long-hand design of a two-way post-tensioned floor system

73
1 S. K. Ghosh Associates Inc. www.skghoshassociates.com Long-Hand Design of a Two-Way Post-Tensioned Floor System Dr Bijan O Aalami Professor Emeritus, San Francisco State University Principal, ADAPT Corporation; [email protected] www.adaptsoft.com 1 View of a Two-Way Floor System Reinforced with Unbonded Tendons 2

Upload: cancery0707

Post on 17-Dec-2015

72 views

Category:

Documents


10 download

DESCRIPTION

Post-Tensioned Floor Slab Design

TRANSCRIPT

  • 1S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Long-Hand Design of a Two-WayPost-Tensioned Floor System

    Dr Bijan O AalamiProfessor Emeritus,

    San Francisco State UniversityPrincipal, ADAPT Corporation; [email protected]

    www.adaptsoft.com 1

    View of a Two-Way Floor System Reinforced with Unbonded

    Tendons

    2

  • 2S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    View of a Two-Way Floor System Reinforced with Grouted Tendons

    3

    Views of the Design Floor Featuring Highly Irregular Support Layout

    4

  • 3S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    1. GEOMETRY AND STRUCTURAL SYSTEM

    2. MATERIAL PROPERTIES3. LOADS4. DESIGN PARAMETERS5. ACTIONS DUE TO DEAD

    AND LIVE LOADS6. POST-TENSIONING7. CODE CHECK FOR

    SERVICEABILITY8. CODE CHECK FOR

    STRENGTH9. CODE CHECK FOR INITIAL

    CONDITION10.DETAILING

    10 STEPS OF DESIGN

    5

    STEP 1GEOMETRY AND STRUCTURAL SYSTEM

    6

  • 4S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 1GEOMETRY AND STRUCTURAL SYSTEM

    7

    STEP 1GEOMETRY AND STRUCTURAL SYSTEM

    8

  • 5S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 1GEOMETRY AND STRUCTURAL SYSTEM

    9

    STEP 1GEOMETRY AND STRUCTURAL SYSTEM

    10

  • 6S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 1GEOMETRY AND STRUCTURAL SYSTEM

    11

    STEP 1GEOMETRY AND STRUCTURAL SYSTEM

    Span TributaryWidthft.

    Depthin

    lin4

    Ybin.

    Ytin.

    1Left 26.25 9.50 22506 4.75 4.752Middle 30.75 9.50 26364 4.75 4.752Right 30.75 17.50 61248 11.70 5.803Left 34.75 17.50 65132 11.80 5.70

    3Middle 34.75 9.50 29794 4.75 4.753Right 34.75 17.50 104268 10.78 6.72

    4Left 34.00 17.50 103287 10.75 6.754Middle 34.00 9.50 29151 4.75 4.754Right 34.00 17.50 182219 8.75 8.75

    Cantilever 34.00 17.50 182219 8.75 8.75

    12

  • 7S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 2MATERIAL PROPERTIES

    2.1Concretef c=5000psi

    Weight=150pcf

    ElasticModulus=57000f c=4,030.50ksiCreepCoefficient=2

    2.2Nonprestressed(Passive)Reinforcement:fy =60ksi

    ElasticModulus=29,000ksi

    2.3Prestressing:Material lowrelaxation,sevenwireASTM416

    Stranddiameter=in(nominal).

    Strandarea=0.153in.2

    ElasticModulus=28,000ksi

    Ultimatestrengthofstrand(fpu)=270ksi

    Contd

    13

    Unbonded system hardware

    14

    STEP 2MATERIAL PROPERTIES

    Unbonded system

  • 8S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 2MATERIAL PROPERTIES

    View of a Floor System Constructed withan Unbonded System

    15

    Unbonded system

    An example of a grouted system hardware with flat duct

    16

    STEP 2MATERIAL PROPERTIES

    Grouted (bonded) system

  • 9S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 2MATERIAL PROPERTIES

    Example of a Floor System Reinforcedwith Grouted Post-Tensioning System

    Grouted (bonded) system

    17

    STEP 2MATERIAL PROPERTIES

    18

  • 10

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    PT systems

    UnbondedSystemAngularcoefficientoffriction() =0.07Wobblecoefficientoffriction(K)=0.001rad/ftAnchorset(wedgedrawin)=0.25inchStressingforce=80%ofspecifiedultimate

    strength

    Effectivestressafteralllosses=175ksi

    BondedSystemUsesheetmetalorplasticflatductshousingup

    tofivestrands

    Angularcoefficientoffriction() =0.2Wobblecoefficientoffriction(K)=0.001rad/ftAnchorset(wedgedrawin)=0.25inch

    STEP 2MATERIAL PROPERTIES

    19

    STEP 3LOADS

    3.1SelfweightSlab=(9.5/12)*150pcf=118.75psf

    3.2SuperimposedDeadLoadFixturesandfinishes=7.00psf

    Partitions=20.00psf

    TotalSuperimposedDeadLoad=27.00psf

    Totaldeadload=SW+SDL=145.75psf

    DeadloadondesignstripSpan1DL=145.75*26.25/1000=3.826klf

    Span2DL=145.75*30.75/1000=4.482klf

    Span3DL=145.75*34.75/1000=5.065klf

    Span4DL=145.75*34.00/1000=4.956klf

    Addeddeadloadduetocolumndrop,droppanelandthickenedoverhangiscalculatedandadded.

    20

  • 11

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 3LOADS

    3.3LiveLoad50psf,reducibleperIBCTheliveloadisreducedbasedontheareaitcovers.ThefollowingrelationshipfromIBCisused:

    R=0.08(A 150)

    R=reductionfactor,nottoexceed40%

    A=tributaryinsquarefeet.

    Normorethan

    R=23.1(1+D/L0)=23.1(1+145.75/50)=90.43%>40%use40%

    D=deadload;L0 =applicableliveload.

    Span1:Reduction=0.08*(30*26.25 150)=51%

    >40%max;use40%

    Liveload=(1.00.40)*50.00psf=30.00psf

    =30psf*26.25/1000=0.788klf

    Spans2tospan4areworkedoutsimilarly21

    STEP 3LOADS

    Liveloadisgenerallyskipped(patterned),inordertomaximizethedesignvalues.However,fortwowayfloorsystems,ACI31811doesnotrequireliveloadskipping,providedtheratiooflivetodeadloaddoesnotexceed0.75.Inthisexample,asinmostconcretefloorsystemsforresidentialandofficebuildings,theratiooflivetodeadloadislessthan0.75.Hence,theliveloadwillnotbeskipped.(ACI31811,Section13.7.6)

    22

  • 12

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 4DESIGN PARAMETERS

    4.1ApplicableCodesACI3182011;IBC2012

    4.2CovertoRebarandPrestressingTendonsUnbondedsystemMinimumrebarcover=0.75;topandbottomCovertotendon=0.75topandbottomCGS: allspans=1.00in.

    23

    STEP4DESIGNPARAMETERS

    BondedsystemMinimumrebarcover=0.75in;topandbottomForposttensioningtendons:Covertoduct=0.75in.Distancetocentroidofstrand=0.75+0.4+0.1

    =1.25in.Where,0.4inishalfductdiameterandz=0.1inCGSforallspans=1.25in.

    24

  • 13

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 4DESIGN PARAMETERS

    4.3AllowableStressesInACI318/IBCtheallowablestressesfortwowaysystemsandonewaysystemsaredifferent.Thevaluesstatedarefortwowaysystems.Thesevaluesmaynotbeexceeded.UsingACI318,twowaysystemsaredeemedtobeessentiallycrackfreewheninservice.Inservicecracking,ifanyisnotofdesignsignificance.

    Asinglerepresentativehypotheticalstressvalueisusedforeachdesignsection.

    .

    25

    STEP 4DESIGN PARAMETERS

    26

  • 14

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 4DESIGN PARAMETERS

    4.3AllowableStresses.Allowablestressesinconcretearethesameforbondedandunbounded PTsystems

    For sustained loadconditionCompression=0.45*fc=0.45*5000=2,250psi

    Tension=6*f c=424psi For total loadconditionCompression=0.60*fc=3,000psi

    Tension=6*f c=424psi Forinitial condition:Compression=0.60*fci=0.6*3750=2,250psi

    Tension=3*f c=184psi

    27

    STEP 4DESIGN PARAMETERS

    4.4CrackWidthLimitationandControl.None required in ACI 318/IBC for two-way systems

    InEC2designisbasedonauserdefineddesigncrackwidth.

    4.5AllowableDeflection

    Visual effects(L/240) Damagetononstructuralmembers(L/480) Malfunction

    Longtermfactor2

    Usecamber,whereneededandpractical

    28

  • 15

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 5ACTIONS DUE TO DEAD AND LIVE

    Usein houseframeprogram,recognizingthatitmayapproximatethepositionofdropsbymodelingthemalignedwithcentroidofslab.

    Geometry of Analysis Frame

    29

    STEP 5ACTIONS DUE TO DEAD AND LIVE LOADS

    FOS=FaceofSupport

    Span Location MD kft ML kft MD+ML kftSpan#1 LeftFOS* 204.25 42.04 246.29

    Midspan 158.52 32.63 190.50RightFOS 264.42 54.42 318.84

    Span#2 LeftFOS 296.00 60.92 356.92Midspan 185.09 38.09 223.18RightFOS 393.92 80.96 474.88

    Span#3 LeftFOS 400.50 82.31 482.81Midspan 189.20 39.28 228.48RightFOS 593.08 119.42 712.50

    Span#4 LeftFOS 615.08 124.00 739.08Midspan 197.90 40.60 238.50RightFOS 312.42 64.19 376.61

    Cantilever LeftFOS 9.40 1.91 11.31

    Forhandcalculationusevaluesatfaceofsupport andmidspan,recognizingthat(i)maximumvaluesdonotnecessarilyoccuratmidspan,andthemaximaofdifferentloadcasesdonotnecessarilycoincide

    Actions Due to Dead Load, and Live Load

    30

  • 16

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 5ACTIONS DUE TO DEAD AND LIVE LOADS

    .

    31

    STEP 6POST-TENSIONING

    Selection of PT force and profileTwo entry values must be made to initiate the

    computations. Select precompression and % of DL to balance

    32

  • 17

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 6POST-TENSIONING

    .

    Minimumaverageprecompression=150psiMaximumaverageprecompression=300psiTargetbalancedloading=60%oftotaldeadload,

    upto80%wherebeneficial

    Effectivestressinprestressingstrand:Forunbondedtendons:fse=175ksiForbondedtendons:fse=160ksi

    33

    STEP 6POST-TENSIONING

    .

    Forunbonded tendons

    Forcepertendon=175ksi*0.153in2 =26.77kips/tendonUsemultiplesof26.77kipswhenselectingtheposttensioningforcesfordesign.

    Forbondedtendons

    Forcepertendons=160ksi*0.153in2 =24.48kips/tendonUsemultiplesof24.48kipswhenselectingtheposttensioningforcesfordesign.

    34

  • 18

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 6POST-TENSIONING

    Selection of design parameters Select average precompression 150 psi Target to balance 60% of DL

    Selection of PT force and profile Assume simple parabola mapped within

    the bounds of top and bottom covers

    Force diagram of simple parabola

    35

    Calculation of balanced loads;adjustment of % of DL balanced

    STEP 6POST-TENSIONING

    Select critical span

    Select max drape

    Calculate %of DL balanced (%DL)

    %DL < 50%?

    Reduce P/AReduce drape

    Yes

    Increase P/A

    NoYes

    No

    No Yes

    Yes No

    Assume P/A =150psi[1MPa]

    P /A 80%?

    P/A>125psi [0.8MPa]?

    Go to next span

    1

    2

    F121_ACI_PT_2_way_082012

    36

  • 19

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Calculation of balanced loads;adjustment of % of DL balanced

    STEP 6POST-TENSIONING

    Select max drape using tendons from critical span

    Calculate %of DL balanced (%DL)

    Move to next span

    Reduce P/A or tendons to%DL balanced ~ 60% ;

    P/A >= 125 psi [0.8 MPa]

    YesNo

    No Yes

    Is it practical to reduce P/A or tendons?

    %DL > 80%?

    Rais e tendon to reach%DL ~ 60%

    Exit after last span

    F121_ACI_2-way_PT_force_082012

    37

    Effective force per strand 26.77 k Average precompression 150 psi

    Calculate number of strands for each span

    STEP 6POST-TENSIONING

    Unbonded Tendon

    Span1area=26.25*12*9.50=2992.50in2

    Span1force=150psi*2992.50in2/1000=448.88kips

    Numberoftendons=448.88/26.77=16.77;say17

    Span Tributaryft.

    Thicknessin.

    Areain2 Forcekips.

    Tendonsrequired

    Tendonsselected

    1 26.25 9.50 2992.50 448.88 17 20

    2 30.75 9.50 3505.50 525.83 20 20

    3 34.75 9.50 3961.50 594.23 23 23

    4 34.00 9.50 3876.00 581.40 22 23

    Cant.

    34.00 17.50 7140.00 1071.00 41 23

    38

  • 20

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    STEP 6POST-TENSIONING

    39

    Calculate balanced loads Wb

    STEP 6POST-TENSIONING

    Span 1

    a=4.75 1.00=3.75b=8.50 1.00=7.50L=30.00c={[3.75/7.50]0.5/[1+(3.75/7.50)0.5]}*30=12.43

    Wb/tendon=2P*a/c2 =26.77*(2*3.75/12)/12.432= 0.108klf/tendon

    For20tendonsWb =0.108*20=2.160klf%DLBalanced=(2.160/3.826)*100=56%

    OK(lessthan60%target,butacceptable)

    Reaction,left=2.160klf*12.43=26.85kReaction,right=2.160klf*17.57=37.95k

    40

  • 21

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Span2;balancedloads;continuoustendons

    STEP 6POST-TENSIONING

    a=7.5L=32.75Wb/tendon=8*P*a/L2

    =(8*26.77*7.5/12)/32.752=0.125klf

    For20tendonsWb =0.125*20=2.500klf%DLBalanced=2.500/4.482=56%OK

    Reaction;left =2.500klf*16.38=40.95kReaction;right=2.500klf*16.38=40.95k

    41

    Span 2; terminated tendons

    STEP 6POST-TENSIONING

    a=3.75c=0.20*32.75=6.55

    Wb=(3*26.77*2*3.75/12)/6.552 =1.170klfForceatdeadend =1.170klf*6.55=7.66k

    42

  • 22

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Span 2; Moments at change in centroid

    STEP 6POST-TENSIONING

    M=P*shiftincentroid=P*(YtLeft YtRight)=23*26.77k*(4.75 5.80)/12=53.87kft

    Momentatrightsupportcenterline:M=23*26.77*(5.805.70)/12=5.13kft

    43

    Span3;symmetricaltendonspan

    STEP 6POST-TENSIONING

    a=7.5;L=34.75

    Wb/tendon=8*P*a/L2=(8*26.77*7.5/12)/34.752=0.111klf

    For23tendons,Wb=0.111*23=2.553klf

    %DLBalanced=2.553/5.065=50% 60%OK

    Reactionatleft=2.553klf*17.38=44.37kReactionatright=2.553klf*17.38=44.37k

    Momentatfaceofleftcolumndrop:

    M=P*ShiftinCentroid

    =23*26.77k*(5.70 4.75)/12=48.74kftMomentatfaceofrightdroppanel:M=23*26.77*(4.75 6.72)/12=101.08kft

    Momentatcenterlineofrightsupport:

    M=23*26.77*(6.72 6.75)/12=1.54kft44

  • 23

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Span 4; unsymmetrical tendon span

    STEP 6POST-TENSIONING

    a=4.75 1.00=3.75b=8.50 1.00=7.50L=34.50c={[3.75/7.50]0.5/[1+(3.75/7.50)0.5]}*34.5=14.29Wb/tendon=26.77kips*(2*3.75/12)/14.292

    =0.082klf/tendon

    For23tendons,Wb =0.082*23=1.886klf%DLBalanced=(1.886/4.956)*100=38%

    Reaction,left=1.886klf*20.21=38.12kReaction,right=1.886klf*14.29=26.95kMomentatleftdroppanelface:M=23*26.77*(6.75 4.75)/12=102.62kft

    Momentatrightcantileverface:M=23*26.77*(4.75 8.75)/12=205.24kft

    45

    Cantilever; Balanced Loads

    STEP 6POST-TENSIONING

    Tendonishorizontalandstraight.Nodeadloadisbalanced.Momentduetodeadendanchoredawayfromcentroid:M=23*26.77*(8.75 4.75)/12=205.24kftM=205.24kft

    46

  • 24

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Summary of balanced loads

    STEP 6POST-TENSIONING

    47

    Validationofbalancedloadsthroughequilibriumcheck

    STEP 6POST-TENSIONING

    Forces =26.85+(30*2.16) 37.95 40.95+(32.75*2.50)(6.55*1.17)+7.6640.9544.37+(34.75*2.553) 44.3738.12+(34.5*1.886) 26.95

    =0.05k 0OK

    M3rdSupport =26.85*62.75+(37.95+40.95)32.757.66*6.55 2.16*30*47.75 (2.50*32.752 /2)+(2.553*34.752/2)+(1.170*6.552/2)+1.886*34.5*52(44.37+38.12)*34.75 6.95*69.2553.87+5.13+48.74101.08 1.54+102.62 205.42+205.42=0.96kft 0,OK

    48

  • 25

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Computationofactionsfrombalancedloads

    STEP 6POST-TENSIONING

    Usingtheinhouseframeprogram,andbalancedloadsasappliedforces,determinethemomentsatfaceofsupportsandmidspans

    49

    ACI 318-11 requirements for serviceability Load combinations Stress check Minimum reinforcement Deflection check.

    Load combination Total load condition

    1.00DL+1.00LL+1.00PT Sustained load condition

    1.00DL+0.30LL+1.00PT Stress check

    STEP 7CODE CHECK FOR SERVICEABILITY

    =(MD +ML +MPT)/S+P/AS=I/Yc;I=secondmomentofareaof;Yc =distancetofarthesttensionfiber

    ConsiderlocationsA,BandCascriticallocationsforstresscheck 50

  • 26

    S. K. Ghosh Associates Inc.

    www.skghoshassociates.com

    Stress check at point A face of support

    STEP 7CODE CHECK FOR SERVICEABILITY

    Stop =103287/6.75=15302in3

    Sbot=103287/10.75=9608in3

    A=34*12*9.5+144*8=5028in3

    P/A =615.71*1000/5028=122psi

    Totalloadcombination: =(MD +ML +MPT)/S+P/AMD +ML +MPT =(615.08 124.0+321.67)

    =417.41kft

    Bottomfiber: =417.41*12*1000/9608 122

    =643psiCompression40%maxLiveload=(1.0-0.40)*50.00psf=30.00psf =30psf*26.25/1000=0.788klf

    Spans2tospan4:By inspectionthemaximumreductionof40%maybeusedLiveload=(1.0-0.40)*50.00psf=30.00psfSpan2LL=30psf*30.75/1000=0.923klfSpan3LL=30psf*34.75/1000=1.043klfSpan4LL=30psf*34.0/1000=1.020klfCantilever:Reduction=0.08*(34*2.5150)=0%

    Liveload=50psf=50psf*34.0/1000=1.700klfLL/DLratio=50/145.75=0.34