long-term estimates of primary & secondary sources of thin

29
1 Long-term Estimates of Primary & Secondary Sources of Thin-film PV Materials -Recycling and Sustainability of PV- Long-term Estimates of Primary & Secondary Sources of Thin-film PV Materials -Recycling and Sustainability of PV- Vasilis Fthenakis PV Environmental Research Center Brookhaven National Laboratory and Center for Life Cycle Analysis Columbia University Presentation (invited) at PV Velocity Forum: Supply and Economics in Thin-film PV Materials, IEEE PVSC, Hawaii, June 23, 2010 email: [email protected] web: www.pv.bnl.gov www.clca.columbia.edu

Upload: others

Post on 03-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

1

Long-term Estimates of Primary & Secondary Sources of Thin-film PV Materials

-Recycling and Sustainability of PV-

Long-term Estimates of Primary & Secondary Sources of Thin-film PV Materials

-Recycling and Sustainability of PV-

Vasilis FthenakisPV Environmental Research Center

Brookhaven National Laboratoryand

Center for Life Cycle AnalysisColumbia University

Presentation (invited) at PV Velocity Forum: Supply and Economics in Thin-film PV Materials, IEEE PVSC, Hawaii, June 23, 2010

email: [email protected]: www.pv.bnl.gov

www.clca.columbia.edu

2

PV Sustainability CriteriaPV Sustainability Criteria

Photovoltaics are required to meet the need for abundant electricity generation at competitive costs, whilst conserving resources for future generations, and having environmental impacts lower than those of alternative future energy-options

Sustainability Metrics:Low CostResource AvailabilityMinimum Environmental Impact

3

The Triangle of SuccessThe Triangle of Success

Low CostAffordability in a

competitive world

Lowest Environmental Impact

ResourceAvailability

Affordability in a Affordability in a competitive worldcompetitive world

Material Constraints in Thin-Film PVIn in CIGS Te in CdTe Ge in a-SiGe

4

Presentation OutlinePresentation Outline

Te, In & Ge needs in PV Te & In availability

• Primary production • Recycling

Projected PV Production Constraints due to material unavailability (2010-2100)Recycling technologies & cost

5

Te, In & Ge Needs in thin-film PVTe, In & Ge Needs in thin-film PV

2008

PV Metal Required(MT/GW)

CdTe Te 176

CIGS In 83

a-SiGe Ge 73

Fthenakis, Renewable & Sustainable Energy Reviews, 2009

6

Te, In & Ge Needs in thin-film PVTe, In & Ge Needs in thin-film PV

Current 2010

PV Metal Required(MT/GW)

CdTe Te 106

CIGS In 83

a-SiGe Ge 7386.6Material Utilization-13.4Total losses

-7Loss in purification & CdTe synthesis

3.1Collected for recycling-3.5Module scrap loss24Collected for recycling-30Deposition loss

(%)Material Losses & Utilization

7

Te, In & Ge Supply & Needs in thin-film PVTe, In & Ge Supply & Needs in thin-film PV

Current 2010

Expected2020

PV Metal Required(MT/GW)

Required(MT/GW)

CdTe Te 106 38-74

CIGS In 83 11-20

a-SiGe Ge 73 36-48

8

Assumptions for Thin-Film PV GrowthAssumptions for Thin-Film PV Growth

PV Type Efficiency (%)

2008 2020Conservative Most

likelyOptimistic

CdTe 10.8 12.3 13.2 14

CIGS 11.2 14 15.9 16.3

a-Si-Ge 6.7 9 9.7 10

Fthenakis, Renewable & Sustainable Energy Reviews, 2009Update 2010

9

Assumptions for Thin-Film PV GrowthAssumptions for Thin-Film PV Growth

PV Type Efficiency (%)Efficiency (%)Efficiency (%) Layer Thickness (µm)

200820082008 202020202020 2008 2020ConservativeConservativeConservative Most Most Most

likelylikelylikelyOptimisticOptimisticOptimistic Conservative Most

likelyOptimistic

CdTe 10.810.810.8 131313 13.213.213.2 141414 3.3 2.5 1.5 1.

CIGS 11.211.211.2 141414 15.915.915.9 16.316.316.3 1.6 1.2 1. 0.8

a-Si-Ge 6.76.76.7 999 9.79.79.7 101010 1.2 1.2 1.1 1.

Fthenakis, Renewable & Sustainable Energy Reviews, 2009

10

Thin CdTe Cells can become Thinner

*

Calculation: Ray Hsiao, PhD thesis, Colorado State, 2010Experiment: V.V. Plotnikov, et al, 35th PVSC, 2009.

Calculation uses 16% thick-CdTe baseline and assumes constant CdTe lifetime. Primary limitations to thin CdTe cells in the calculation:

1. Back-surface recombination

2. Incomplete absorption

Note that fill-factor should increase slightly when thinner since there is less material for recombination. Seems to be the case experimentally down to one micron.

Courtesy: Jim Sites, CSU

11

Tellurium Supply and Demand

Prices of Te & Se 2009 Te Consumption –550 MT

Share (%)

Trend

Iron/Steel 36

nonferrous 7

PV, TE, IR 33

Chemicals 20

Other 4

~ $220 in 2010

50

100

150

200

($/kg

)

Price of TelluriumPrice of Selenium

Price

1915 1925 1935 1945 1955 1965 1975 1985 1995 2005Year

Source: USGS 2008Ogebuoboh, 2007; Fthenakis, update 2010

12

Te from Copper Sulfide ores*Approximate Global Distribution in Copper Circuits

Numbers refer to kg of Tellurium: 180-260 Ore

Refined coppercathode

0

Anode Slimes

Precious Metals

Baghouse&Scrubber Tellurium

45

5

Cu Conc.

Lead ConcZinc Conc.

20

To SulfuricAcid Plant

Tailings35-120

Dust Treatment ?

135

Concentration

10 Dump Slag

5105

Smelting FurnaceGas/dust Cleaning

100

Gas Cleaning Converter Furnace

100

Anode RefiningFurnace

Tankhouse/ElectroRefining

By-products Plant

*Cu, Cu-Mo, Cu-Au & polymetallic ores, e.g., Pb-Cu-Zn-Ag oresOjebuoboh, Proceedings EMC, 2007; Nagaraj, 2010; Fthenakis update 2010

13

Extraction Efficiencies from Slimes for Te, Se and In

Year Extraction Efficiency (%)

Tellurium Selenium Indium

2002 33 52 30

2006 40 80 70-80

2009 45 80 80

Main reason for lower Te than Se recovery rates• Several refineries recover Se but not Te

Anderson 2002; USGS 2004, 2006; Ogebuoboh, 2007; Fthenakis update 2010

14

Indium Supply and DemandIndium Supply and Demand

Price of Indium 2007 Indium Consumption –580 MT

Source: USGS 2008Ogebuoboh, 2007

0100200300400500600700800900

1000

1955 1965 1975 1985 1995 2005

Year

Pric

e ($

/kg)

~ $550 in 2010Share (%) Trend

Monitor 33

TV 24

Notebook 15

Cell phone 11

Other (PV) 17

15

Long-Term Projections Long-Term Projections

AssumptionsTe produced only as a by-product of Cu production from land-based sulfide ores:• All the growth in Te production is assigned to

PVIn and Ge are produced only as by-products of Zn production:• Half the growth in Indium production is

assigned to PV

16

Projection of Primary Cu Production(based on forecasted consumption*)

Projection of Primary Cu Production(based on forecasted consumption*)

* economic and population growth assuming there are no (environmental) constraints in mining Ayres et al., 2002

17

Tellurium for PV* from Copper SmeltersTellurium for PV* from Copper Smelters

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Te (M

T/yr

)

Tellurium Availability for PV* (MT/yr)

Low

High

•Global Efficiency of Extracting Te from anode slimes increases to 80% by 2030 (low scenario);90% by 2040 (high scenario)

* 322 MT/yr Te demand for other uses has been subtractedAll the growth in Te production is allocated to PV

18

Te Availability for PV: Primary + RecycledTe Availability for PV: Primary + Recycled

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Te (M

T/yr

)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

20

Te (M

T/yr

)

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Tellurium Availability for PV (MT/yr)

Low

HighRecycling every 30-yrs 10% loss in collection10% loss in recycling

Recycling every 30Recycling every 30--yrs yrs 10% loss in collection10% loss in collection10% loss in recycling10% loss in recycling

19

Assumptions for Thin-Film PV GrowthAssumptions for Thin-Film PV Growth

PV Type Efficiency (%) Layer Thickness (µm)

2008 2020 2008 2020Conservative Most

likelyOptimistic Conservative Most

likelyOptimistic

CdTe 10.8 13 13.2 14 3.3 2.5 1.5 1.

CIGS 11.2 14 15.9 16.3 1.6 1.2 1. 0.8

a-Si-Ge 6.7 9 9.7 10 1.2 1.2 1.1 1.

Fthenakis, Renewable & Sustainable Energy Reviews, 2009

20

CdTe PV Annual Production Constraints CdTe PV Annual Production Constraints CdTe PV (GW/yr)

Most likely

Optimistic

Conservative0

50

100

150

200

250

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

CdT

e PV

(GW

/yr)

Conservative

Most likely

Optimistic

21

Cumulative PV Production ConstraintsCumulative PV Production Constraints

0

2

4

6

8

10

12

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Cum

ulat

ive

CdTe

(TW

)

Production can increase with direct mining starting at ~2015

CdTe PV (TW)

Conservative

Most likely

Optimistic

22

CIGS Material-based Growth Constraints*CIGS Material-based Growth Constraints*

0

50

100

150

200

250

2010 2030 2050 2070 2090

CIG

S PV

(GW

/yr)

PV output (GW/yr), based on Primary + Secondary In, conservative

PV output (GW/yr), based on Primary + Secondary In, most likely

PV output (GW/yr), based on Primary + Secondary In, optimisitic

* 1/2 of In production growth is allocated to PV

Conservative

Most likely

Optimistic

23

Filtration Facility

Clean Glass

PV Module Fragments

Cd ElectrowinningCell

Cu Recovery

Column ICu

Column IICu

Column ICd, Fe

Column IICd, Fe

Leach Device

Leachate Solution(Te, Cd, Cu, Fe)

CdSO4

Removal of Cu from Liquid Using Resin A

Spen

t HSO

Solu

tion

Glass Slurry

H2SO4H2O2

Cd Metal

Recycling of Spent Electrolyte

Selective Precipitation

Removal of Cd and Fe from Liquid Using Resin B

Elution of ColumnA

Elution of ColumnB

Tellurium

Recycling R&D at BNL: CdTe and CIGS PV Modules

42

Fthenakis & Wang, Separating Te from Cd Waste, Patent No 7,731,920 Wang & Fthenakis, Kinetics Study on Separation of Cadmium from Tellurium in Acidic Solution Media Using Cation Exchange

Resin, Journal of Hazardous Materials, B125, 80-88, 2005Fthenakis & Wang, Extraction and Separation of Cd and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in

Photovoltaics: Research and Applications, 14:363-371, 2006.

24

CdTe PV Recycling Cost ModelCdTe PV Recycling Cost Model

Red: valueBlack: cost0.02 ¢

module0.04 ¢module

3.7 ¢/module

36 ¢module

84 ¢module

0.4 ¢module

Incoming module cost$2.7/module

Capital, labor, other processing cost$1.18/module

Choi and Fthenakis, in press

$0 if transported1000 km

Tellurium

Glass

25

Price of Te vs. Total Cost/Profit ($/module)Price of Te vs. Total Cost/Profit ($/module)

-$4

-$3

-$2

-$1

$0

$1

$2

0 200 400 600 800 1000 1200

Te price ($/kg)

Cos

t/Pro

fit ($

/mod

ule)

w/ Current Te Price $220/kg

Choi and Fthenakis, in press

Total Cost/Profit breakeven point around Te price of $720/kg.Other costs are fixed

Te price($/kg)

cost/profit($/module)

120 -$3.54220 -$2.95300 -$2.47400 -$1.88500 -$1.29600 -$0.69

1000 $1.68

26

The PV CYCLE Voluntary Initiative• Gloria Solar• Henot• Isofoton • Johanna Solar• Kaneka• Korax Solar• Kyocera• LDK Solar• Martifer• MoserBaer• NexPower• Photowatt• Q-Cells• REC• Renergies• Sanyo • Scheuten Solar• Schott Solar• Schueco• Sharp• Siliken• Solairedirect• Solarfabrik• Solarfun

• Solarworld • Soleos• Solon• Solpower • Sovello• Sulfurcell• Sunnoco• Sunpower• Solyndra• Suntech• Sunways• T-Solar• Tenesol• Uni-Solar• Vipiemme• Würth Solar• XGroup• Yingli• Yohkon

Current Members:• Abound • Aleo• Arendi• Avancis• Bosch• BP Solar• Canadian Solar• CEEG• Chi Mei Energy• Conergy • DelSolar• ET Solar• First Solar• GE Solar

Associated:• ASIF• BSW• DGS• ECN• EPIA• Photon Tech• Roth & Rau• Subsun• Syndicat

As of March 2010,57 members and 9 associated membersFull members cover more than 85% of European Market

27

The Triangle of SuccessThe Triangle of Success

Low Cost

Recycling

Lowest Environmental Impact

ResourceAvailability

28

ConclusionConclusion

Recycling can double the availability of tellurium and Indium in the 2nd part of the centuryThin-film PV can reach very high rates of growth without being impaired from material availability issuesRecycling spent modules and developing thinner solar cells will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth

29

AcknowledgmentAcknowledgmentJeff Britt - Global SolarJun Ki Choi, Huyng Chul Kim,– BNLAl Compaan –U. ToledoXunming Deng –XunlightSubhendu Guha - Uni-SolarD.R. Nagaraj - CytecFunsho Ojebuoboh, Alex Heard, Dave Eaglesham, Tim Mays, Lisa Krueger -First SolarJim Sites –Colorado State U.Bill Stanbery -HelioVolt Marc Suys, 5NPlusBolko von Roedern –NRELKen Zweibel –George Washington U.

email: [email protected]: www.pv.bnl.gov

www.clca.columbia.edu