHMAMixDesign.ReportNo.99-4,NationalCenterforAsphaltTechnology,June1999.Williams,C.R.andB.D.Prowell.ComparisonofLaboratoryWheel-TrackingTestResultstoWesTrackPerformance.Presentedatthe78thAnnualMeetingofthe

    TransportationResearchBoard,Washington,D.C.,Jan.10-14,1999.Aschenbrener,T.EvaluationofHamburgWheel-TrackingDevicetoPredictMoistureDamageinHotMixAsphalt.InTransportationResearchRecord1492,TRB,NationalResearchCouncil,Washington,D.C.,July1995,pp.193-201.Buchanan,M.S.AnEvaluationofLaboratoryWheel-TrackingDevices.NationalAsphaltPavementAssociation,NationalCenterforAsphaltTechnology,Aug.1997.Messersmith,P.,C.Jones,andC.Wells.AContractor'sExperiencewithPolymerModifiedAsphaltinAlabama.Presentedatthe78thAnnualMeetingoftheTransportationResearchBoard,Washington,D.C.,Jan.10-14,1999.

    13

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    17/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    19.

    20.21.22.23.

    24.

    25.26.27.

    28.29.30.31.

    32.33.34.35.

    Huber,G.A.,J.C.Jones,P.E.Messersmith,andN.M.Jackson.ContributionofFine

    AggregateAngularityandParticleShapetoSuperpaveMixturePerformance.InTransportationResearchRecord1609,TRB,NationalResearchCouncil,Washington,D.C.,Aug.1998,pp.28-35.

    Hall,K.D.andS.G.Williams.EffectsofSpecimenConfigurationandCompactionMethodonPerformanceinAsphaltConcreteWheel-TrackingTests.PresentedtotheCanadianTechnicalAsphaltAssociation,June1,1999.Brousseaud,Y.AssessmentoftheUseoftheLCPCRuttingTester.SectiondesMateriauxdeChausses,LaboratorieCentraldesPontsetChausses,Nantes,France,1992.Aschenbrener,T.ComparisonofResultsObtainedfromtheFrenchRuttingTesterWithPavementsofKnownFieldPerformance.ReportNo.CDOT-DTD-R-92-11,ColoradoDepartmentofTransportation,Oct.1992.Bonnot,J.AsphaltAggregateMixtures.InTransportationResearchRecord1096,TRB,NationalResearchCouncil,Washington,D.C.,1986,pp.42-51.Lee,C.,T.D.White,andT.R.West.EffectofFineAggregateAngularityonAsphalt

    MixturePerformance.ReportNo.FHWA/IN/JTRP-98/20,JointTransportationResearchProject,PurdueUniversity,WestLafayette,Indiana,July1999.Pan,C.andT.D.White.ConditionsforStrippingUsingAcceleratedTesting.ReportNo.FHWA/IN/JTRP-97/13,JointTransportationResearchProgram,PurdueUniversity,WestLafayette,Indiana,Feb.1999.Nabermann,J.A.DesignFeaturesandaPreliminaryStudyofPurdueLinearCompactorandthePURWheelTrackingDevice.M.S.Thesis.PurdueUniversity,WestLafayette,Indiana,1994.Epps,A.,D.C.Little,M.Mikhail,andF.Hugo.ComparisonofRutDepthAnalysisMethodsUsingMMLS3Data.PapertobesubmittedforpublicationinTransportationResearchRecord:JournaloftheTransportationResearchBoardandpresentedatthe80thAnnualMeetingoftheTransportationResearchBoard,Washington,D.C.,Jan.7-11,2001.

    Epps,A.,T.Ahmed,M.Mikhail,andF.Hugo.PerformancePredictionwiththeMMLS3WesTrack.PapertobesubmittedforpublicationintheJournaloftheAssociationofAsphaltPavingTechnologistsandpresentatedattheAnnualMeetingoftheAssociationofAsphaltPavingTechnologists,Clearwater,Florida,March19-21,2001.West,R.C.ARuggednessStudyoftheAsphaltPavementAnalyzerRuttingTest.MemorandumtotheAsphaltPavementAnalyzerUserGroupandNewAPAOwners,May14,1999.Shami,H.I.,J.S.Lai,J.A.D'Angelo,andT.P.Harmon.DevelopmentofTemperatureEffectModelforPredictingRuttingofAsphaltMixturesUsingGeorgiaLoadedWheelTester.InTransportationResearchRecord1590,TRB,NationalResearchCouncil,Washington,D.C.,Sept.1997,pp.17-22.RuttingSusceptibilityofBituminousMixturesbytheGeorgiaLoadedWheelTester.ReportNo.RDT98-001,MissouriDepartmentofTransportation,May1,1998.

    Stuart,K.D.andR.P.Izzo.CorrelationofSuperpaveG*/sindwithRuttingSusceptibilityfromLaboratoryMixtureTests.InTransportationResearchRecord1492,TRB,NationalResearchCouncil,Washington,D.C.,July1995,pp.176-183.Izzo,R.P.andM.Tahmoressi.EvaluationoftheUseoftheHamburgWheel-TrackingDeviceforMoistureSusceptibilityofHotMixAsphalt.Presentedatthe78thAnnualMeetingoftheTransportationResearchBoard,Washington,D.C.,Jan.10-14,1999.Choubane,B.,G.C.Page,andJ.A.Musselman.InvestigationoftheAsphaltPavementAnalyzerforPredictingPavementRutting.ResearchReportFL/DOT/SMO/98-427,FloridaDepartmentofTransportation,Oct.1998.CooleyJr.,L.A.,andP.S.Kandhal.EvaluationofDensityGradientsinAPASamples.AsphaltPavementAnalyzerUserGroup,NationalCenterforAsphaltTechnology,Oct.1999.

    14

  • 8/9/2019 Loaded Wheel Testers in the United States: State of the Practice

    18/18

    CooleyJr.,Kandhal,Buchanan,Fee,&Epps

    36.

    37.38.39.

    40.

    41.

    42.

    Masad,E.,B.Muhunthan,N.Shashidhar,andT.Harman.QuantifyingLaboratory

    CompactionEffectsontheInternalStructureofAsphaltConcrete.InTransportationResearchRecord:JournaloftheTransportationResearchBoard,No.1681,TRB,NationalResearchCouncil,March1999,pp.179-185.

    Cort,J.F.,Y.Brosseaud,J.P.Simoncelli,andG.Caroff.InvestigationofRuttingofAsphaltSurfaceLayers:InfluenceofBinderandAxleLoadConfiguration.InTransportationResearchRecord1436,TRB,NationalResearchCouncil,Washington,D.C.,Oct.1994,pp.28-37.Stuart,K.D.andW.S.Mogawer.EffectofCompactionMethodonRuttingSusceptibilityMeasuredbyWheel-TrackingDevices.Presentedatthe76thAnnualMeetingoftheTransportationResearchBoard,Washington,D.C.,Jan.12-16,1997.Walubita,L.,F.Hugo,andA.Epps.ReportontheSecondJacksboroMMLSTests.SubmittedtotheTexasDepartmentofTransportation,June2000.deFortierSmit,A.,F.Hugo,A.Epps,andJ.Lee.ReportontheFirstJacksboroMMLSTests.SubmittedtotheTexasDepartmentofTransportation,March2000.Deacon,J.,A.Tayebali,J.Coplantz,F.Finn,andC.Monismith.Temperature

    ConsiderationsinAsphalt-AggregateMixtureAnalysisandDesign.InTransportationResearchRecord1454,TRB,NationalResearchCouncil,Dec.1994,pp.97-112.Hand,A.RelationshipsBetweenLaboratory-MeasuredHMAMaterialandMixturePropertiesandPavementPerformanceatWesTrack.Ph.D.Dissertation.UniversityofNevada,Reno,1998.

    15