low density of top predators (seabirds and marine mammals ...€¦ · researcharticle low density...

14
Research Article Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice Claude R. Joiris, 1,2 Karin Boos, 3 Diederik D’Hert, 1 and Dominik A. Nachtsheim 1 1 Laboratory for Polar Ecology (PolE), 1367 Ramillies, Belgium 2 Royal Belgian Institute for Natural Sciences, 1000 Brussels, Belgium 3 MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany Correspondence should be addressed to Claude R. Joiris; [email protected] Received 31 December 2015; Revised 16 June 2016; Accepted 18 July 2016 Academic Editor: Pablo M. Vergara Copyright © 2016 Claude R. Joiris et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e at-sea distribution of top predators, seabirds and marine mammals, was determined in the high Arctic pack ice on board the icebreaker RV Polarstern in July to September 2014. In total, 1,620 transect counts were realised, lasting 30 min each. e five most numerous seabird species represented 74% of the total of 15,150 individuals registered: kittiwake Rissa tridactyla, fulmar Fulmarus glacialis, puffin Fratercula arctica, Ross’s gull Rhodostethia rosea, and little auk Alle alle. Eight cetacean species were tallied for a total of 330 individuals, mainly white-beaked dolphin Lagenorhynchus albirostris and fin whale Balaenoptera physalus. Five pinniped species were represented by a total of 55 individuals and the polar bear Ursus maritimus was represented by 12 individuals. Four main geographical zones were identified: from Tromsø to the outer marginal ice zone (OMIZ), the Arctic pack ice (close pack ice, CPI), the end of Lomonosov Ridge off Siberia, and the route off Siberia and northern Norway. Important differences were detected between zones, both in species composition and in individual abundance. Low numbers of species and high proportion of individuals for some of them can be considered to reflect very low biodiversity. Numbers encountered in zones 2 to 4 were very low in comparison with other European Arctic seas. e observed differences showed strong patterns. 1. Introduction e Central Arctic Ocean is one of the least studied regions on earth, mainly due to its inaccessibility caused by permanent ice cover. However, it is already threatened by climatic changes, which calls for a proper assessment and monitoring of this vulnerable ecosystem for future comparisons. ere is a strong focus on research in the Arctic marine ecosystem in recent years due to many open questions, for example, regarding the ecology and physiology of polar organisms and the effects of climate change and sea ice decline. In view of these apparent changes, it is essential to monitor the state of an ecosystem to enable comparisons to baseline data and projections into future conditions. However, the distribution of top predators, seabirds and marine mammals, is not well understood, especially in the understudied and permanently ice-covered Central Arctic Ocean. Generally, the at-sea occurrence and density of top predators can be considered to reflect prey availability and thus integrate the structure and functioning of the ecosystems they belong to. In the frame of our long-term study on the distribution of seabirds and marine mammals in polar marine ecosys- tems, this paper reports on data collected in poorly known areas of the high Arctic pack ice, including Lomonosov Ridge. 2. Material and Methods 2.1. Counting Method and Environmental Factors. e quan- titative at-sea distribution of marine mammals and seabirds was established during the PS86 (AURORA) expedition of icebreaker RV Polarstern from Tromsø and back, from 8 July to 3 August 2014, and the PS87 expedition from Tromsø to Bremerhaven, from 5 August to 8 October 2014, respectively. Transect counts lasted half an hour without width limitation from the bridge at 18 m above sea level on a continuous basis, allowing light and visibility; see description and discussion in [1, 2]. e animals were detected with the naked eye, Hindawi Publishing Corporation Scientifica Volume 2016, Article ID 1982534, 14 pages http://dx.doi.org/10.1155/2016/1982534

Upload: others

Post on 06-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

Research ArticleLow Density of Top Predators (Seabirds and Marine Mammals)in the High Arctic Pack Ice

Claude R Joiris12 Karin Boos3 Diederik DrsquoHert1 and Dominik A Nachtsheim1

1Laboratory for Polar Ecology (PolE) 1367 Ramillies Belgium2Royal Belgian Institute for Natural Sciences 1000 Brussels Belgium3MARUM-Center for Marine Environmental Sciences University of Bremen 28359 Bremen Germany

Correspondence should be addressed to Claude R Joiris crjoirisgmailcom

Received 31 December 2015 Revised 16 June 2016 Accepted 18 July 2016

Academic Editor Pablo M Vergara

Copyright copy 2016 Claude R Joiris et alThis is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The at-sea distribution of top predators seabirds and marine mammals was determined in the high Arctic pack ice on board theicebreaker RV Polarstern in July to September 2014 In total 1620 transect counts were realised lasting 30min each The five mostnumerous seabird species represented 74 of the total of 15150 individuals registered kittiwake Rissa tridactyla fulmar Fulmarusglacialis puffin Fratercula arctica Rossrsquos gull Rhodostethia rosea and little aukAlle alle Eight cetacean species were tallied for a totalof 330 individuals mainly white-beaked dolphin Lagenorhynchus albirostris and fin whale Balaenoptera physalus Five pinnipedspecies were represented by a total of 55 individuals and the polar bear Ursus maritimus was represented by 12 individuals Fourmain geographical zones were identified from Tromsoslash to the outer marginal ice zone (OMIZ) the Arctic pack ice (close packice CPI) the end of Lomonosov Ridge off Siberia and the route off Siberia and northern Norway Important differences weredetected between zones both in species composition and in individual abundance Low numbers of species and high proportionof individuals for some of them can be considered to reflect very low biodiversity Numbers encountered in zones 2 to 4 were verylow in comparison with other European Arctic seas The observed differences showed strong patterns

1 Introduction

TheCentralArcticOcean is one of the least studied regions onearth mainly due to its inaccessibility caused by permanentice cover However it is already threatened by climaticchanges which calls for a proper assessment and monitoringof this vulnerable ecosystem for future comparisons Thereis a strong focus on research in the Arctic marine ecosystemin recent years due to many open questions for exampleregarding the ecology and physiology of polar organismsand the effects of climate change and sea ice decline Inview of these apparent changes it is essential to monitorthe state of an ecosystem to enable comparisons to baselinedata and projections into future conditions However thedistribution of top predators seabirds and marine mammalsis not well understood especially in the understudied andpermanently ice-covered Central Arctic Ocean Generallythe at-sea occurrence and density of top predators can beconsidered to reflect prey availability and thus integrate the

structure and functioning of the ecosystems they belong toIn the frame of our long-term study on the distributionof seabirds and marine mammals in polar marine ecosys-tems this paper reports on data collected in poorly knownareas of the high Arctic pack ice including LomonosovRidge

2 Material and Methods

21 Counting Method and Environmental Factors The quan-titative at-sea distribution of marine mammals and seabirdswas established during the PS86 (AURORA) expedition oficebreaker RV Polarstern from Tromsoslash and back from 8 Julyto 3 August 2014 and the PS87 expedition from Tromsoslash toBremerhaven from 5 August to 8 October 2014 respectivelyTransect counts lasted half an hour without width limitationfrom the bridge at 18m above sea level on a continuous basisallowing light and visibility see description and discussionin [1 2] The animals were detected with the naked eye

Hindawi Publishing CorporationScientificaVolume 2016 Article ID 1982534 14 pageshttpdxdoiorg10115520161982534

2 Scientifica

and observations were confirmed and complemented withbinoculars when useful Photographic documents were alsoused especially for rare species or those difficult to identifyin the field

Water temperature (sea surface temperature SST)salinity and fluorescence (chlorophyll) were continuouslyrecorded on board at subsurface sampling (keel minus10m) Icecover was evaluated from the bridge and expressed as coverage within an approximated range of 500m around theship

Basic data have been included in the biodiversity datasetshttpiptbiodiversityaqarchivedor=rbins joiris 2014ps86 birds mammals and httpiptbiodiversityaqarchivedor=rbins joiris 2014 ps87 birds mammals respectively

22 Statistical Analysis We tested the effects of the differentzones on the abundance of selected species using a general-ized linear mixed model (GLMM with Poisson-distributederror terms and log-link function) into which the fixed effectsfactors ldquozonerdquo and ldquospeciesrdquo were included The species wereselected according to their total abundances and chosenwhere numbers exceeded 200 individuals This selectionwas important in order to warrant stable convergence ofthe model Because the data originated from two differentcruises we included ldquocruiserdquo as a random effects factor toaccount for grouped data per cruiseWe tested and confirmedoverdispersion by including an additive dispersion termas a random factor to the GLMM which comprised asmany factor levels as observations [4] The variance of the(random) additive dispersion term was considerably higherthan zero indicating overdispersion in the data Also theBayesian Information Criterion (BIC) revealed the modelincluding the additive dispersion term to be clearly moreparsimonious than the original model (BICadd = 1295671BICorig = 4641072) For this reason we applied a negativebinomialmixedmodel in order to account for overdispersionAlthough there were many zeros in excess we ruled outzero-inflation on the basis that the zero-inflation valuewas generally by a factor of at least 6 smaller than themodelrsquos estimated coefficients and therefore negligibly small(using the argument ldquozeroInflation = Trdquo zero-inflation =10 lowast 10

minus6 and SE = 4064 lowast 10minus9) We refrained fromincluding the interaction term into the model becausedata replicates were not available for all combinations ofzones and species Hence the inclusion of an interactionterm would lead to severe overparametrisation and possiblyfalse results We therefore focused solely on the two maineffects

The final model was checked for stability through com-paring the empirical data with 1000 randomly generatedsimulations of negative binomial distributions based on thepresent model predictions The empirical data lay perfectlywithin the range of the simulated data Therefore the modelwas considered robust Significance of the main effects wasestablished by applying likelihood ratio tests (LRT) wherethe deviance of the respective full models was compared withthat of the corresponding reduced models not comprisingthe respective factor of interest using the R function ldquoanovardquo

All models were fitted in R version 322 [5] using thefunction ldquoglmerrdquo from the R package ldquolme4rdquo [6] and thefunction ldquoglmmadmbrdquo from the R package ldquoglmmADMBrdquo[7 8]

A separate analysis was conducted to test for the repeata-bility of the findings of the qualitative and quantitative speciescomposition along the three consecutive subzones 1a 1b and2a Just as described above we selected the species accordingto their overall abundance (ie gt200 individuals)This led tothe exclusion of Rossrsquos gull from the selected species For thesame reasons as above we chose a negative binomial modelto account for overdispersion and ruled out zero-inflation asdescribed above (zero-inflation = 10lowast10minus6 SE = 50lowast10minus9)Instead of including the random factor ldquocruiserdquo we includedthe ldquorevisitrdquo of each subzone as a random factor to account forgrouping in the data Model stability check was conducted asdescribed above and showed a clear deviation from runningwithin the expected ranges and thereby far more optimisticpredictions than provided by the empirical data Because themodel did not converge properly with both factors includedwe therefore refrained from keeping the factor ldquospeciesrdquo inthe model and pooled the data for the three subzones Thecomparisons between species are presented in a descriptiveway

3 Results

During the 1620 transect counts devoted to top predatorcensus on board the RV Polarstern expeditions PS86 andPS87 (partim North of 66∘301015840N) (Figure 1) a total of 15150birds were detected belonging to 23 species that is anaverage of 93 identified individuals per count (Table 1)Five species represented the vast majority kittiwake Rissatridactyla fulmar Fulmarus glacialis puffin Fratercula arcticaRossrsquos gull Rhodostethia rosea and little auk Alle alle with 2215 13 11 and 07 birds per count respectively representing74 of the total They were followed by ivory gull Pagophilaeburnea andBrunnichrsquos guillemotUria lomvia (03 and 02 percount) Eight cetacean species were counted for a total of 330individuals that is 02 per countThemost numerous specieswere white-beaked dolphin Lagenorhynchus albirostris (015per count) and fin whale Balaenoptera physalus (002 percount) Five pinniped species were represented by 55 indi-viduals (003 per count) of which 001 were harp sealsPagophilus groenlandicus and 001 hooded seals Cystophoracristata Polar bear Ursus maritimus was recorded in lownumbers (12 individuals including a mother with two largecubs and another one with three small cubs plus one out ofeffort)

Four major geographical zones were defined mainly onthe basis of ice coverage zone 1 from Tromsoslash to the outermarginal ice zone (OMIZ) passing through the North-EastWater (NEW) polynya Zone 2 covered the ice-covered closepack ice (CPI) including the Lomonosov Ridge separatingthe Amerasian and Eurasian Basins Zone 3 was basicallythe ice-free part of the Lomonosov Ridge off the NewSiberian Islands and zone 4 the coastal waters off Siberiato northern Norway (Figure 1) Ice conditions in the four

Scientifica 3

70∘N

70∘N

80∘N

80∘N

130∘E

140∘E

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

Figure 1 Route of the PS86 (red) and PS87 (black) expeditions ofRV Polarstern in JulyndashSeptember 2014 for definition of the zonessee text

zones are illustrated in Figure 2 Characterisation of thefour zones and observations of the most numerous (main)species are shown in Table 2 Geographical differences wereobvious The analysis included the eight most numerousspecies (each gt200 individuals) It revealed both factorsldquozonerdquo and ldquospeciesrdquo to be highly significant and thereforehaving an effect on the observed abundances Independentof the individual species the results showed that the highestnumber of selected top predators was found in zone 1 (meannumbers per count all eight species pooled 792) followed byzone 4 (589) and the least amountswere found in zones 3 and2 (338 and 117 resp) (LRTzone deviance = 60866 119889119891 = 13and 119901 lt 00001)

These important differences seem to reflect differences inbiological productivity considering chlorophyll to be a goodindex maximal values were 127 41 23 and 39 respectivelyin the four zones (Table 2 Figure 3)

Pooled over all zones kittiwake presented the high-est numbers (212 per count) including three individualsbelonging to the Siberian subspecies R t pollicaris (zone 3811∘N) It was followed by fulmar (146) and little auk (066)Considerably lower but similar numbers were found for ivory

gull and puffin (033 and 031 resp) Lowest numbers weredetected for Brunnichrsquos guillemot (033) Rossrsquos gull (014)and white-beaked dolphin (015) (Table 2) Overall puffinsand white-beaked dolphins were almost exclusively found inzone 1a (119899 = 506 and 239 resp) The pattern described abovefor the overall abundances in the four zones was true forBrunnichrsquosGuillemots fulmars little auks puffins andwhite-beaked dolphins This pattern was reversed in kittiwakes andivory gulls which were sighted in highest numbers in zone 4Rossrsquos gulls were the only species found in highest numbers inzone 3Themain species in zone 1 were fulmar (4 individualsper count mean value) little auk (2 per count) kittiwake(05) and Brunnichrsquos guillemot (045) white-beaked dolphin(04) and fin whale (007) Using chlorophyll (fluorescence)as an indicator biological productivity is also the highestin this area The ice-covered area (zone 2) showed by farthe lowest densities with significant numbers of kittiwakes(02) and ivory gulls (004) as well as polar bears (002)Biological productivity (chlorophyll) was low Zone 3 showedlow numbers as well Rossrsquos gull (12) and ivory gull andkittiwake (1 each) being the most abundant biological pro-ductivity (chlorophyll) was low as well Zone 4 showed inter-mediate abundances highest numbers of kittiwakes (5 percount including higher concentrations at the local ice edgearound 130∘E see Figure 2(c)) ivory gulls (03) and fulmar(02) harp seals were present at a few stations only (003120∘E)

In addition to the above a ldquofirstrdquo zone was covered threetimes during both expeditions and divided into three sub-zones (subzones 1a 1b and 2a see Figure 1) deserving spe-cial attention Clear geographical differences were detected(Table 3) Pooled together top predators were highest in zone1a (126 per count) followed by zones 1b (76) and 2a (21)In zone 1a (Greenland Sea) fulmar was the most numerous(755 per count) followed by puffin (2) Brunnichrsquos guillemot(09) kittiwake (07) white-beaked dolphin (09) and finwhale (01) with high productivity (chlorophyll) of 28 Inzone 1b (NEW polynya) species were present with little auk(64) fulmar (12) and ivory gull (07) with productivityof 09 In zone 2a (CPI) the present species were ivorygull (1) fulmar (08) kittiwake (02) hooded seal (01) andpolar bear (003) with intermediate productivity (12) Thetested reproducibility of data between successive transectswas high for some species reflecting good reproducibilityof the counting method fulmar Brunnichrsquos guillemot ivorygull and kittiwake but not for other species reflecting theheterogeneity of their distribution little auk and puffinThe analysis of the selected and pooled species revealedthe factor ldquosubzonerdquo to be significantly effective (LRTsubzonedeviance = 852 119889119891 = 5 and 119901 = 0014) In fact the resultsshowed that subzones 1a and 1b were significantly similarwith respect to the abundances (119901 = 013) even thoughthe abundances in subzone 1a were higher than those insubzone 1b This is most likely due to high variations andmany excess zeros in the data Subzone 2a hosted clearly lessindividuals than the subzones 1a and 1b (119901 = 00001 and 0013resp)

4 Scientifica

Table 1 Seabirds andmarinemammals encountered during the PS86 and PS87 expeditions of RV Polarstern in 2014 total numbers recordedmean per counta and 119899 = number of 30min counts

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanFulmar light Fulmarus glacialis 920 231 362 029 1282 079Fulmar dark Fulmarus glacialis 835 216 323 026 1158 071Fulmar all Fulmarus glacialis 1755 453 721 043 2476 153Manx shearwater Puffinus puffinus 1 1Fork-tailed storm-petrel Oceanodroma furcata 2 2Common guillemot Uria aalge 14 1 15Brunnichrsquos guillemot Uria lomvia 93 023 262 018 355 022Guillemot unidentified Uria sp (aalgelomvia) 4 18 22Little auk Alle alle 498 125 568 046 1066 066Black guillemot Cepphus grylle 9 76 005 85Puffin Fratercula arctica 273 069 1829 148 2102 130Razorbill Alca torda 51 004 51Gannet Sula bassana 2 4 6Great skua Stercorarius skua 3 4 7Pomarine skua Stercorarius pomarinus 2 7 9Arctic skua Stercorarius parasiticus 8 25 33Long-tailed skua Stercorarius longicaudus 31 31Ivory gull Pagophila eburnea 200 050 332 027 532 033Glaucous gull Larus hyperboreus 11 18 29Herring gull Larus argentatus 5 27 32Great black-backed gull Larus marinus 14 17 31Lesser black-backed gull Larus fuscus 2 5 7Kittiwake Rissa tridactyla 278 068 3338 270 3616 223Sabinersquos gull Xema sabini 1c

Rossrsquos gull Rhodostethia rosea 1770 122 1770 109Arctic tern Sterna paradisaea 11 2 13Tern unidentified Sterna sp (hirundoparadisaea) 15 15Phalarope unidentified Phalaropus sp 1 1sum119887119894119903119889119904 (identified) 3214 919 11932 717 15146 934Blue whale Balaenoptera musculus 6 6Fin whale Balaenoptera physalus 34 0085 4 38 002Minke whale Balaenoptera acutorostrata 1 1Humpback whale Megaptera novaeangliae 7 1 8Sperm whale Physeter macrocephalus 9 2 11 001Killer whale Orca orca 9 9Large whale unidentified Cetacea 35 6 41 003Narwhal Monodon monoceros 7 7White-beaked dolphin Lagenorhynchus albirostris 215 0540 34 003 249 015Dolphin unidentified Delphinidae 3 14 17 001sum119888119890119905119886119888119890119886119899119904 (identified) 280 0723 49 003 329 020Bearded seal Erignathus barbatus 5 5Harp seal Pagophilus groenlandicus 5 18 001 23 001Ringed seal Pusa hispida 7 2 9Hooded seal Cystophora cristata 16 0038 2 18 001

Scientifica 5

Table 1 Continued

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanWalrus Odobenus rosmarus 1c

Seal unidentified Pinnipedia 36 18 54 003sum119901119894119899119899119894119901119890119889119904 (identified) 33 0085 22 001 55 003Polar bear Ursus maritimus 4 + 1

c8 + 1

c 9Polar bear tracks Ursus maritimus 1 64 007 65 004Arctic foxwolf tracks Canidae 3 3aFor mean values above 02 per count for birds and above 001 for mammals bpartim North of 66∘301015840N cout of effort

4 Discussion

Not only were mammal numbers very low but they weremoreover very limited spatially dolphins and fin whalesin zone 1a especially along the shelf slope where autumnaggregations were already encountered [10] Hooded seal andpolar bear were present on the OMIZ zone 2a and harp sealin a few counts off Siberia (zone 4 OMIZ 120∘E)

Two of the three high Arctic gulls deserve special com-ments Sabinersquos gull Xema sabini being absent in our countsone observation only out of effort

The breeding range of the ivory gull includes the Cana-dian Arctic Greenland Svalbard and Russian Arctic islands[11] Northeast (NE) Greenland in particular seems to bea hotspot for breeding sites [12] apparently due to thevicinity to an attractive feeding ground the NEW polynyaIt usually breeds in colonies either inland on steep cliffsand nunataks or coastal on barren islands and lowlandsIn rare cases it uses gravel-covered sea ice close to thecoast as breeding platform a breeding site on an ice floecovered with gravel was discovered in Independence FjordNE Greenland [13] We recently reported an even moreextreme breeding habitat a gravel-covered iceberg 70 km offNE Greenland close to the NEW polynya (81∘N 9∘W) [14]During this study 60 more adults plus an unknown numberof chicks not included in our calculations were detected(the position is indicated by a star on Figure 2(a)) Dramaticpopulation declines have already been observed in Canadaand Greenland during the last decades [12 15ndash17] Our owndata collected from the same observation platform with thesame methodology show a decrease in ivory gull abundancein the Greenland Sea from a mean of 17 individuals per30min count in the 1990ndash1993 period [9] to 04 and 03 in2008 and 2011 respectively [10 18 19] Its relative abundancedeeply changed as well it was one of the three most abundantspecies in the 1990s together with fulmar and kittiwake butnow does not often even belong to the top ten any moreThe ivory gull is listed as ldquoEndangeredrdquo under the Speciesat Risk Act in Canada and as ldquoNear Threatenedrdquo by theInternational Union for Conservation of Nature (IUCN) RedList of Threatened Species [20 21] The global population isestimated to be between 19000 and 27000 individuals with

still high uncertainties due to its occurrence in highly remoteareas [21] Its breeding range includes the Canadian ArcticGreenland Svalbard and Russian Arctic islands Northeast(NE) Greenland in particular seems to be a hotspot forbreeding sites [11 12 22ndash24] possibly due to the vicinity to anattractive feeding ground theNEWpolynya In this frame thenumbers encountered in zones 3 (07 per count) and 4 (03 percount) represent a significant part of the world populationprobably belonging to the RussianSiberian breeding sitesHalf of them were juveniles and 10 immature this seemsto reflect a good breeding success for this population

Rossrsquos gulls are breeding mainly in the deltas of theKolyma and Khroma rivers Siberia (142∘ to 160∘E) Theworld population is estimated at 45000 to 55000 individualsprobably gt27000 and possibly 100000 [22ndash24] Adults usedto be regularly observed in the Greenland Sea at the end ofthe breeding season during the 1990s (end of June Table 4[9]) but not after 1994 (this team numerous papers andunpublished data) It is not clear how far this had to beinterpreted as movements following breeding failure or aslarge nonbreeding population In this study they representthe most abundant species in zone 3 off its main Siberianbreeding grounds with a total of 190 individuals (12 percount) The majority were breeding adults (60) 25 juve-niles and some nonbreeding adults close to the end of thebreeding season in late July-August [22ndash25]This again seemsto reflect a good breeding success for this species Moreinformation can be found in Figure 4

A comparison between our seabird data and the modelpredictions of Arctic seabird distribution [26] shows a fullcompatibility in trends modelled bird diversity varied from17ndash20 species in our zone 1 (more than 20 close to the coast)to 0ndash4 in the high Arctic pack ice (our zones 2 and 4) witha slight increase corresponding to our zone 3 (Figure 5 [3])Our valueswere howevermuch lowermeannumbers varyingfrom 185 species per count in zone 1 (6 maximum) to 195 insubzone 1a followed by 068 in zone 3 (3 maximum) 023 inzone 4 (5 maximum) and 014 in zone 2 (3 maximum) inall zones many counts were free of contact This quantitativediscrepancy can partially be explained by the limited periodand area covered by our study while the model was based onbroader datasets concerning more species

6 Scientifica

Table2Datao

btainedin

thefou

rmaingeograph

icalzonesd

efineddu

ringthe

PS86

andPS

87expeditio

nsofRV

PolarsternJulyndashSeptem

ber2

014119899num

bero

f30m

incoun

tstotalnum

ber

meanperc

ountlowast

and

mean119873

perk

m(see

text

andFigure

1)

Zone

nSalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

ukPu

ffin

Ivorygu

ll

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Fraterculaarctica

Pagophila

eburnea

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

1419

334

(293

ndash351)

33(minus17ndash121)

10(0ndash80)

21(006ndash127)

92(28ndash127)

2121

506

252

06

1054

252

509

121

78057

244

9311

(292

ndash333)minus14

(minus17ndash13)

75(0ndash100)

12(01ndash

55)

44(11ndash

112)

116

026

14

0156

035

3160

262

(243ndash299)

02(minus13

ndash111)

80(0ndash100)

11(07ndash

23)

49(12ndash105)

01

00

105

097

4580

286

(243ndash350)

09(minus17ndash108)

2(0ndash10)

13(06ndash39)

57(23ndash122)

126

022

100

017

82

162

028

Zone

Rossrsquosgu

llKittiwake

White-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Polarb

ear

Rhodostethiarosea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlandicus

Cysto

phoracristata

Ursusm

aritimus

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

10

239

057

239

057

37009

4001

2001

3001

20

112

025

00

214

5001

3190

119

155

097

00

00

04

38007

2931

505

10002

117

003

00

lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

Scientifica 7

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(a)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(b)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(c)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(d)

Figure 2 Ice conditions during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 shiprsquos position indicated by a star9 August (a) 19 August (b) 27 September (c) and 30 September (d) Institute of Environmental Physics University of Bremen Germanyhttpsseaiceuni-bremendeamsr2indexhtml

5 Conclusion

Two factors can be considered the reflection of very lowbiodiversity the very low numbers of species and the highrelative numbers of individuals for some of them This wasespecially the case for zones 2 (Arctic pack ice CPI) 3

(Siberian end of the Lomonosov Ridge) and 4 Numbers ofspecies and individuals were high in zone 1 Greenland Seaand Fram Strait for fulmar little auk puffin and Brunnichrsquosguillemot as well as white-beaked dolphin and fin whalecomparable to the values usually obtained in the area (eg[9 10 18]) Ivory gull was present in all zones with maxima

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 2: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

2 Scientifica

and observations were confirmed and complemented withbinoculars when useful Photographic documents were alsoused especially for rare species or those difficult to identifyin the field

Water temperature (sea surface temperature SST)salinity and fluorescence (chlorophyll) were continuouslyrecorded on board at subsurface sampling (keel minus10m) Icecover was evaluated from the bridge and expressed as coverage within an approximated range of 500m around theship

Basic data have been included in the biodiversity datasetshttpiptbiodiversityaqarchivedor=rbins joiris 2014ps86 birds mammals and httpiptbiodiversityaqarchivedor=rbins joiris 2014 ps87 birds mammals respectively

22 Statistical Analysis We tested the effects of the differentzones on the abundance of selected species using a general-ized linear mixed model (GLMM with Poisson-distributederror terms and log-link function) into which the fixed effectsfactors ldquozonerdquo and ldquospeciesrdquo were included The species wereselected according to their total abundances and chosenwhere numbers exceeded 200 individuals This selectionwas important in order to warrant stable convergence ofthe model Because the data originated from two differentcruises we included ldquocruiserdquo as a random effects factor toaccount for grouped data per cruiseWe tested and confirmedoverdispersion by including an additive dispersion termas a random factor to the GLMM which comprised asmany factor levels as observations [4] The variance of the(random) additive dispersion term was considerably higherthan zero indicating overdispersion in the data Also theBayesian Information Criterion (BIC) revealed the modelincluding the additive dispersion term to be clearly moreparsimonious than the original model (BICadd = 1295671BICorig = 4641072) For this reason we applied a negativebinomialmixedmodel in order to account for overdispersionAlthough there were many zeros in excess we ruled outzero-inflation on the basis that the zero-inflation valuewas generally by a factor of at least 6 smaller than themodelrsquos estimated coefficients and therefore negligibly small(using the argument ldquozeroInflation = Trdquo zero-inflation =10 lowast 10

minus6 and SE = 4064 lowast 10minus9) We refrained fromincluding the interaction term into the model becausedata replicates were not available for all combinations ofzones and species Hence the inclusion of an interactionterm would lead to severe overparametrisation and possiblyfalse results We therefore focused solely on the two maineffects

The final model was checked for stability through com-paring the empirical data with 1000 randomly generatedsimulations of negative binomial distributions based on thepresent model predictions The empirical data lay perfectlywithin the range of the simulated data Therefore the modelwas considered robust Significance of the main effects wasestablished by applying likelihood ratio tests (LRT) wherethe deviance of the respective full models was compared withthat of the corresponding reduced models not comprisingthe respective factor of interest using the R function ldquoanovardquo

All models were fitted in R version 322 [5] using thefunction ldquoglmerrdquo from the R package ldquolme4rdquo [6] and thefunction ldquoglmmadmbrdquo from the R package ldquoglmmADMBrdquo[7 8]

A separate analysis was conducted to test for the repeata-bility of the findings of the qualitative and quantitative speciescomposition along the three consecutive subzones 1a 1b and2a Just as described above we selected the species accordingto their overall abundance (ie gt200 individuals)This led tothe exclusion of Rossrsquos gull from the selected species For thesame reasons as above we chose a negative binomial modelto account for overdispersion and ruled out zero-inflation asdescribed above (zero-inflation = 10lowast10minus6 SE = 50lowast10minus9)Instead of including the random factor ldquocruiserdquo we includedthe ldquorevisitrdquo of each subzone as a random factor to account forgrouping in the data Model stability check was conducted asdescribed above and showed a clear deviation from runningwithin the expected ranges and thereby far more optimisticpredictions than provided by the empirical data Because themodel did not converge properly with both factors includedwe therefore refrained from keeping the factor ldquospeciesrdquo inthe model and pooled the data for the three subzones Thecomparisons between species are presented in a descriptiveway

3 Results

During the 1620 transect counts devoted to top predatorcensus on board the RV Polarstern expeditions PS86 andPS87 (partim North of 66∘301015840N) (Figure 1) a total of 15150birds were detected belonging to 23 species that is anaverage of 93 identified individuals per count (Table 1)Five species represented the vast majority kittiwake Rissatridactyla fulmar Fulmarus glacialis puffin Fratercula arcticaRossrsquos gull Rhodostethia rosea and little auk Alle alle with 2215 13 11 and 07 birds per count respectively representing74 of the total They were followed by ivory gull Pagophilaeburnea andBrunnichrsquos guillemotUria lomvia (03 and 02 percount) Eight cetacean species were counted for a total of 330individuals that is 02 per countThemost numerous specieswere white-beaked dolphin Lagenorhynchus albirostris (015per count) and fin whale Balaenoptera physalus (002 percount) Five pinniped species were represented by 55 indi-viduals (003 per count) of which 001 were harp sealsPagophilus groenlandicus and 001 hooded seals Cystophoracristata Polar bear Ursus maritimus was recorded in lownumbers (12 individuals including a mother with two largecubs and another one with three small cubs plus one out ofeffort)

Four major geographical zones were defined mainly onthe basis of ice coverage zone 1 from Tromsoslash to the outermarginal ice zone (OMIZ) passing through the North-EastWater (NEW) polynya Zone 2 covered the ice-covered closepack ice (CPI) including the Lomonosov Ridge separatingthe Amerasian and Eurasian Basins Zone 3 was basicallythe ice-free part of the Lomonosov Ridge off the NewSiberian Islands and zone 4 the coastal waters off Siberiato northern Norway (Figure 1) Ice conditions in the four

Scientifica 3

70∘N

70∘N

80∘N

80∘N

130∘E

140∘E

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

Figure 1 Route of the PS86 (red) and PS87 (black) expeditions ofRV Polarstern in JulyndashSeptember 2014 for definition of the zonessee text

zones are illustrated in Figure 2 Characterisation of thefour zones and observations of the most numerous (main)species are shown in Table 2 Geographical differences wereobvious The analysis included the eight most numerousspecies (each gt200 individuals) It revealed both factorsldquozonerdquo and ldquospeciesrdquo to be highly significant and thereforehaving an effect on the observed abundances Independentof the individual species the results showed that the highestnumber of selected top predators was found in zone 1 (meannumbers per count all eight species pooled 792) followed byzone 4 (589) and the least amountswere found in zones 3 and2 (338 and 117 resp) (LRTzone deviance = 60866 119889119891 = 13and 119901 lt 00001)

These important differences seem to reflect differences inbiological productivity considering chlorophyll to be a goodindex maximal values were 127 41 23 and 39 respectivelyin the four zones (Table 2 Figure 3)

Pooled over all zones kittiwake presented the high-est numbers (212 per count) including three individualsbelonging to the Siberian subspecies R t pollicaris (zone 3811∘N) It was followed by fulmar (146) and little auk (066)Considerably lower but similar numbers were found for ivory

gull and puffin (033 and 031 resp) Lowest numbers weredetected for Brunnichrsquos guillemot (033) Rossrsquos gull (014)and white-beaked dolphin (015) (Table 2) Overall puffinsand white-beaked dolphins were almost exclusively found inzone 1a (119899 = 506 and 239 resp) The pattern described abovefor the overall abundances in the four zones was true forBrunnichrsquosGuillemots fulmars little auks puffins andwhite-beaked dolphins This pattern was reversed in kittiwakes andivory gulls which were sighted in highest numbers in zone 4Rossrsquos gulls were the only species found in highest numbers inzone 3Themain species in zone 1 were fulmar (4 individualsper count mean value) little auk (2 per count) kittiwake(05) and Brunnichrsquos guillemot (045) white-beaked dolphin(04) and fin whale (007) Using chlorophyll (fluorescence)as an indicator biological productivity is also the highestin this area The ice-covered area (zone 2) showed by farthe lowest densities with significant numbers of kittiwakes(02) and ivory gulls (004) as well as polar bears (002)Biological productivity (chlorophyll) was low Zone 3 showedlow numbers as well Rossrsquos gull (12) and ivory gull andkittiwake (1 each) being the most abundant biological pro-ductivity (chlorophyll) was low as well Zone 4 showed inter-mediate abundances highest numbers of kittiwakes (5 percount including higher concentrations at the local ice edgearound 130∘E see Figure 2(c)) ivory gulls (03) and fulmar(02) harp seals were present at a few stations only (003120∘E)

In addition to the above a ldquofirstrdquo zone was covered threetimes during both expeditions and divided into three sub-zones (subzones 1a 1b and 2a see Figure 1) deserving spe-cial attention Clear geographical differences were detected(Table 3) Pooled together top predators were highest in zone1a (126 per count) followed by zones 1b (76) and 2a (21)In zone 1a (Greenland Sea) fulmar was the most numerous(755 per count) followed by puffin (2) Brunnichrsquos guillemot(09) kittiwake (07) white-beaked dolphin (09) and finwhale (01) with high productivity (chlorophyll) of 28 Inzone 1b (NEW polynya) species were present with little auk(64) fulmar (12) and ivory gull (07) with productivityof 09 In zone 2a (CPI) the present species were ivorygull (1) fulmar (08) kittiwake (02) hooded seal (01) andpolar bear (003) with intermediate productivity (12) Thetested reproducibility of data between successive transectswas high for some species reflecting good reproducibilityof the counting method fulmar Brunnichrsquos guillemot ivorygull and kittiwake but not for other species reflecting theheterogeneity of their distribution little auk and puffinThe analysis of the selected and pooled species revealedthe factor ldquosubzonerdquo to be significantly effective (LRTsubzonedeviance = 852 119889119891 = 5 and 119901 = 0014) In fact the resultsshowed that subzones 1a and 1b were significantly similarwith respect to the abundances (119901 = 013) even thoughthe abundances in subzone 1a were higher than those insubzone 1b This is most likely due to high variations andmany excess zeros in the data Subzone 2a hosted clearly lessindividuals than the subzones 1a and 1b (119901 = 00001 and 0013resp)

4 Scientifica

Table 1 Seabirds andmarinemammals encountered during the PS86 and PS87 expeditions of RV Polarstern in 2014 total numbers recordedmean per counta and 119899 = number of 30min counts

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanFulmar light Fulmarus glacialis 920 231 362 029 1282 079Fulmar dark Fulmarus glacialis 835 216 323 026 1158 071Fulmar all Fulmarus glacialis 1755 453 721 043 2476 153Manx shearwater Puffinus puffinus 1 1Fork-tailed storm-petrel Oceanodroma furcata 2 2Common guillemot Uria aalge 14 1 15Brunnichrsquos guillemot Uria lomvia 93 023 262 018 355 022Guillemot unidentified Uria sp (aalgelomvia) 4 18 22Little auk Alle alle 498 125 568 046 1066 066Black guillemot Cepphus grylle 9 76 005 85Puffin Fratercula arctica 273 069 1829 148 2102 130Razorbill Alca torda 51 004 51Gannet Sula bassana 2 4 6Great skua Stercorarius skua 3 4 7Pomarine skua Stercorarius pomarinus 2 7 9Arctic skua Stercorarius parasiticus 8 25 33Long-tailed skua Stercorarius longicaudus 31 31Ivory gull Pagophila eburnea 200 050 332 027 532 033Glaucous gull Larus hyperboreus 11 18 29Herring gull Larus argentatus 5 27 32Great black-backed gull Larus marinus 14 17 31Lesser black-backed gull Larus fuscus 2 5 7Kittiwake Rissa tridactyla 278 068 3338 270 3616 223Sabinersquos gull Xema sabini 1c

Rossrsquos gull Rhodostethia rosea 1770 122 1770 109Arctic tern Sterna paradisaea 11 2 13Tern unidentified Sterna sp (hirundoparadisaea) 15 15Phalarope unidentified Phalaropus sp 1 1sum119887119894119903119889119904 (identified) 3214 919 11932 717 15146 934Blue whale Balaenoptera musculus 6 6Fin whale Balaenoptera physalus 34 0085 4 38 002Minke whale Balaenoptera acutorostrata 1 1Humpback whale Megaptera novaeangliae 7 1 8Sperm whale Physeter macrocephalus 9 2 11 001Killer whale Orca orca 9 9Large whale unidentified Cetacea 35 6 41 003Narwhal Monodon monoceros 7 7White-beaked dolphin Lagenorhynchus albirostris 215 0540 34 003 249 015Dolphin unidentified Delphinidae 3 14 17 001sum119888119890119905119886119888119890119886119899119904 (identified) 280 0723 49 003 329 020Bearded seal Erignathus barbatus 5 5Harp seal Pagophilus groenlandicus 5 18 001 23 001Ringed seal Pusa hispida 7 2 9Hooded seal Cystophora cristata 16 0038 2 18 001

Scientifica 5

Table 1 Continued

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanWalrus Odobenus rosmarus 1c

Seal unidentified Pinnipedia 36 18 54 003sum119901119894119899119899119894119901119890119889119904 (identified) 33 0085 22 001 55 003Polar bear Ursus maritimus 4 + 1

c8 + 1

c 9Polar bear tracks Ursus maritimus 1 64 007 65 004Arctic foxwolf tracks Canidae 3 3aFor mean values above 02 per count for birds and above 001 for mammals bpartim North of 66∘301015840N cout of effort

4 Discussion

Not only were mammal numbers very low but they weremoreover very limited spatially dolphins and fin whalesin zone 1a especially along the shelf slope where autumnaggregations were already encountered [10] Hooded seal andpolar bear were present on the OMIZ zone 2a and harp sealin a few counts off Siberia (zone 4 OMIZ 120∘E)

Two of the three high Arctic gulls deserve special com-ments Sabinersquos gull Xema sabini being absent in our countsone observation only out of effort

The breeding range of the ivory gull includes the Cana-dian Arctic Greenland Svalbard and Russian Arctic islands[11] Northeast (NE) Greenland in particular seems to bea hotspot for breeding sites [12] apparently due to thevicinity to an attractive feeding ground the NEW polynyaIt usually breeds in colonies either inland on steep cliffsand nunataks or coastal on barren islands and lowlandsIn rare cases it uses gravel-covered sea ice close to thecoast as breeding platform a breeding site on an ice floecovered with gravel was discovered in Independence FjordNE Greenland [13] We recently reported an even moreextreme breeding habitat a gravel-covered iceberg 70 km offNE Greenland close to the NEW polynya (81∘N 9∘W) [14]During this study 60 more adults plus an unknown numberof chicks not included in our calculations were detected(the position is indicated by a star on Figure 2(a)) Dramaticpopulation declines have already been observed in Canadaand Greenland during the last decades [12 15ndash17] Our owndata collected from the same observation platform with thesame methodology show a decrease in ivory gull abundancein the Greenland Sea from a mean of 17 individuals per30min count in the 1990ndash1993 period [9] to 04 and 03 in2008 and 2011 respectively [10 18 19] Its relative abundancedeeply changed as well it was one of the three most abundantspecies in the 1990s together with fulmar and kittiwake butnow does not often even belong to the top ten any moreThe ivory gull is listed as ldquoEndangeredrdquo under the Speciesat Risk Act in Canada and as ldquoNear Threatenedrdquo by theInternational Union for Conservation of Nature (IUCN) RedList of Threatened Species [20 21] The global population isestimated to be between 19000 and 27000 individuals with

still high uncertainties due to its occurrence in highly remoteareas [21] Its breeding range includes the Canadian ArcticGreenland Svalbard and Russian Arctic islands Northeast(NE) Greenland in particular seems to be a hotspot forbreeding sites [11 12 22ndash24] possibly due to the vicinity to anattractive feeding ground theNEWpolynya In this frame thenumbers encountered in zones 3 (07 per count) and 4 (03 percount) represent a significant part of the world populationprobably belonging to the RussianSiberian breeding sitesHalf of them were juveniles and 10 immature this seemsto reflect a good breeding success for this population

Rossrsquos gulls are breeding mainly in the deltas of theKolyma and Khroma rivers Siberia (142∘ to 160∘E) Theworld population is estimated at 45000 to 55000 individualsprobably gt27000 and possibly 100000 [22ndash24] Adults usedto be regularly observed in the Greenland Sea at the end ofthe breeding season during the 1990s (end of June Table 4[9]) but not after 1994 (this team numerous papers andunpublished data) It is not clear how far this had to beinterpreted as movements following breeding failure or aslarge nonbreeding population In this study they representthe most abundant species in zone 3 off its main Siberianbreeding grounds with a total of 190 individuals (12 percount) The majority were breeding adults (60) 25 juve-niles and some nonbreeding adults close to the end of thebreeding season in late July-August [22ndash25]This again seemsto reflect a good breeding success for this species Moreinformation can be found in Figure 4

A comparison between our seabird data and the modelpredictions of Arctic seabird distribution [26] shows a fullcompatibility in trends modelled bird diversity varied from17ndash20 species in our zone 1 (more than 20 close to the coast)to 0ndash4 in the high Arctic pack ice (our zones 2 and 4) witha slight increase corresponding to our zone 3 (Figure 5 [3])Our valueswere howevermuch lowermeannumbers varyingfrom 185 species per count in zone 1 (6 maximum) to 195 insubzone 1a followed by 068 in zone 3 (3 maximum) 023 inzone 4 (5 maximum) and 014 in zone 2 (3 maximum) inall zones many counts were free of contact This quantitativediscrepancy can partially be explained by the limited periodand area covered by our study while the model was based onbroader datasets concerning more species

6 Scientifica

Table2Datao

btainedin

thefou

rmaingeograph

icalzonesd

efineddu

ringthe

PS86

andPS

87expeditio

nsofRV

PolarsternJulyndashSeptem

ber2

014119899num

bero

f30m

incoun

tstotalnum

ber

meanperc

ountlowast

and

mean119873

perk

m(see

text

andFigure

1)

Zone

nSalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

ukPu

ffin

Ivorygu

ll

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Fraterculaarctica

Pagophila

eburnea

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

1419

334

(293

ndash351)

33(minus17ndash121)

10(0ndash80)

21(006ndash127)

92(28ndash127)

2121

506

252

06

1054

252

509

121

78057

244

9311

(292

ndash333)minus14

(minus17ndash13)

75(0ndash100)

12(01ndash

55)

44(11ndash

112)

116

026

14

0156

035

3160

262

(243ndash299)

02(minus13

ndash111)

80(0ndash100)

11(07ndash

23)

49(12ndash105)

01

00

105

097

4580

286

(243ndash350)

09(minus17ndash108)

2(0ndash10)

13(06ndash39)

57(23ndash122)

126

022

100

017

82

162

028

Zone

Rossrsquosgu

llKittiwake

White-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Polarb

ear

Rhodostethiarosea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlandicus

Cysto

phoracristata

Ursusm

aritimus

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

10

239

057

239

057

37009

4001

2001

3001

20

112

025

00

214

5001

3190

119

155

097

00

00

04

38007

2931

505

10002

117

003

00

lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

Scientifica 7

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(a)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(b)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(c)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(d)

Figure 2 Ice conditions during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 shiprsquos position indicated by a star9 August (a) 19 August (b) 27 September (c) and 30 September (d) Institute of Environmental Physics University of Bremen Germanyhttpsseaiceuni-bremendeamsr2indexhtml

5 Conclusion

Two factors can be considered the reflection of very lowbiodiversity the very low numbers of species and the highrelative numbers of individuals for some of them This wasespecially the case for zones 2 (Arctic pack ice CPI) 3

(Siberian end of the Lomonosov Ridge) and 4 Numbers ofspecies and individuals were high in zone 1 Greenland Seaand Fram Strait for fulmar little auk puffin and Brunnichrsquosguillemot as well as white-beaked dolphin and fin whalecomparable to the values usually obtained in the area (eg[9 10 18]) Ivory gull was present in all zones with maxima

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 3: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

Scientifica 3

70∘N

70∘N

80∘N

80∘N

130∘E

140∘E

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

Figure 1 Route of the PS86 (red) and PS87 (black) expeditions ofRV Polarstern in JulyndashSeptember 2014 for definition of the zonessee text

zones are illustrated in Figure 2 Characterisation of thefour zones and observations of the most numerous (main)species are shown in Table 2 Geographical differences wereobvious The analysis included the eight most numerousspecies (each gt200 individuals) It revealed both factorsldquozonerdquo and ldquospeciesrdquo to be highly significant and thereforehaving an effect on the observed abundances Independentof the individual species the results showed that the highestnumber of selected top predators was found in zone 1 (meannumbers per count all eight species pooled 792) followed byzone 4 (589) and the least amountswere found in zones 3 and2 (338 and 117 resp) (LRTzone deviance = 60866 119889119891 = 13and 119901 lt 00001)

These important differences seem to reflect differences inbiological productivity considering chlorophyll to be a goodindex maximal values were 127 41 23 and 39 respectivelyin the four zones (Table 2 Figure 3)

Pooled over all zones kittiwake presented the high-est numbers (212 per count) including three individualsbelonging to the Siberian subspecies R t pollicaris (zone 3811∘N) It was followed by fulmar (146) and little auk (066)Considerably lower but similar numbers were found for ivory

gull and puffin (033 and 031 resp) Lowest numbers weredetected for Brunnichrsquos guillemot (033) Rossrsquos gull (014)and white-beaked dolphin (015) (Table 2) Overall puffinsand white-beaked dolphins were almost exclusively found inzone 1a (119899 = 506 and 239 resp) The pattern described abovefor the overall abundances in the four zones was true forBrunnichrsquosGuillemots fulmars little auks puffins andwhite-beaked dolphins This pattern was reversed in kittiwakes andivory gulls which were sighted in highest numbers in zone 4Rossrsquos gulls were the only species found in highest numbers inzone 3Themain species in zone 1 were fulmar (4 individualsper count mean value) little auk (2 per count) kittiwake(05) and Brunnichrsquos guillemot (045) white-beaked dolphin(04) and fin whale (007) Using chlorophyll (fluorescence)as an indicator biological productivity is also the highestin this area The ice-covered area (zone 2) showed by farthe lowest densities with significant numbers of kittiwakes(02) and ivory gulls (004) as well as polar bears (002)Biological productivity (chlorophyll) was low Zone 3 showedlow numbers as well Rossrsquos gull (12) and ivory gull andkittiwake (1 each) being the most abundant biological pro-ductivity (chlorophyll) was low as well Zone 4 showed inter-mediate abundances highest numbers of kittiwakes (5 percount including higher concentrations at the local ice edgearound 130∘E see Figure 2(c)) ivory gulls (03) and fulmar(02) harp seals were present at a few stations only (003120∘E)

In addition to the above a ldquofirstrdquo zone was covered threetimes during both expeditions and divided into three sub-zones (subzones 1a 1b and 2a see Figure 1) deserving spe-cial attention Clear geographical differences were detected(Table 3) Pooled together top predators were highest in zone1a (126 per count) followed by zones 1b (76) and 2a (21)In zone 1a (Greenland Sea) fulmar was the most numerous(755 per count) followed by puffin (2) Brunnichrsquos guillemot(09) kittiwake (07) white-beaked dolphin (09) and finwhale (01) with high productivity (chlorophyll) of 28 Inzone 1b (NEW polynya) species were present with little auk(64) fulmar (12) and ivory gull (07) with productivityof 09 In zone 2a (CPI) the present species were ivorygull (1) fulmar (08) kittiwake (02) hooded seal (01) andpolar bear (003) with intermediate productivity (12) Thetested reproducibility of data between successive transectswas high for some species reflecting good reproducibilityof the counting method fulmar Brunnichrsquos guillemot ivorygull and kittiwake but not for other species reflecting theheterogeneity of their distribution little auk and puffinThe analysis of the selected and pooled species revealedthe factor ldquosubzonerdquo to be significantly effective (LRTsubzonedeviance = 852 119889119891 = 5 and 119901 = 0014) In fact the resultsshowed that subzones 1a and 1b were significantly similarwith respect to the abundances (119901 = 013) even thoughthe abundances in subzone 1a were higher than those insubzone 1b This is most likely due to high variations andmany excess zeros in the data Subzone 2a hosted clearly lessindividuals than the subzones 1a and 1b (119901 = 00001 and 0013resp)

4 Scientifica

Table 1 Seabirds andmarinemammals encountered during the PS86 and PS87 expeditions of RV Polarstern in 2014 total numbers recordedmean per counta and 119899 = number of 30min counts

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanFulmar light Fulmarus glacialis 920 231 362 029 1282 079Fulmar dark Fulmarus glacialis 835 216 323 026 1158 071Fulmar all Fulmarus glacialis 1755 453 721 043 2476 153Manx shearwater Puffinus puffinus 1 1Fork-tailed storm-petrel Oceanodroma furcata 2 2Common guillemot Uria aalge 14 1 15Brunnichrsquos guillemot Uria lomvia 93 023 262 018 355 022Guillemot unidentified Uria sp (aalgelomvia) 4 18 22Little auk Alle alle 498 125 568 046 1066 066Black guillemot Cepphus grylle 9 76 005 85Puffin Fratercula arctica 273 069 1829 148 2102 130Razorbill Alca torda 51 004 51Gannet Sula bassana 2 4 6Great skua Stercorarius skua 3 4 7Pomarine skua Stercorarius pomarinus 2 7 9Arctic skua Stercorarius parasiticus 8 25 33Long-tailed skua Stercorarius longicaudus 31 31Ivory gull Pagophila eburnea 200 050 332 027 532 033Glaucous gull Larus hyperboreus 11 18 29Herring gull Larus argentatus 5 27 32Great black-backed gull Larus marinus 14 17 31Lesser black-backed gull Larus fuscus 2 5 7Kittiwake Rissa tridactyla 278 068 3338 270 3616 223Sabinersquos gull Xema sabini 1c

Rossrsquos gull Rhodostethia rosea 1770 122 1770 109Arctic tern Sterna paradisaea 11 2 13Tern unidentified Sterna sp (hirundoparadisaea) 15 15Phalarope unidentified Phalaropus sp 1 1sum119887119894119903119889119904 (identified) 3214 919 11932 717 15146 934Blue whale Balaenoptera musculus 6 6Fin whale Balaenoptera physalus 34 0085 4 38 002Minke whale Balaenoptera acutorostrata 1 1Humpback whale Megaptera novaeangliae 7 1 8Sperm whale Physeter macrocephalus 9 2 11 001Killer whale Orca orca 9 9Large whale unidentified Cetacea 35 6 41 003Narwhal Monodon monoceros 7 7White-beaked dolphin Lagenorhynchus albirostris 215 0540 34 003 249 015Dolphin unidentified Delphinidae 3 14 17 001sum119888119890119905119886119888119890119886119899119904 (identified) 280 0723 49 003 329 020Bearded seal Erignathus barbatus 5 5Harp seal Pagophilus groenlandicus 5 18 001 23 001Ringed seal Pusa hispida 7 2 9Hooded seal Cystophora cristata 16 0038 2 18 001

Scientifica 5

Table 1 Continued

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanWalrus Odobenus rosmarus 1c

Seal unidentified Pinnipedia 36 18 54 003sum119901119894119899119899119894119901119890119889119904 (identified) 33 0085 22 001 55 003Polar bear Ursus maritimus 4 + 1

c8 + 1

c 9Polar bear tracks Ursus maritimus 1 64 007 65 004Arctic foxwolf tracks Canidae 3 3aFor mean values above 02 per count for birds and above 001 for mammals bpartim North of 66∘301015840N cout of effort

4 Discussion

Not only were mammal numbers very low but they weremoreover very limited spatially dolphins and fin whalesin zone 1a especially along the shelf slope where autumnaggregations were already encountered [10] Hooded seal andpolar bear were present on the OMIZ zone 2a and harp sealin a few counts off Siberia (zone 4 OMIZ 120∘E)

Two of the three high Arctic gulls deserve special com-ments Sabinersquos gull Xema sabini being absent in our countsone observation only out of effort

The breeding range of the ivory gull includes the Cana-dian Arctic Greenland Svalbard and Russian Arctic islands[11] Northeast (NE) Greenland in particular seems to bea hotspot for breeding sites [12] apparently due to thevicinity to an attractive feeding ground the NEW polynyaIt usually breeds in colonies either inland on steep cliffsand nunataks or coastal on barren islands and lowlandsIn rare cases it uses gravel-covered sea ice close to thecoast as breeding platform a breeding site on an ice floecovered with gravel was discovered in Independence FjordNE Greenland [13] We recently reported an even moreextreme breeding habitat a gravel-covered iceberg 70 km offNE Greenland close to the NEW polynya (81∘N 9∘W) [14]During this study 60 more adults plus an unknown numberof chicks not included in our calculations were detected(the position is indicated by a star on Figure 2(a)) Dramaticpopulation declines have already been observed in Canadaand Greenland during the last decades [12 15ndash17] Our owndata collected from the same observation platform with thesame methodology show a decrease in ivory gull abundancein the Greenland Sea from a mean of 17 individuals per30min count in the 1990ndash1993 period [9] to 04 and 03 in2008 and 2011 respectively [10 18 19] Its relative abundancedeeply changed as well it was one of the three most abundantspecies in the 1990s together with fulmar and kittiwake butnow does not often even belong to the top ten any moreThe ivory gull is listed as ldquoEndangeredrdquo under the Speciesat Risk Act in Canada and as ldquoNear Threatenedrdquo by theInternational Union for Conservation of Nature (IUCN) RedList of Threatened Species [20 21] The global population isestimated to be between 19000 and 27000 individuals with

still high uncertainties due to its occurrence in highly remoteareas [21] Its breeding range includes the Canadian ArcticGreenland Svalbard and Russian Arctic islands Northeast(NE) Greenland in particular seems to be a hotspot forbreeding sites [11 12 22ndash24] possibly due to the vicinity to anattractive feeding ground theNEWpolynya In this frame thenumbers encountered in zones 3 (07 per count) and 4 (03 percount) represent a significant part of the world populationprobably belonging to the RussianSiberian breeding sitesHalf of them were juveniles and 10 immature this seemsto reflect a good breeding success for this population

Rossrsquos gulls are breeding mainly in the deltas of theKolyma and Khroma rivers Siberia (142∘ to 160∘E) Theworld population is estimated at 45000 to 55000 individualsprobably gt27000 and possibly 100000 [22ndash24] Adults usedto be regularly observed in the Greenland Sea at the end ofthe breeding season during the 1990s (end of June Table 4[9]) but not after 1994 (this team numerous papers andunpublished data) It is not clear how far this had to beinterpreted as movements following breeding failure or aslarge nonbreeding population In this study they representthe most abundant species in zone 3 off its main Siberianbreeding grounds with a total of 190 individuals (12 percount) The majority were breeding adults (60) 25 juve-niles and some nonbreeding adults close to the end of thebreeding season in late July-August [22ndash25]This again seemsto reflect a good breeding success for this species Moreinformation can be found in Figure 4

A comparison between our seabird data and the modelpredictions of Arctic seabird distribution [26] shows a fullcompatibility in trends modelled bird diversity varied from17ndash20 species in our zone 1 (more than 20 close to the coast)to 0ndash4 in the high Arctic pack ice (our zones 2 and 4) witha slight increase corresponding to our zone 3 (Figure 5 [3])Our valueswere howevermuch lowermeannumbers varyingfrom 185 species per count in zone 1 (6 maximum) to 195 insubzone 1a followed by 068 in zone 3 (3 maximum) 023 inzone 4 (5 maximum) and 014 in zone 2 (3 maximum) inall zones many counts were free of contact This quantitativediscrepancy can partially be explained by the limited periodand area covered by our study while the model was based onbroader datasets concerning more species

6 Scientifica

Table2Datao

btainedin

thefou

rmaingeograph

icalzonesd

efineddu

ringthe

PS86

andPS

87expeditio

nsofRV

PolarsternJulyndashSeptem

ber2

014119899num

bero

f30m

incoun

tstotalnum

ber

meanperc

ountlowast

and

mean119873

perk

m(see

text

andFigure

1)

Zone

nSalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

ukPu

ffin

Ivorygu

ll

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Fraterculaarctica

Pagophila

eburnea

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

1419

334

(293

ndash351)

33(minus17ndash121)

10(0ndash80)

21(006ndash127)

92(28ndash127)

2121

506

252

06

1054

252

509

121

78057

244

9311

(292

ndash333)minus14

(minus17ndash13)

75(0ndash100)

12(01ndash

55)

44(11ndash

112)

116

026

14

0156

035

3160

262

(243ndash299)

02(minus13

ndash111)

80(0ndash100)

11(07ndash

23)

49(12ndash105)

01

00

105

097

4580

286

(243ndash350)

09(minus17ndash108)

2(0ndash10)

13(06ndash39)

57(23ndash122)

126

022

100

017

82

162

028

Zone

Rossrsquosgu

llKittiwake

White-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Polarb

ear

Rhodostethiarosea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlandicus

Cysto

phoracristata

Ursusm

aritimus

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

10

239

057

239

057

37009

4001

2001

3001

20

112

025

00

214

5001

3190

119

155

097

00

00

04

38007

2931

505

10002

117

003

00

lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

Scientifica 7

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(a)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(b)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(c)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(d)

Figure 2 Ice conditions during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 shiprsquos position indicated by a star9 August (a) 19 August (b) 27 September (c) and 30 September (d) Institute of Environmental Physics University of Bremen Germanyhttpsseaiceuni-bremendeamsr2indexhtml

5 Conclusion

Two factors can be considered the reflection of very lowbiodiversity the very low numbers of species and the highrelative numbers of individuals for some of them This wasespecially the case for zones 2 (Arctic pack ice CPI) 3

(Siberian end of the Lomonosov Ridge) and 4 Numbers ofspecies and individuals were high in zone 1 Greenland Seaand Fram Strait for fulmar little auk puffin and Brunnichrsquosguillemot as well as white-beaked dolphin and fin whalecomparable to the values usually obtained in the area (eg[9 10 18]) Ivory gull was present in all zones with maxima

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 4: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

4 Scientifica

Table 1 Seabirds andmarinemammals encountered during the PS86 and PS87 expeditions of RV Polarstern in 2014 total numbers recordedmean per counta and 119899 = number of 30min counts

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanFulmar light Fulmarus glacialis 920 231 362 029 1282 079Fulmar dark Fulmarus glacialis 835 216 323 026 1158 071Fulmar all Fulmarus glacialis 1755 453 721 043 2476 153Manx shearwater Puffinus puffinus 1 1Fork-tailed storm-petrel Oceanodroma furcata 2 2Common guillemot Uria aalge 14 1 15Brunnichrsquos guillemot Uria lomvia 93 023 262 018 355 022Guillemot unidentified Uria sp (aalgelomvia) 4 18 22Little auk Alle alle 498 125 568 046 1066 066Black guillemot Cepphus grylle 9 76 005 85Puffin Fratercula arctica 273 069 1829 148 2102 130Razorbill Alca torda 51 004 51Gannet Sula bassana 2 4 6Great skua Stercorarius skua 3 4 7Pomarine skua Stercorarius pomarinus 2 7 9Arctic skua Stercorarius parasiticus 8 25 33Long-tailed skua Stercorarius longicaudus 31 31Ivory gull Pagophila eburnea 200 050 332 027 532 033Glaucous gull Larus hyperboreus 11 18 29Herring gull Larus argentatus 5 27 32Great black-backed gull Larus marinus 14 17 31Lesser black-backed gull Larus fuscus 2 5 7Kittiwake Rissa tridactyla 278 068 3338 270 3616 223Sabinersquos gull Xema sabini 1c

Rossrsquos gull Rhodostethia rosea 1770 122 1770 109Arctic tern Sterna paradisaea 11 2 13Tern unidentified Sterna sp (hirundoparadisaea) 15 15Phalarope unidentified Phalaropus sp 1 1sum119887119894119903119889119904 (identified) 3214 919 11932 717 15146 934Blue whale Balaenoptera musculus 6 6Fin whale Balaenoptera physalus 34 0085 4 38 002Minke whale Balaenoptera acutorostrata 1 1Humpback whale Megaptera novaeangliae 7 1 8Sperm whale Physeter macrocephalus 9 2 11 001Killer whale Orca orca 9 9Large whale unidentified Cetacea 35 6 41 003Narwhal Monodon monoceros 7 7White-beaked dolphin Lagenorhynchus albirostris 215 0540 34 003 249 015Dolphin unidentified Delphinidae 3 14 17 001sum119888119890119905119886119888119890119886119899119904 (identified) 280 0723 49 003 329 020Bearded seal Erignathus barbatus 5 5Harp seal Pagophilus groenlandicus 5 18 001 23 001Ringed seal Pusa hispida 7 2 9Hooded seal Cystophora cristata 16 0038 2 18 001

Scientifica 5

Table 1 Continued

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanWalrus Odobenus rosmarus 1c

Seal unidentified Pinnipedia 36 18 54 003sum119901119894119899119899119894119901119890119889119904 (identified) 33 0085 22 001 55 003Polar bear Ursus maritimus 4 + 1

c8 + 1

c 9Polar bear tracks Ursus maritimus 1 64 007 65 004Arctic foxwolf tracks Canidae 3 3aFor mean values above 02 per count for birds and above 001 for mammals bpartim North of 66∘301015840N cout of effort

4 Discussion

Not only were mammal numbers very low but they weremoreover very limited spatially dolphins and fin whalesin zone 1a especially along the shelf slope where autumnaggregations were already encountered [10] Hooded seal andpolar bear were present on the OMIZ zone 2a and harp sealin a few counts off Siberia (zone 4 OMIZ 120∘E)

Two of the three high Arctic gulls deserve special com-ments Sabinersquos gull Xema sabini being absent in our countsone observation only out of effort

The breeding range of the ivory gull includes the Cana-dian Arctic Greenland Svalbard and Russian Arctic islands[11] Northeast (NE) Greenland in particular seems to bea hotspot for breeding sites [12] apparently due to thevicinity to an attractive feeding ground the NEW polynyaIt usually breeds in colonies either inland on steep cliffsand nunataks or coastal on barren islands and lowlandsIn rare cases it uses gravel-covered sea ice close to thecoast as breeding platform a breeding site on an ice floecovered with gravel was discovered in Independence FjordNE Greenland [13] We recently reported an even moreextreme breeding habitat a gravel-covered iceberg 70 km offNE Greenland close to the NEW polynya (81∘N 9∘W) [14]During this study 60 more adults plus an unknown numberof chicks not included in our calculations were detected(the position is indicated by a star on Figure 2(a)) Dramaticpopulation declines have already been observed in Canadaand Greenland during the last decades [12 15ndash17] Our owndata collected from the same observation platform with thesame methodology show a decrease in ivory gull abundancein the Greenland Sea from a mean of 17 individuals per30min count in the 1990ndash1993 period [9] to 04 and 03 in2008 and 2011 respectively [10 18 19] Its relative abundancedeeply changed as well it was one of the three most abundantspecies in the 1990s together with fulmar and kittiwake butnow does not often even belong to the top ten any moreThe ivory gull is listed as ldquoEndangeredrdquo under the Speciesat Risk Act in Canada and as ldquoNear Threatenedrdquo by theInternational Union for Conservation of Nature (IUCN) RedList of Threatened Species [20 21] The global population isestimated to be between 19000 and 27000 individuals with

still high uncertainties due to its occurrence in highly remoteareas [21] Its breeding range includes the Canadian ArcticGreenland Svalbard and Russian Arctic islands Northeast(NE) Greenland in particular seems to be a hotspot forbreeding sites [11 12 22ndash24] possibly due to the vicinity to anattractive feeding ground theNEWpolynya In this frame thenumbers encountered in zones 3 (07 per count) and 4 (03 percount) represent a significant part of the world populationprobably belonging to the RussianSiberian breeding sitesHalf of them were juveniles and 10 immature this seemsto reflect a good breeding success for this population

Rossrsquos gulls are breeding mainly in the deltas of theKolyma and Khroma rivers Siberia (142∘ to 160∘E) Theworld population is estimated at 45000 to 55000 individualsprobably gt27000 and possibly 100000 [22ndash24] Adults usedto be regularly observed in the Greenland Sea at the end ofthe breeding season during the 1990s (end of June Table 4[9]) but not after 1994 (this team numerous papers andunpublished data) It is not clear how far this had to beinterpreted as movements following breeding failure or aslarge nonbreeding population In this study they representthe most abundant species in zone 3 off its main Siberianbreeding grounds with a total of 190 individuals (12 percount) The majority were breeding adults (60) 25 juve-niles and some nonbreeding adults close to the end of thebreeding season in late July-August [22ndash25]This again seemsto reflect a good breeding success for this species Moreinformation can be found in Figure 4

A comparison between our seabird data and the modelpredictions of Arctic seabird distribution [26] shows a fullcompatibility in trends modelled bird diversity varied from17ndash20 species in our zone 1 (more than 20 close to the coast)to 0ndash4 in the high Arctic pack ice (our zones 2 and 4) witha slight increase corresponding to our zone 3 (Figure 5 [3])Our valueswere howevermuch lowermeannumbers varyingfrom 185 species per count in zone 1 (6 maximum) to 195 insubzone 1a followed by 068 in zone 3 (3 maximum) 023 inzone 4 (5 maximum) and 014 in zone 2 (3 maximum) inall zones many counts were free of contact This quantitativediscrepancy can partially be explained by the limited periodand area covered by our study while the model was based onbroader datasets concerning more species

6 Scientifica

Table2Datao

btainedin

thefou

rmaingeograph

icalzonesd

efineddu

ringthe

PS86

andPS

87expeditio

nsofRV

PolarsternJulyndashSeptem

ber2

014119899num

bero

f30m

incoun

tstotalnum

ber

meanperc

ountlowast

and

mean119873

perk

m(see

text

andFigure

1)

Zone

nSalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

ukPu

ffin

Ivorygu

ll

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Fraterculaarctica

Pagophila

eburnea

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

1419

334

(293

ndash351)

33(minus17ndash121)

10(0ndash80)

21(006ndash127)

92(28ndash127)

2121

506

252

06

1054

252

509

121

78057

244

9311

(292

ndash333)minus14

(minus17ndash13)

75(0ndash100)

12(01ndash

55)

44(11ndash

112)

116

026

14

0156

035

3160

262

(243ndash299)

02(minus13

ndash111)

80(0ndash100)

11(07ndash

23)

49(12ndash105)

01

00

105

097

4580

286

(243ndash350)

09(minus17ndash108)

2(0ndash10)

13(06ndash39)

57(23ndash122)

126

022

100

017

82

162

028

Zone

Rossrsquosgu

llKittiwake

White-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Polarb

ear

Rhodostethiarosea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlandicus

Cysto

phoracristata

Ursusm

aritimus

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

10

239

057

239

057

37009

4001

2001

3001

20

112

025

00

214

5001

3190

119

155

097

00

00

04

38007

2931

505

10002

117

003

00

lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

Scientifica 7

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(a)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(b)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(c)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(d)

Figure 2 Ice conditions during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 shiprsquos position indicated by a star9 August (a) 19 August (b) 27 September (c) and 30 September (d) Institute of Environmental Physics University of Bremen Germanyhttpsseaiceuni-bremendeamsr2indexhtml

5 Conclusion

Two factors can be considered the reflection of very lowbiodiversity the very low numbers of species and the highrelative numbers of individuals for some of them This wasespecially the case for zones 2 (Arctic pack ice CPI) 3

(Siberian end of the Lomonosov Ridge) and 4 Numbers ofspecies and individuals were high in zone 1 Greenland Seaand Fram Strait for fulmar little auk puffin and Brunnichrsquosguillemot as well as white-beaked dolphin and fin whalecomparable to the values usually obtained in the area (eg[9 10 18]) Ivory gull was present in all zones with maxima

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 5: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

Scientifica 5

Table 1 Continued

Species Species

Expeditiongt PS86 PS87b AllPeriodgt July Aug-Sept JulyndashSept119899gt 387 1235 1622

Sum Mean Sum Mean Sum MeanWalrus Odobenus rosmarus 1c

Seal unidentified Pinnipedia 36 18 54 003sum119901119894119899119899119894119901119890119889119904 (identified) 33 0085 22 001 55 003Polar bear Ursus maritimus 4 + 1

c8 + 1

c 9Polar bear tracks Ursus maritimus 1 64 007 65 004Arctic foxwolf tracks Canidae 3 3aFor mean values above 02 per count for birds and above 001 for mammals bpartim North of 66∘301015840N cout of effort

4 Discussion

Not only were mammal numbers very low but they weremoreover very limited spatially dolphins and fin whalesin zone 1a especially along the shelf slope where autumnaggregations were already encountered [10] Hooded seal andpolar bear were present on the OMIZ zone 2a and harp sealin a few counts off Siberia (zone 4 OMIZ 120∘E)

Two of the three high Arctic gulls deserve special com-ments Sabinersquos gull Xema sabini being absent in our countsone observation only out of effort

The breeding range of the ivory gull includes the Cana-dian Arctic Greenland Svalbard and Russian Arctic islands[11] Northeast (NE) Greenland in particular seems to bea hotspot for breeding sites [12] apparently due to thevicinity to an attractive feeding ground the NEW polynyaIt usually breeds in colonies either inland on steep cliffsand nunataks or coastal on barren islands and lowlandsIn rare cases it uses gravel-covered sea ice close to thecoast as breeding platform a breeding site on an ice floecovered with gravel was discovered in Independence FjordNE Greenland [13] We recently reported an even moreextreme breeding habitat a gravel-covered iceberg 70 km offNE Greenland close to the NEW polynya (81∘N 9∘W) [14]During this study 60 more adults plus an unknown numberof chicks not included in our calculations were detected(the position is indicated by a star on Figure 2(a)) Dramaticpopulation declines have already been observed in Canadaand Greenland during the last decades [12 15ndash17] Our owndata collected from the same observation platform with thesame methodology show a decrease in ivory gull abundancein the Greenland Sea from a mean of 17 individuals per30min count in the 1990ndash1993 period [9] to 04 and 03 in2008 and 2011 respectively [10 18 19] Its relative abundancedeeply changed as well it was one of the three most abundantspecies in the 1990s together with fulmar and kittiwake butnow does not often even belong to the top ten any moreThe ivory gull is listed as ldquoEndangeredrdquo under the Speciesat Risk Act in Canada and as ldquoNear Threatenedrdquo by theInternational Union for Conservation of Nature (IUCN) RedList of Threatened Species [20 21] The global population isestimated to be between 19000 and 27000 individuals with

still high uncertainties due to its occurrence in highly remoteareas [21] Its breeding range includes the Canadian ArcticGreenland Svalbard and Russian Arctic islands Northeast(NE) Greenland in particular seems to be a hotspot forbreeding sites [11 12 22ndash24] possibly due to the vicinity to anattractive feeding ground theNEWpolynya In this frame thenumbers encountered in zones 3 (07 per count) and 4 (03 percount) represent a significant part of the world populationprobably belonging to the RussianSiberian breeding sitesHalf of them were juveniles and 10 immature this seemsto reflect a good breeding success for this population

Rossrsquos gulls are breeding mainly in the deltas of theKolyma and Khroma rivers Siberia (142∘ to 160∘E) Theworld population is estimated at 45000 to 55000 individualsprobably gt27000 and possibly 100000 [22ndash24] Adults usedto be regularly observed in the Greenland Sea at the end ofthe breeding season during the 1990s (end of June Table 4[9]) but not after 1994 (this team numerous papers andunpublished data) It is not clear how far this had to beinterpreted as movements following breeding failure or aslarge nonbreeding population In this study they representthe most abundant species in zone 3 off its main Siberianbreeding grounds with a total of 190 individuals (12 percount) The majority were breeding adults (60) 25 juve-niles and some nonbreeding adults close to the end of thebreeding season in late July-August [22ndash25]This again seemsto reflect a good breeding success for this species Moreinformation can be found in Figure 4

A comparison between our seabird data and the modelpredictions of Arctic seabird distribution [26] shows a fullcompatibility in trends modelled bird diversity varied from17ndash20 species in our zone 1 (more than 20 close to the coast)to 0ndash4 in the high Arctic pack ice (our zones 2 and 4) witha slight increase corresponding to our zone 3 (Figure 5 [3])Our valueswere howevermuch lowermeannumbers varyingfrom 185 species per count in zone 1 (6 maximum) to 195 insubzone 1a followed by 068 in zone 3 (3 maximum) 023 inzone 4 (5 maximum) and 014 in zone 2 (3 maximum) inall zones many counts were free of contact This quantitativediscrepancy can partially be explained by the limited periodand area covered by our study while the model was based onbroader datasets concerning more species

6 Scientifica

Table2Datao

btainedin

thefou

rmaingeograph

icalzonesd

efineddu

ringthe

PS86

andPS

87expeditio

nsofRV

PolarsternJulyndashSeptem

ber2

014119899num

bero

f30m

incoun

tstotalnum

ber

meanperc

ountlowast

and

mean119873

perk

m(see

text

andFigure

1)

Zone

nSalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

ukPu

ffin

Ivorygu

ll

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Fraterculaarctica

Pagophila

eburnea

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

1419

334

(293

ndash351)

33(minus17ndash121)

10(0ndash80)

21(006ndash127)

92(28ndash127)

2121

506

252

06

1054

252

509

121

78057

244

9311

(292

ndash333)minus14

(minus17ndash13)

75(0ndash100)

12(01ndash

55)

44(11ndash

112)

116

026

14

0156

035

3160

262

(243ndash299)

02(minus13

ndash111)

80(0ndash100)

11(07ndash

23)

49(12ndash105)

01

00

105

097

4580

286

(243ndash350)

09(minus17ndash108)

2(0ndash10)

13(06ndash39)

57(23ndash122)

126

022

100

017

82

162

028

Zone

Rossrsquosgu

llKittiwake

White-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Polarb

ear

Rhodostethiarosea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlandicus

Cysto

phoracristata

Ursusm

aritimus

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

10

239

057

239

057

37009

4001

2001

3001

20

112

025

00

214

5001

3190

119

155

097

00

00

04

38007

2931

505

10002

117

003

00

lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

Scientifica 7

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(a)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(b)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(c)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(d)

Figure 2 Ice conditions during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 shiprsquos position indicated by a star9 August (a) 19 August (b) 27 September (c) and 30 September (d) Institute of Environmental Physics University of Bremen Germanyhttpsseaiceuni-bremendeamsr2indexhtml

5 Conclusion

Two factors can be considered the reflection of very lowbiodiversity the very low numbers of species and the highrelative numbers of individuals for some of them This wasespecially the case for zones 2 (Arctic pack ice CPI) 3

(Siberian end of the Lomonosov Ridge) and 4 Numbers ofspecies and individuals were high in zone 1 Greenland Seaand Fram Strait for fulmar little auk puffin and Brunnichrsquosguillemot as well as white-beaked dolphin and fin whalecomparable to the values usually obtained in the area (eg[9 10 18]) Ivory gull was present in all zones with maxima

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 6: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

6 Scientifica

Table2Datao

btainedin

thefou

rmaingeograph

icalzonesd

efineddu

ringthe

PS86

andPS

87expeditio

nsofRV

PolarsternJulyndashSeptem

ber2

014119899num

bero

f30m

incoun

tstotalnum

ber

meanperc

ountlowast

and

mean119873

perk

m(see

text

andFigure

1)

Zone

nSalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

ukPu

ffin

Ivorygu

ll

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Fraterculaarctica

Pagophila

eburnea

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

1419

334

(293

ndash351)

33(minus17ndash121)

10(0ndash80)

21(006ndash127)

92(28ndash127)

2121

506

252

06

1054

252

509

121

78057

244

9311

(292

ndash333)minus14

(minus17ndash13)

75(0ndash100)

12(01ndash

55)

44(11ndash

112)

116

026

14

0156

035

3160

262

(243ndash299)

02(minus13

ndash111)

80(0ndash100)

11(07ndash

23)

49(12ndash105)

01

00

105

097

4580

286

(243ndash350)

09(minus17ndash108)

2(0ndash10)

13(06ndash39)

57(23ndash122)

126

022

100

017

82

162

028

Zone

Rossrsquosgu

llKittiwake

White-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Polarb

ear

Rhodostethiarosea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlandicus

Cysto

phoracristata

Ursusm

aritimus

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

Total

Mean

10

239

057

239

057

37009

4001

2001

3001

20

112

025

00

214

5001

3190

119

155

097

00

00

04

38007

2931

505

10002

117

003

00

lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

Scientifica 7

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(a)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(b)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(c)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(d)

Figure 2 Ice conditions during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 shiprsquos position indicated by a star9 August (a) 19 August (b) 27 September (c) and 30 September (d) Institute of Environmental Physics University of Bremen Germanyhttpsseaiceuni-bremendeamsr2indexhtml

5 Conclusion

Two factors can be considered the reflection of very lowbiodiversity the very low numbers of species and the highrelative numbers of individuals for some of them This wasespecially the case for zones 2 (Arctic pack ice CPI) 3

(Siberian end of the Lomonosov Ridge) and 4 Numbers ofspecies and individuals were high in zone 1 Greenland Seaand Fram Strait for fulmar little auk puffin and Brunnichrsquosguillemot as well as white-beaked dolphin and fin whalecomparable to the values usually obtained in the area (eg[9 10 18]) Ivory gull was present in all zones with maxima

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 7: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

Scientifica 7

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(a)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(b)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(c)

75∘N

75∘N

75∘N

70∘N

75∘N

20∘W 0∘

20∘E

40∘E

140∘W

160∘W

180∘

160∘E

140∘E

High 100 Low 0Sea ice concentration ()

(d)

Figure 2 Ice conditions during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 shiprsquos position indicated by a star9 August (a) 19 August (b) 27 September (c) and 30 September (d) Institute of Environmental Physics University of Bremen Germanyhttpsseaiceuni-bremendeamsr2indexhtml

5 Conclusion

Two factors can be considered the reflection of very lowbiodiversity the very low numbers of species and the highrelative numbers of individuals for some of them This wasespecially the case for zones 2 (Arctic pack ice CPI) 3

(Siberian end of the Lomonosov Ridge) and 4 Numbers ofspecies and individuals were high in zone 1 Greenland Seaand Fram Strait for fulmar little auk puffin and Brunnichrsquosguillemot as well as white-beaked dolphin and fin whalecomparable to the values usually obtained in the area (eg[9 10 18]) Ivory gull was present in all zones with maxima

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 8: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

8 Scientifica

Table3Observatio

nsof

toppredatorsd

uringthes

ametransectvisitedthreetim

esbetweenTrom

soslashandtheh

ighArctic

pack

ice(83∘

N)mainspeciestotalnum

bermeanperc

ountlowast

and

mean119873

perk

m

Zonelowastlowast

Polarstern

expeditio

nn

Latitud

e∘N

Long

itude∘

ESalin

ityTemperature

CIcec

over

Fluo

rescence

(chlorop

hyll)

Speedkn

ots

Fulm

arBrun

nichrsquos

guillem

otLittlea

uk

Fulm

arus

glacia

lisUr

ialomvia

Allealle

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Mean

(minndashm

ax)

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

1aPS

86101

701784

202minus24

347(332ndash351)

71(25ndash106)

0112

(60ndash115

)40

740

036

21021

002

4

1aPS

8689

707778

60190

343(342ndash351)

86(27ndash

120)

0109

(39ndash127)

1140

128

117

62075

007

460

430

039

1aPS

8768

702779

8202244

346(325ndash351)

80(32ndash124)

090

(41ndash

110)

424

57

619

150

221

024

32047

005

sum1a

258

701784

202minus24

345(325ndash351)

79(25ndash124)

0279

(008ndash127)

104

(39ndash115

)1971

764

076

233

090

009

496

192

018

1bPS

8628

785792

minus280minus73

3025

(299

ndash317

)minus063

(minus13

ndash031

)63(38ndash90)

3111

017

010

008

01

1bPS

8653

792813

60minus56

3115

(296

ndash351)

039

(minus097ndash373)

89

(49ndash115

)73

138

016

228

039

004

1bPS

8783

781815

217minus665

3022

(293

ndash338)

034

(minus11ndash4

3)

599

(280ndash

750)

8910

7018

11013

002

528

636

106

sum1b

164

781815

217minus665

3054

(293

ndash351)

003

(minus13

ndash43)

17(0ndash80)

088

(047ndash23)

706

(280ndash

115)

193

118

016

13008

001

566

345

049

2aPS

86115

792829minus57minus98

3054

(299

ndash315

)minus086

(minus13

0ndash16

0)61(38ndash90

)94

082

013

14

2aPS

8732

815829minus452minus661

3106(293

ndash311)minus14

7(minus097ndash

minus17

0)44

(250ndash

610)

19059

013

00

sum2a

147

792829minus98

minus452

3080

(293

0ndash315)minus116(minus097ndash

minus17

0)70

(20ndash

90)

119(013

ndash55)

84

(250ndash

90)

113

077

009

14

Zonelowastlowast

Puffin

Ivorygu

llKittiwake

Wh-beakeddo

lphin

Finwhale

Harpseal

Hoo

dedseal

Fraterculaarctica

Pagophila

eburnea

Rissa

tridactyla

Lagenorhynchus

albirostris

Balaenoptera

physalus

Pagophilu

sgroenlan

dicus

Cysto

phora

cristata

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

Mean

Nkm

Total

1a157

16014

149

050

004

84

00

1a116

13012

0117

13012

207

23

3003

003

00

1a1824

268

298

016

024

003

243

005

0005

00

sum1a

2097

813

078

1182

071

007

239

094

37014

001

00

1b0

8028

004

5018

003

03

011

001

01b

014

026

002

6412

1014

00

11b

355

066

011

134

161

027

01

2sum1b

377

047

007

203

118

016

04

32a

0143

124

020

33029

005

02

002

0003

142a

04

23072

016

00

0sum2a

0147

100

012

56038

0045

02

14lowast

Form

eanvalues

above0

1perc

ount

forb

irdsa

ndabove0

01for

mam

mals

lowastlowast

From

southto

north1aopenwater1bNEW

polynyaand2apackice(OMIZouter

marginalice

zone)

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 9: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

Scientifica 9

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

14

1225

105

875

7

525

35

175

0

minus175

Temperature (∘C)

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

Figure 3 Environmental conditions registered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 watertemperature (SST ∘C) (a) salinity (b)

Table 4 Observations of Rossrsquos gullsRhodostethia rosea in theNEWpolynya area 119899 = number of 30min counts [9]

Date Year n Rossrsquos gullFrom To Total Meancount25 May 2 June 1993 239 09 June 19 June 1991 451 028 June 31 July 1993 529 92 01821 July 5 August 1993 113 107 09522 July 10 August 1992 25 20 080

being in zones 2 and 4 Kittiwake was present in all zonesas well with low abundance in zone 2 (CPI) and very highabundance in zone 4 The main conclusion is that numberswere very low for all species in zones 2 to 4 with theexception of Rossrsquos gull in zone 3 (Tables 2 and 3) Theobserved geographical differences seem to reflect differencesin biological productivity of the ecosystems as illustrated by

differences in chlorophyll (fluorescence) data These baselinedata could be integrated in other datasets [27] and in broaderdiscussions for example about changing ice conditions andhuman activities

These findings provide confirmation of the profounddifference between both polar regions The Arctic pack iceis generally characterised by low top predator density whileAntarctic pack ice is supporting high numbers of penguinsmainly Adelie Pygoscelis adeliae and chinstrap P antarcticaand of seals the majority being crabeater seals Lobodoncarcinophaga scattered on CPI [28] Such a major differencemight be due to differences in sea ice conditions and as aconsequence in ecological structure the Arctic being mainlycovered by multiyear ice and the Antarctic by one-yearice This situation is in full evolution as a consequence ofclimate changes In the Arctic summer pack ice is stronglyreduced while winter pack ice decreases in a very limitedextent only As a result the Arctic might be changing into aone-year pack ice ecosystem The possible ecological conse-quences of this situation are difficult to evaluate for the timebeing

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 10: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

10 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(a)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(b)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(c)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(d)

Figure 4 Continued

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 11: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

Scientifica 11

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(e)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(f)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(g)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(h)

Figure 4 Continued

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 12: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

12 Scientifica

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(i)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(j)

70∘N

70∘N

70∘N

70∘N

150∘E

160∘E

170∘E

minus180∘

minus170∘W

minus160∘W

minus150∘W

minus140∘W

20∘E

10∘E0∘

minus10∘W

minus20∘W

minus30∘W

(k)

Figure 4 Distribution maps of the main top predator species encountered during the PS86 and PS87 expeditions of RV Polarstern in JulyndashSeptember 2014 fulmar Fulmarus glacialis (a) Brunnichrsquos guillemot Uria lomvia (b) little auk Alle alle (c) puffin Fratercula arctica (d) ivorygull Pagophila eburnea (e) Rossrsquos gull Rhodostethia rosea (f) kittiwake Rissa tridactyla (g) white-beaked dolphin Lagenorhynchus albirostris(h) fin whale Balaenoptera physalus (i) harp seal Pagophilus groenlandicus and hooded seal Cystophora cristata (j) and polar bear Ursusmaritimus (k)

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 13: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

Scientifica 13

Number of species0ndash4

5ndash8

9ndash12

13ndash16

17ndash20

21ndash23

0∘09984000998400998400

180∘09984000998400998400

60∘09984000998400998400E60

∘09984000998400998400W

90∘09984000998400998400E90

∘09984000998400998400W

120∘09984000998400998400E120

∘09984000998400998400W

150∘09984000998400998400E150

∘09984000998400998400W

30∘09984000998400998400E30

∘09984000998400998400W

Figure 5 Seabird species diversity of 27 modelled seabird speciesin the Arctic with shipping lanes overlain Figure 2(a) in [3] withauthorization

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

The authors are very grateful to AWI coordination (Bre-merhaven) and Chief Scientists A Boetius and R Stein forkind invitation on board Polarstern observers were DD andM Wattelet during PS86 and DAN and O Jamar de Bolseeduring PS87 A Van de Putte kindly prepared the data forinclusion in the biodiversity dataset access to Polarsternwas denied by Coordinator R Knust from 1 January 2015onwards

References

[1] C R Joiris ldquoAt-sea distribution of seabirds and marine mam-mals in theGreenland andNorwegian seas impact of extremelylow ice coveragerdquo in Proceedings of the Symposium EuropeanResearch on Polar Environment and Climate Brussels BelgiumMarch 2007

[2] C R Joiris and E Falck ldquoSummer at-sea distribution of littleauks Alle alle and harp seals Pagophilus (Phoca) groenlandica inthe Fram Strait and the Greenland Sea impact of small-scalehydrological eventsrdquo Polar Biology vol 34 no 4 pp 541ndash5482011

[3] G R W Humphries and F Huettmann ldquoPutting models toa good use a rapid assessment of Arctic seabird biodiversityindicates potential conflicts with shipping lanes and humanactivityrdquoDiversity and Distributions vol 20 no 4 pp 478ndash4902014

[4] S Nakagawa and H Schielzeth ldquoA general and simple methodfor obtaining R2 from generalized linear mixed-effects modelsrdquoMethods in Ecology and Evolution vol 4 no 2 pp 133ndash142 2013

[5] R Core Team R A Language and Environment for StatisticalComputing R Foundation for Statistical Computing ViennaAustria 2013 httpswwwR-projectorg

[6] D Bates M Machler B M Bolker and S C Walker ldquoFittinglinear mixed-effects models using lme4rdquo Journal of StatisticalSoftware vol 67 no 1 pp 1ndash48 2015

[7] D A Fournier H J Skaug J Ancheta et al ldquoADmodel builderusing automatic differentiation for statistical inference of highlyparameterized complex nonlinear modelsrdquoOptimizationMeth-ods and Software vol 27 no 2 pp 233ndash249 2012

[8] H Skaug D Fournier B Bolker AMagnusson andANielsenGeneralized Linear Mixed Models Using AD Model Builder RPackage Version 080 2014

[9] C R Joiris K Kampp J Tahon and R Moslashbjerg KristensenldquoSummer distribution of seabirds in the North-East Waterpolynya Greenlandrdquo Journal of Marine Systems vol 13 no 1ndash4 pp 51ndash59 1997

[10] C R Joiris E Falck D DrsquoHert S Jungblut and K Boos ldquoAnimportant late summer aggregation of fin whales Balaenopteraphysalus little auks Alle alle and Brunnichrsquos guillemots Urialomvia in the eastern Greenland Sea and Fram Strait influenceof hydrographic structuresrdquo Polar Biology vol 37 no 11 pp1645ndash1657 2014

[11] GGilchristH StroslashmMVGavrilo andAMosbech ldquoInterna-tional ivory gull conservation strategy and action planrdquo CAFFTechnical Report 18 Conservation of Arctic Flora and Fauna(CAFF) International Secretariat Circumpolar Seabird Group(CBird) Akureyri North Iceland 2008

[12] O Gilg D Boertmann F Merkel A Aebischer and B SabardldquoStatus of the endangered ivory gull Pagophila eburnea inGreenlandrdquo Polar Biology vol 32 no 9 pp 1275ndash1286 2009

[13] D Boertmann K Olsen and O Gilg ldquoIvory gulls breeding onicerdquo Polar Record vol 46 no 1 pp 86ndash88 2010

[14] D A Nachtsheim C R Joiris and D DrsquoHert ldquoA gravel-covered iceberg provides an offshore breeding site for ivory gullsPagophila eburnea off Northeast Greenlandrdquo Polar Biology vol39 pp 755ndash758 2016

[15] M L Mallory H G Gilchrist A J Fontaine and J A AkearokldquoLocal ecological knowledge of ivory gull declines in arcticCanadardquo Arctic vol 56 no 3 pp 293ndash298 2003

[16] J W Chardine A J Fontaine H Blokpoel M Mallory andT Hofmann ldquoAt-sea observations of ivory gulls (Pagophilaeburnea) in the eastern Canadian high Arctic in 1993 and 2002indicate a population declinerdquo Polar Record vol 40 no 215 pp355ndash359 2004

[17] H Grant Gilchrist and M L Mallory ldquoDeclines in abundanceand distribution of the ivory gull (Pagophila eburnea) in ArcticCanadardquo Biological Conservation vol 121 no 2 pp 303ndash3092005

[18] C R Joiris ldquoA major feeding ground for cetaceans and seabirdsin the south-western Greenland Seardquo Polar Biology vol 34 no10 pp 1597ndash1607 2011

[19] C R Joiris ldquoPossible impact of decreasingArctic pack ice on thehigher trophic levels seabirds andmarine mammalsrdquoAdvancesin Environmental Research vol 23 pp 207ndash221 2012

[20] COSEWIC Assessment and Update Status Report on Ivory Gull(Pagophila eburnea) in Canada Committee on the Status ofEndangered Wildlife in Canada Ottawa Canada 2006

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000

Page 14: Low Density of Top Predators (Seabirds and Marine Mammals ...€¦ · ResearchArticle Low Density of Top Predators (Seabirds and Marine Mammals) in the High Arctic Pack Ice ClaudeR.Joiris,1,2

14 Scientifica

[21] BirdLife International ldquolsquoPagophila eburnearsquo The IUCN RedList of Threatened Species Version 20152rdquo 2012 httpwwwiucnredlistorg

[22] G P Dementrsquoev and N A Gladkov Eds Birds of the SovietUnion vol III Israel Program for Scientific TranslationsJerusalem Israel 1969

[23] S Cramp and K E L Simmons Eds Handbook of the Birdsof Europe the Middle East and North Africa vol III OxfordUniversity Press 1983

[24] K M Olsen and H Larsson Gulls of Europe Asia and NorthAmerica Christopher Helm London UK 2003

[25] A Y Kondratyev N M Litvinenko and G W Kaiser EdsSeabirds of the Russian Far East Canadian Wildlife Service2000

[26] F Huettmann Y Artukhin O Gilg and G Humphries ldquoPre-dictions of 27 Arctic pelagic seabird distributions using publicenvironmental variables assessed with colony data a firstdigital IPY and GBIF open access synthesis platformrdquo MarineBiodiversity vol 41 no 1 pp 141ndash179 2011

[27] F Huettmann T Riehl and K Meiszligner ldquoParadise lost alreadyA naturalist interpretation of the pelagic avian and marinemammal detection database of the IceAGE cruise off Icelandand Faroe Islands in fall 2011rdquo Environment Systems andDecisions vol 36 no 1 pp 45ndash61 2016

[28] C R Joiris ldquoSummer at-sea distribution of seabirds andmarinemammals in polar ecosystems a comparison between theEuropean Arctic seas and the Weddell Sea Antarcticardquo Journalof Marine Systems vol 27 no 1ndash3 pp 267ndash276 2000