low frequency noise in advanced mos transistors...2010 ‐11‐19 low frequency noise in advanced...

110
UC Berkeley EE29812 Solid State Technology and Device Seminar 20101119 Low Frequency Noise in Advanced MOS Transistors ChiaYu Chen Department of Electrical Engineering Stanford University

Upload: others

Post on 01-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • UC Berkeley EE298‐12 Solid State Technology and Device Seminar                    

    2010‐11‐19 

    Low Frequency Noise in Advanced MOS Transistors

    Chia‐Yu ChenDepartment of Electrical Engineering

    Stanford University

  • • CMOS scaling

    Motivation

    2

    ItIt’s ok.It’s noisy.

    IEDM 2008 short course11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Low Frequency Noise becomes important!

  • • Low Frequency (LF) noise

    Motivation

    3

    Fabrication

    Device Material s

    IC designer Physicist

    Mathematician

    LF noise

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• Methodology• SiGe

    channel 

    • Size effect• Conclusions

    Outline

    411/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction

    • Methodology• SiGe

    channel

    • Size effect• Conclusions

    Outline

    5

    Why LF noise is important?

    The origin of LF noise

    CMOS scaling

    511/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Why LF noise is important?

    6

    – White 

    noise: 

    thermal 

    noise 

    and shot noise.

    – 1/f 

    noise: 

    certain 

    trap 

    distribution 

    or 

    fluctuation 

    in mobility.

    – G‐R 

    noise:

    trap/de‐trap 

    mechanism; 

    one 

    special 

    case is RTN.

    Low frequency (LF) noise106105104103102

    Sid

    (A2 /H

    z)

    Frequency (Hz)

    • Noise in a MOSFET

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Analog domain

    Why LF noise is important?

    7

    f0

    VCO: phase noise

    – LF noise is up‐converted and causes phase noise.

    – Phase noise limits channel capacity.

    1 10 1001E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    S id

    (uA

    2 /H

    z)

    Frequency (Hz)

    1/f

    Good oxide Up‐convert

    1 10 1001E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    S id

    (uA

    2 /H

    z)

    Frequency (Hz)

    1/f

    Good oxide

    Worse oxide

    Adjacent channel

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Why LF noise is important?

    8

    – LF noise increases with scaling.

    – Noise margin becomes small.

    • Digital domain

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    N. Tega, VLSI symp. 2009, p. 50‐51. 

    SRAM: noise 

    margin

  • • Introduction

    • Methodology• SiGe

    channel

    • Size effect• Conclusions

    Outline

    9

    Why LF noise is important?

    The origin of LF noise

    CMOS scaling

    911/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • The origin of LF noise

    10

    – Conductivity fluctuation.

    – Two 

    schools: 

    number 

    fluctuations 

    (ΔN) 

    and 

    mobility 

    fluctuations (Δμ).

    σ=μeff

    N

    • Two schools

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • ΔN model: one trap

    The origin of LF noise

    11

    A. McWhorter, Semi.Surf. Phys., 1957.

    N+ N+

    G

    Surface effect

    s D

    Random telegraph noise

    Lorentzian

    one trap/de‐trap

    1111/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • ΔN model: a lot of traps

    The origin of LF noise

    12

    A. McWhorter, Semi.Surf. Phys., 1957. Correlated Δμ

    is also induced.

    0 5 10 15

    2.06E-006

    2.07E-006

    I d (A

    )

    Time (s)

    N+ N+

    G

    s D

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • The origin of LF noise

    13

    • ΔN model: a lot of traps

    – Sum of Lorentzians: 1/f noise

    Depth in oxide (um)1e‐3

    Gate (um)       

    F=1Hz

    Channel

    F=1e4Hz

    Channel

    Depth in oxide (um)1e‐3

    Sid(A2 /Hz)

    Frequency (Hz)

    1/f

    SISPAD 2006, Y. LiuGate (um)       

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • ΔN model: Id

    and Vg

    dependence

    The origin of LF noise

    14

    – Id

    : Sid

    /Id2

    α

    (gm

    /Id

    )2. 

    – Vg

    : flat in weak inversion.

    )(2)( RGrSnt

    S id/I d2 (1/Hz)   

    Drain current (A)   0.0 0.5 1.0 1.5

    1E-11

    1E-10

    1E-9

    1E-8

    S id/

    I d2

    (1/H

    z)Gate Voltage (V)

    S id/I d2 (1/Hz)  

    1e‐11

    1e‐10

    1e‐9

    1e‐8

    Gate voltage (V)

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Fix Vd and increase Vg (g m/Id)2 (1/Hz)  

  • • Δμ

    model

    The origin of LF noise

    15

    – Bulk phonon scattering

    – Empirical equation

    N-type Si substrate

    P+ P+

    Source

    Gate

    Drain

    2Id H

    d i

    S qI WLQ f

    T‐ED 1994, F. N. Hooge

    1E-5

    1E-4

    1E-3

    100

    S id

    (uA

    2 /H

    z)

    Frequency (Hz)

    1/f

    1 10

    Phonon Si bulk

    Bulk effect

    Hooge mobility fluc.11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • -0.5 0.0 0.5 1.0 1.5 2.0

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    S id/

    I d2

    (1/H

    z)Gate Voltage (V)

    The origin of LF noise

    16

    • Δμ

    model: Id

    and Vg

    dependence

    )(2)( RGrSnt

    S id/I d2 (1/Hz)   

    Drain current (A)   S id/I d2 (1/Hz)

    1e‐11

    1e‐10

    1e‐9

    1e‐8

    – Id

    : Sid

    /Id2

    α

    1/Id

    – Vg

    : Sid

    /Id2

    increases when Vg

    decreases. 

    Gate voltage (V)

    2Id H

    d i

    S qI WLQ f

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • ΔN or Δμ?

    The origin of LF noise

    17

    – Different trend in Id

    and Vg

    dependence. 

    Fix Vd and increase Vg

    S id/I d2 (A

    2 /Hz)

    Drain current (A)

    G. Ghibaudo, Noise in 

    Devices and Circuits, 2003.

    0.0 0.5 1.0 1.5 2.0

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    S id/

    I d2

    (1/H

    z)Gate Voltage (V)

    S id/I d2 (A

    2 /Hz)

    Gate voltage (V)

    Δμ

    ΔN

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction

    • Methodology• SiGe channel• Size effect• Conclusions

    Outline

    18

    Why LF noise is important?

    The origin of LF noise

    CMOS Scaling

    1811/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • CMOS scaling

    19

    – CMOS scaling: provide new opportunity to optimize LF noise. 

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Size:Larger variability

  • • Introduction• Methodology

    • SiGe channel• Size effect• Conclusions

    Outline

    20

    Overview

    TCAD simulations

    Noise characterization

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Overview 

    21

    Noise characterization

    TCAD simulations

    Explain low frequency noise mechanism

    2111/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• Methodology

    • SiGe channel• Size effect• Conclusions

    Outline

    22

    Overview

    TCAD simulation

    Noise characterization

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • TCAD simulation 

    23

    – Total noise is the sum of ΔN and Δμ.– No correlation.

    Sid_total

    =Sid_ ΔN

    +Sid_ Δμ

    2311/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • TCAD simulation

    24

    • Impedance field method (IMF)

    Vd

    Vg

    Vs

    W. Shockley, QuantumTheory of Atoms, 

    Molecules and Solid State, 

    1966, pp. 537–563.

    Injection 

    current

    Voltage 

    fluct. at 

    drain

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • TCAD simulation

    25

    • Impedance field method (IFM)

    oxide

    Pinch‐off

    DrainSource

    Tride Saturation

    Gate

    IFM: linear No effect

    2511/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • TCAD simulation

    26

    • ΔN model

    – Noise source is inside oxide.– A rate equation to correlate oxide traps and channel 

    carriers and then apply IMF to calculate Sid

    .

    G‐Roxide

    channel drain

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • TCAD simulation

    27

    – Extract parameters from TCAD simulations such as Qi.

    202 )/1( cDn

    202 )/1( cDn

    202 )/1( cDn

    • Δμ

    model

    Extract from TCAD

    ~1e-5 for Si material

    2Id H

    d i

    S qI WLQ f

    IEEE T‐ED 2008, C.‐Y. Chen

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• The origin of LF noise• Methodology

    • SiGe channel• Size effect• Conclusions

    Outline

    28

    Overview

    TCAD simulations

    Noise characterization

    2811/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Noise characterization

    • Basic schematic

    29

    – Offset current removes the DC component at the input.– SR570 is used to drive high impedance loads and input impedance 

    of signal analyzer should be high.

    Offset current

    Signal analyzer

    SR 570

    HP 4156

    A. Blaum, Agilent document, 2000.

    DUT

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Noise characterization

    • Measurement bench 

    30

    SR 570

    Wafer (DUT)

    Drain

    Gate

    Source

    Bulk

    Cascade probe station HP4156

    SR760 FFT spectrum analyzer

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• Methodology• SiGe channel

    • Size effect• Conclusions

    Outline

    31

    Device schematic

    Gate bias

    Body bias

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Si/SiGe/Si p‐HFET

    Device schematic

    32

    – Two 

    channels: 

    SiGe 

    buried 

    channel 

    and 

    parasitic 

    surface 

    channel. 

    L/W=1um/10um oxide thickness=6nm 

    Si/SiGe/Si p-MOSFET

    Source Drain

    Gate

    Bulk

    SiGe buried channel

    Parasitic surface channel

    SiO2

    Body

    Lg=1um

    Devices from PanasonicSi

    SiGe

    Si

    3211/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Advantage

    Device schematic

    33

    – Improve LF noise: (1) longer tunneling distance and (2) smaller  Coulomb interaction. 

    1 10 100 1000 100001E-22

    1E-21

    1E-20

    1E-19

    1E-18

    S id

    (A2 /

    Hz)

    Frequency (Hz)

    Si: TCAD Si: meas. Si/SiGe/Si: TCAD Si/SiGe/Si: meas.

    W/L=10um/1umVd=-0.5V|Vg|-|Vth|=0.3V

    3311/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• Methodology• SiGe channel

    • Size effect• Conclusions

    Outline

    34

    Device schematic

    Gate bias

    Body bias

    3411/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Dual‐channel behavior

    1 10 100 10001E-20

    1E-19

    1E-18

    1E-17

    Sid

    (A2 /

    Hz)

    Frequency (Hz)

    Si: TCAD Si: meas. Si/SiGe/Si: TCAD Si/SiGe/Si: meas.

    W/L=10um/1umVd=-0.5VVov=2V

    Gate bias

    35

    – When buried channel dominant LF noise is reduced.

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.50.000

    0.002

    0.004

    0.006 Si/SiGe/Si p-HMOS

    Surf. charge Buried charge

    Gate voltage (V)

    Cha

    rge

    Den

    sity

    (C/m

    2 )Vd=-0.1V

    1 10 100 1000 100001E-22

    1E-21

    1E-20

    1E-19

    1E-18

    S id

    (A2 /

    Hz)

    Frequency (Hz)

    Si: TCAD Si: meas. Si/SiGe/Si: TCAD Si/SiGe/Si: meas.

    W/L=10um/1umVd=-0.5V|Vg|-|Vth|=0.3V

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Vg 

    dependence

    Gate bias

    36

    -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.51E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    Vd=-0.1V

    Number fluc. Mobility fluc. Total noise Measurements

    S id/

    I d2

    (1/H

    z)

    Gate Voltage (V)

    SiGe p-HMOS

    ΔN

    Δμ

    ΔN

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    – Weak inversion: Δμ– Medium/strong inversion: ΔN

  • 1E-9 1E-8 1E-7 1E-6 1E-5 1E-410-1610-1510-1410-1310-1210-1110-1010-910-810-7

    Drain Currrent (A)

    Sid

    /I d2

    (1/H

    z)

    SiGe p-HMOSVd=-0.1V

    • Id

    dependence

    Gate bias

    37

    ΔN

    Δμ

    – Weak inversion: Δμ– Medium/strong inversion: ΔN

    (gm

    /Id)2

    (V-2

    )

    10-210-1100101102103104105106107

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• Methodology• SiGe channel

    • Size effect• Conclusions

    Outline

    38

    Device schematic

    Gate bias

    Body bias

    3811/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • SiGe p‐HFET

    Body bias

    39

    10 100 1000

    1E-23

    1E-22

    1E-21

    1E-20

    TCAD Vb=-0.4V Vb=-0.2V Vb=0V Vb=0.2V

    SiGe p-HMOS

    Vd=-0.5VVov=-0.3V

    S id(

    A2 /

    Hz)

    Frequency (Hz)

    Vb=-0.4V Vb=-0.2V Vb=0V Vb=0.2V

    Mea.

    – LF noise in SiGe p‐HFET has strong body bias dependence.

    SISPAD 2007, C.‐Y. Chen

    forward

    reverse

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Body bias

    40

    • SiGe p‐HFET

    – Body bias changes carrier distribution in dual channels

    reverseforward-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

    1E13

    1E14

    1E15

    Vd=-0.5V

    Si cap layer SiGe channel

    Vov=-0.3V

    Hol

    e de

    nsity

    (cm

    -2)

    Body bias (V)

    Si/SiGe/Si p-HMOSTCAD simulation

    Surf.Buried

    Surf.Buried

    T‐ED 2008, C.‐Y. Chen11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Body bias

    41

    • SiGe p‐HFET

    T‐ED 2008, C.‐Y. Chen

    – FL noise is mainly from surface channel.

    -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.21E-22

    1E-21

    1E-20

    Vov=-0.3V

    Si cap layer hole density Simulated Sid Measured Sid

    Body bias (V)

    Vd=-0.5V

    1E14

    1E15

    1E16S i

    d (A

    2 /H

    z)Si/SiGe/Si p-HMOS

    Surf

    ace

    carr

    ier d

    ensi

    ty (c

    m-2

    )

    reverseforward

    more noisyless noisy

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Body bias

    42

    • Si p‐FET

    – Si p‐MOS does not show body bias dependence.

    SISPAD 2007, C.‐Y. Chen

    10 100 1000

    1E-21

    1E-20

    1E-19

    TCAD Vb=-0.4V Vb=-0.2V Vb=0V Vb=0.2V

    Vd=-0.5VVov=-0.3V

    Vb=-0.4V Vb=-0.2V Vb=0V Vb=0.2V

    S id

    (A2 /

    Hz)

    Frequency (Hz)

    Si pMOS

    Mea.

    reverse

    forward

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• Methodology• SiGe channel• Size effect

    • Conclusions

    Outline

    43

    Device schematic

    Mechanism

    Gate bias

    4311/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Device schematic

    44

    – Only a few traps are involved.

    – ΔN predicts RTN; Δμ

    shows 1/f noise.

    α

    Cross view Top view

    L/W=40nm/70nm oxide thickness~2.5nm 

    Devices from G‐foundries

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    • Scaled MOSFETs (small gate area)

  • • Introduction• Methodology• SiGe channel• Size effect

    • Conclusions

    Outline

    45

    Device schematic

    Mechanism

    Gate bias

    4511/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Ig‐

    / Id‐RTN

    Mechanism

    N+ N+

    G

    s D

    A few trap/de‐trap

    Id

    Time

    Ig

    Time

    – Two types: Ig‐RTN

    and Id‐RTN.

    4611/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Mechanism

    • Where are traps?

    47

    – Traps should be inside high‐κ

    oxide.

    0.4 0.8 1.2 1.6 2.0 2.4

    120

    160

    200

    240

    280

    320

    Elec

    tron

    mob

    ility

    (cm

    2 /Vs)

    Interfacial layer thickness (nm)

    High-k metal gate nMOSFET(HfO2/TiN)

    SiON

    gatechannel

    xxx

    HfO2

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Et Ef

    Mechanism

    • Trap/de‐trap 

    48

    7.00E-012

    7.20E-012

    7.40E-012

    0 10 20 30

    1.56E-006

    1.58E-006

    1.60E-006

    trapped state

    de-trapped state

    charge de-trap(emission)

    charge trap(capture)

    I g

    (A)

    I d (A

    )

    Time (s)

    – Capture: Vth

    and TAT increase  Id

    and Ig

    – Emission:

    Vth

    and TAT decrease  Id

    and Ig

    Track each other

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Mechanism

    • PBTI and RTN

    49

    – Consistent with RTN results.

    -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.01E-13

    1E-11

    1E-9

    1E-7

    1E-5

    IgI d (A

    ) or

    Ig

    (A)

    Vg (V)

    Before stress Positive stress Negative stress

    Id

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Introduction• Methodology• SiGe channel• Size effect

    • Conclusions

    Outline

    50

    Device schematic

    Mechanism

    Gate bias

    5011/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Ig

    ‐RTN

    Gate bias

    – Vg

    increases: Time in high‐Ig

    state increases.

    EtEf

    51

    5 .2 x 1 0 - 1 15 .6 x 1 0 - 1 16 .0 x 1 0 - 1 16 .4 x 1 0 - 1 1

    3 .2 x 1 0 - 1 1

    3 .6 x 1 0 - 1 1

    0 5 1 0 1 5 2 0 2 51 .6 x 1 0 - 1 1

    1 .8 x 1 0 - 1 1

    2 .0 x 1 0 - 1 1

    Ig (A

    )

    Time (s)

    Vg=1V

    Vg=0.9V

    Vg=0.8V

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Gate bias

    52

    • Id

    ‐RTN: Low Vg 

    – Measurement still shows 1/f noise; Δμ

    model is dominant. 

    0.01 0.1 1 101E-24

    1E-23

    1E-22

    1E-21

    1E-20

    1E-19

    S id

    (A2 /

    Hz)

    Frequency (Hz)

    Vg=0.2VVd=20mVScaled nMOSFETL=50nmW=70nm

    1/f

    150 155 160 165 170

    2.05E-009

    2.10E-009

    2.15E-009

    2.20E-009

    2.25E-009

    2.30E-009

    Id (A

    )

    Time (s)

    Vd=10mV Vg=0.2V

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Gate bias

    53

    • Id

    ‐RTN: High gm bias condition

    0.1 1 101E-20

    1E-19

    1E-18

    1E-17

    1E-16

    1E-15

    S id

    (A2 /

    Hz)

    Frequency (Hz)

    Vd=10mVVg=570mVScaled nMOSFETL=50nmW=70nm

    1/f2

    20 25 30 354.60E-007

    4.65E-007

    4.70E-007

    4.75E-007

    4.80E-007

    I d (A

    )

    Time (s)

    Vd=10mV Vg=570mV

    – RTN and Lorentzian shape are observed

    in high gm region.

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Gate bias

    54

    • Id

    ‐RTN: High Vg

    – 1/f noise is shown in a very scaled MOSFET: Δμ

    is dominant.  

    0.1 1 10

    1E-20

    1E-19

    1E-18

    1E-17

    1E-16

    S id

    (A2 /

    Hz)

    Frequency (Hz)

    Vd=10mVVg=750mVScaled nMOSFETL=50nmW=70nm

    1/f

    0 10 20 30 40

    8.26E-007

    8.28E-007

    8.30E-007

    8.32E-007

    8.34E-007

    8.36E-007

    8.38E-007

    8.40E-007

    8.42E-007

    Vd=10mV Vg=750mV

    Id(A

    )

    Time (s)

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • 55

    – RTN should be considered especially in high gm region.  1/f

    -0.4 0.0 0.4 0.8 1.20.0

    4.0x10-7

    8.0x10-7

    1.2x10-6

    1.6x10-6

    2.0x10-6

    gm

    (1/o

    hm)

    Vg (V)

    Vd=10mVScaled nMOSL/W=50nm/70nm

    1/f

    Δμ

    Gate bias

    RTN

    Δμ

    ΔN

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    • Id

    ‐RTN: summary

  • 56

    – RTN should be considered especially in high gm region.  

    -0.4 0.0 0.4 0.8 1.20.0

    4.0x10-7

    8.0x10-7

    1.2x10-6

    1.6x10-6

    2.0x10-6

    gm

    (1/o

    hm)

    Vg (V)

    Vd=10mVScaled nMOSL/W=50nm/70nm

    Δμ

    Gate bias

    Δμ

    ΔN

    Sid/Id2

    Freq

    1/f

    Freq

    1/f

    Lorentzian

    Freq

    1/f

    Sid/Id2

    Sid/Id2

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    • Id

    ‐RTN: summary

  • • Introduction• The origin of LF noise• Methodology• SiGe channel• Size effect• Conclusions

    Outline

    57

    Summary

    Contributions

    Future work

    5711/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Summary

    58

    Bias SiGe H‐MOS (Lg~1um) Scaled MOS (Lg~40nm)

    Weak inversion Δμ

    model is dominant. Δμ

    model is dominant.

    High gm region (~ Vdd

    /2) ΔN model is important; LF noise is mostly surface 

    effect.  

    ΔN model becomes 

    important; RTN should be 

    considered.

    High Vg

    conditionΔN is dominant in our 

    device, but in general it 

    can be technology 

    dependence.

    Δμ

    model is dominant

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Summary

    59

    The origin of LF noise: (1)

    ΔN model and (2)

    Δμ

    model.

    Methodology:

    TCAD simulations and noise measurements

    SiGe 

    channel: 

    Dual‐channel 

    is 

    important 

    to 

    explain 

    the 

    low 

    frequency noise performance.  

    Size effect: Ig

    ‐RTN is directly related to physical trapping or de‐

    trapping 

    and 

    the 

    Id

    ‐RTN 

    reflects 

    sensitivity 

    to 

    charge 

    trapping 

    as determined by gm

    CMOS scaling: provides a new opportunity for LF noise study. 

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Contributions

    60

    Detailed LF noise mechanisms in SiGe p‐HFET are proposed.

    LF noise mechanisms in scaled MOSFETs are 

    measured 

    and 

    analyzed.

    Other parts: (1) LF noise mechanisms in high‐κ

    MOSFET, (2) 

    LF 

    noise 

    compact 

    model 

    in 

    SiGe 

    p‐HFET, 

    (3) 

    linearity 

    of 

    asymmetric channel doping for LDMOS, (4) linearity in GaN  HEMTs, and (5) asymmetric FET scaling.  

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Future work

    6111/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Rethink “device noise” “distortion” and “reliability”

  • Publications

    11/19/2010 62

    [1]  C.‐Y. Chen, Q. Ran, H.‐J. Cho, A. Kerber, Y. Liu, M.‐R. Lin, and R. W. Dutton, IRPS, 2011.[2]  C.‐Y. Chen, C.‐C. Wang, Y. Ye, Y. Liu, Y. Cao, and R. W. Dutton, SASIMI, 2010.[3]  C.‐Y. Chen, O. Tornblad, R. W. Dutton, IEEE Trans. on Microwave Theory and

    Techniques,  Dec. 2009.

    [4]  C.‐Y. Chen

    and R. W. Dutton, IEEE Design & Test of  Computers, 2009.[5]  C.‐Y. Chen, Y. Liu, J. Kim, R. W. Dutton, SISPAD 2009, Sept. 2009.[6]  C.‐Y. Chen, O. Tornblad, R. W. Dutton, IEEE MTT‐S International Microwave

    Symposium Dig. (IMS), pp. 601‐604, 2009.    

    [7]  C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada,  SASIMI

    2009, Sapporo, Japan, pp. 405‐409, March 2009.

    [8]  C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada, IEEE Trans. Electron Devices, July, 2008.

    [9]  J.

    Kim, C.‐Y.

    Chen

    and R.

    W.

    Dutton, Journal of Computational Electronics, Jan. 2008.[10]  C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada, SASIMI, Sapporo, 

    Japan, pp. 238‐241, Oct. 2007.[11] C.‐Y. Chen, Y. Liu, R. W. Dutton, J. Sato‐Iwanaga, A. Inoue, H. Sorada,

    Workshop on Compact Modeling (WCM) 2007, San Jose, USA, March 2007.

    [12] J. Kim, C.‐Y. Chen, R. W. Dutton,

    SISPAD, Nov. 2007.[13] J. Kim, C.‐Y. Chen, R. W. Dutton, Proc. of 12th International Workshop on 

    Computational  Electronics (IWCE), Oct. 2007.C.‐Y. Chen UCB EE298‐12 Seminar

  • UC Berkeley EE298‐12 Solid State Technology and Device Seminar                    

    2010‐11‐19 

    Backup: Linearity analysis of lateral channel  doping in RF power MOSFETs   

    Chia‐Yu ChenDepartment of Electrical Engineering

    Stanford University

  • Slide 64

    • Introduction

    • Quasi‐1D structure

    • Realistic LDMOS structure

    • Conclusions

    Backup: Outline

  • Slide 65

    ω ω

    Linearity:

    Low distortion is one of the most important concerns for wireless communication systems.

    Analysis of the distortion generated by the device itself has been fairly limited.

    Backup: Introduction (1 of 2)

  • Slide 66

    Harmonic balance device simulations:

    A unique harmonic balance (HB) device simulator with the capability of including external circuitry is used.

    In the HB simulations, variations in device parameters are directly reflected in the final large signal RF performance.

    Backup: Introduction (2 of 2)

  • Slide 67

    0.0 0.1 0.2 0.3 0.4 0.51E16

    1E17

    1E18

    Cha

    nnel

    dop

    ing

    (cm

    -3)

    Lateral location (um)

    uniform 8e16 cm-3

    uniform 2e17 cm-3

    char. length 0.2um char. length 0.3um

    Source DrainGraded channel doping

    Gate

    0.5um gate length, 30nm oxide thickness.

    Avoid 2D-effects.

    Very high source and drain dopings to avoid compensation effects at source and drain junctions.

    4 cases: 2 uniform doping and 2 laterally graded.

    Test circuit consisting of bias feeds and blocking capacitors on input and output.

    Device schematic:

    Backup: Quasi‐1D structure (1 of 3)

  • Slide 68

    1.5 2.0 2.5 3.0 3.5

    0

    Gm

    3/G

    m

    Gate voltage (V)

    uniform 8e16cm-3

    uniform 2e17cm-3 char. length 0.3um char. length 0.2um

    Different gm3/gm magnitudes for different cases. Devices were biased at gm3/gm minima, close to overall best linearity.

    gm3/gm:

    -1.5 -1.0 -0.5 0.0

    -65

    -60

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    IM3d

    Bc

    Log10(Vin)

    uniform 8e16cm-3

    uniform 2e17cm-3

    char. length 0.3um char. length 0.2um

    Freq.=10MHz

    First data point correlates to magnitude of gm3/gm minima.Shorter char. length / lower uniform doping: higher IM3 at low input power lower IM3 at high input power.

    IM3:

    Backup: Quasi‐1D structure (2 of 3)

  • Slide 69

    0.0 0.1 0.2 0.3 0.4 0.5

    0

    1x105

    2x105

    3x105

    4x105

    Late

    ral e

    lect

    rical

    fiel

    d (V

    /cm

    )

    Lateral channel position (um)

    unifrom 8e16cm-3

    uniform 2e17cm-3

    char. length 0.3um char. length 0.2um

    Vg at gm3/gm min.Vd: 2.0V

    Field distribution:

    Graded cases more uniform field.

    Smaller uniform doping more uniform field.

    Uniform lateral field better linearity at higher power.

    Backup: Quasi‐1D structure (3 of 3)

  • Slide 70

    0.4 0.6 0.8

    1E14

    1E15

    1E16

    1E17

    1E18

    1E19

    1E20

    Late

    ral c

    hann

    el d

    opin

    g (c

    m-3

    )

    Lateral channel location (um)

    char. length 0.0525um char. length 0.0625um char. length 0.0725um char. length 0.0925um

    Device schematic (based on Infineon 7th generation design):

    Two different lightly doped drain regions: optimize on-resistance and breakdown voltage.

    Source doping and lightly doped drain kept the same for all cases.

    Four different lateral grading cases in channel, defined through analytical expressions.

    Backup: Realistic LDMOS (1 of 4)

  • Slide 71

    6.0 6.3 6.6 6.9 7.2 7.5-2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Gm

    3/G

    m1

    Gate voltage (V)

    char. length 0.0525um char. length 0.0625um char. length 0.0725um char. length 0.0925um

    gm3/gm:

    Circuitry with internal and external matching and bias.Infineon product PTF210451.

    Bias-point at gm3/gm minima.

    Test circuitry:

    Backup: Realistic LDMOS (2 of 4)

  • Slide 72

    0.0 0.5-60

    -50

    -40

    -30

    IM3d

    Bc

    Log10(Vin)

    char. length 0.0525um char. length 0.0625um char. length 0.0725um char. length 0.0925um

    Freq. = 2.14GHz

    20 25 30 35 40-60

    -50

    -40

    -30

    IM3d

    Bc

    IM1

    char. length 0.0525um char. length 0.0625um char. length 0.0725um char. length 0.0925um

    Freq. = 2.14GHz

    IM3 at 2.14GHz:

    Effect of graded doping is significant the nonlinearities in capacitances will not swamp the studied effects at high frequency.

    More graded channel profile shows better linearity in the intermediate power regime.

    Backup: Realistic LDMOS (3 of 4)

  • Slide 73

    20 25 30 35-60

    -50

    -40

    -30

    IM3d

    Bc

    IM1

    char. 0.0525um; shift 50mv char. 0.0925um; shift -30mv char. 0.0525um; shift 0mv char. 0.0925um; shift -100mv

    Freq. = 2.14GHz

    Vgs shifts from gm3/gm minima

    IM3 change is quite sensitive.

    Different device designs give different IM3 that cannot be compensated for by simply changing Vgs bias (Idq setting).

    Vgs shifts from gm3/gm:

    Backup: Realistic LDMOS (4 of 4)

  • Slide 74

    • A graded channel has better linearity for intermediate to  high powers. By contrast, for increased back‐off, the 

    situation is reversed. 

    • Nonlinearities in intrinsic capacitances will not swamp the  effect of graded channel doping at high frequency. 

    • The effect of graded channel doping cannot be fully  compensated for by adjusting the Idq bias point.

    • The analysis lays ground‐work for RF device optimization for  improved linearity.

    Backup: Conclusions

  • Slide 75

    0 1 2 3 41E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    unifrom 8e16cm-3

    unifrom 2e17cm-3

    char. length 0.3um char. length 0.2um

    Gate voltage (V)

    Dra

    in c

    urre

    nt, l

    og s

    cale

    (A/u

    m)

    0.0

    2.0x10-54.0x10-56.0x10-58.0x10-51.0x10-41.2x10-41.4x10-41.6x10-41.8x10-42.0x10-4

    Dra

    in c

    urre

    nt, l

    inea

    r sca

    le (A

    /um

    )

    Vd=2.0V

    1.5 2.0 2.5 3.0 3.5

    0

    Gm

    3/G

    m

    Gate voltage (V)

    uniform 8e16cm-3

    uniform 2e17cm-3 char. length 0.3um char. length 0.2um

    Clearly different gm3/gm magnitudes for different cases. Shorter characteristic length and lower doping give larger gm3/gm magnitudes.Devices were biased at gm3/gm minima, close to overall best linearity for many applications.

    Quasi-1D structure: IdVgs

    Backup: Additional information (1 of 4)

  • Slide 76

    Quasi-1D structure: velocity saturation:

    2.6 2.8 3.0 3.2 3.4 3.6-2.0

    -1.5

    -1.0

    -0.5

    0.0

    Gm

    3/G

    m

    Gate voltage (V)

    w/ Vsat model w/o Vsat model

    Uniform doping 2e17cm-3

    -25 -20 -15 -10 -5 0 5 10-80

    -70

    -60

    -50

    -40

    -30

    IM3d

    Bc

    IM1

    w/ Vsat model w/o Vsat model

    Uniform doping 2e17cm-3

    When Vsat model is not included: 1. gm3/gm shifts to a smaller magnitude. 2. IM3 is much lower, both initially and for high powers.

    Backup: Additional information (2 of 4)

  • Slide 77

    -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

    -65

    -60

    -55

    -50

    -45

    -40

    -35

    -30

    IM3d

    Bc

    Log10(Vin)

    char. length 0.0525um char. length 0.0625um char. length 0.0725um char. length 0.0925um

    Freq.=10MHz

    Realistic LDMOS: IM3 at 10MHz

    -10 -5 0 5 10 15 20

    -65

    -60

    -55

    -50

    -45

    -40

    -35

    -30Freq.=10MHz

    IM3d

    Bc

    IM1

    char. length 0.0525um char. length 0.0625um char. length 0.0725um char. length 0.0925um

    First, separate nonlinearities in static IV from capacitive effects

    low freq. 10MHz.More graded channel profile shows better linearity in intermediate power regime.

    Backup: Additional information (3 of 4)

  • Slide 78

    At high power, the compressing non-linearity along the load-line will dominate; the curves merge. Lower Vgs two sweet-spots appear.

    Realistic LDMOS: two sweet spots

    -10 -5 0 5 10 15 20-90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    IM3d

    Bc

    IM1

    Shift -50mV from gm3/gm min. gm3/gm min.

    Ids (A)

    Vds (V)

    Backup: Additional information (4 of 4)

  • 11/23/2010 GaN HEMT project 79

    Lg=0.5um

    GaN HEMT structureBackup: GaN HEMT structure

  • -7 -6 -5 -4 -3 -2 -1 0 10.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    Id (A

    /um

    )

    Vg (V)

    w/o Hydrodynamics w/ Hydrodynamics

    11/23/2010 80GaN HEMT project

    Backup: Id‐Vgs, GaN HEMT

    TCAD simulation results

    -5 -4 -3 -2 -1 0 11E-7

    1E-6

    1E-5

    1E-4

    1E-3

    Id (A

    /um

    )

    Vg (V)

    w/o Hydrodynamics w/ Hydrodynamics

  • 11/23/2010 81GaN HEMT project

    -5 -4 -3 -2

    -20

    0

    20

    40

    G

    m3/

    Gm

    1

    Vg (V)

    w/o Hydrodynamics w/ Hydrodynamics

    Gm3/Gm1 min.:Vg=-4.9047V

    Backup: Gm3/Gm1, GaN HEMT

  • 11/23/2010 GaN HEMT project 82

    0.01 0.11E-16

    1E-14

    1E-12

    1E-10

    1E-8

    Id(A

    )

    Vg(V)

    Id1 at f1 Id3 at 2f1-f2

    GaN HEMTVd=28VVg=-4.91V (Gm3/Gm1 min.)

    Backup: Linearity, GaN HEMT

  • • ΔN model

    Backup: The origin of LF noise

    8383

    ΔN

    one trap  RTN

    a lot of traps  1/f noise

    time:

    freq.:

    time:

    freq.:

    Sid/Id2

    Freq

    Id

    Time

    Sid/Id2

    Freq

    Id

    Time

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Backup: Statistics

    • Statistical results

    84

    About 

    12%

    MOSFETs 

    show 

    RTN: 

    9%

    Ig‐RTN, 

    2%

    Id

    ‐RTN, 

    and 1%

    Ig

    ‐/Id

    ‐RTN. 

    The 

    statistical 

    results 

    are 

    from 

    1000

    devices 

    with 

    the 

    same 

    technology and structures.

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • • Ig

    ‐RTN

    Backup: Gate bias

    – Vg

    increases: Time in high‐Ig

    state increases.85

    0.6 0.7 0.8 0.9 1.0 1.1 1.20.01

    0.1

    1

    10

    Vg (V)

    Device 1 Device 2 Device 3 Device 4

    5 .2 x 1 0 - 1 15 .6 x 1 0 - 1 16 .0 x 1 0 - 1 16 .4 x 1 0 - 1 1

    3 .2 x 1 0 - 1 1

    3 .6 x 1 0 - 1 1

    0 5 1 0 1 5 2 0 2 51 .6 x 1 0 - 1 1

    1 .8 x 1 0 - 1 1

    2 .0 x 1 0 - 1 1

    Ig (A

    )

    Time (s)

    Vg=1V

    Vg=0.9V

    Vg=0.8V

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Backup: TCAD

    86

    • Id

    ‐RTN: High gm bias condition

    – TCAD simulations confirm the origin of RTN can be from one‐ trap/de‐trap. 

    Trap/de-trap

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Backup: Motivation

    11/09/2010 87C.‐Y. Chen   UCB seminar

    Device Noise

    Bio‐implant systemIntegrated  sensors

    Portable electronics

    Ultra‐low power circuits

    Transistor reliability

    Bio/silicon interfaces

    SRAM yield

    Noise: 

    key 

    issue 

    for 

    the 

    future 

    electronic 

    system  development. 

  • R. Jayaraman et al. IEEE T-ED, vol.36, no. 9, pp. 1773-1782, Sept., 1989.

    Ener

    gy (e

    V)

    Space (um)

    H. Wong et al. IEEE T-ED, vol.37 no. 7, pp. 1743-1749, July, 1990.

    L/H H/L

    U-shape

    – Space: from gate to Si can be low-high or high-low.

    – Energy: distribution is a U-shape in log-scale.

    8811/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Trap distribution (1 of 2)

  • – Vg dependence shows flat region in weak inversion regime.

    – In the U-shape distribution Vg dependence is less sensitive compared with uniform distribution.

    Y. Liu et al. SISPAD 2006, pp. 99-102, 2006.K. K. Hung et al. IEEE T-ED, vol.37, no. 5, pp. 1323-1333, May, 1990.

    1/Vov2flat

    8911/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Trap distribution (2 of 2)• Vg

    dependence 

  • – Physical model

    – Impedance field method (IMF)

    devicetheinratcurrentInjected

    electrodekthatnfluctuatioCurrentrAk

    dvrSrAS sin )(2

    [5] A. McWhorter, Semiconductor Surface Physics, PA, Univ. Pennsylvania Press,1957, pp. 207-208.[6] W. Shockley et al., Quantum Theory of Atoms, Molecules and Solid State, NY: Academic, 1966, pp. 537-563.

    9011/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Numerical method (1 of 2)

  • • Hooge mobility fluctuation (Δμ

    model)– Bulk phonon scattering

    – Empirical equation

    – Numerical approach: Post process

    Hooge model is empirical the post process with simulated parameters/reasonable αH is used.

    [7] F. N. Hooge, IEEE T-ED, vol.41, no. 11, pp. 1926-1935, Nov., 1994.9111/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Numerical method (2 of 2)

  • The fluctuating oxide charge density △Qox is equivalent to a variation in the flat-band voltage

    The fluctuation in the drain current yields

    The first term in the parentheses is due to fluctuating number of inversion carriers and the second term to correlated mobility fluctuations.

    Fluctuation of Num. Fluctuation of correlated mobility

    9211/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Unified model (1 of 4)

  • The power spectral density of the flat-band voltage fluctuations is calculated by summing the contributions from all traps in the gate oxide.

    Fermi‐Dirac distribution

    x

    z

    y

    Semiconductor

    9311/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Unified model (2 of 4)

  • The product f(E)(1-f(E)) is sharply peaked around the quasi- Fermi level

    If the Fermi-level is far above or below the trap level, the trap will be filled or empty.

    All empty

    All filled

    Fluctuations

    f(E) 1-f(E)

    9411/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Unified model (3 of 4)

  • Lorentzian spectrum

    The trapping time constant (quantum tunneling)

    Tunneling attenuation length

    9511/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Unified model (4 of 4)

  • • Numerical approach  

    j

    SiHigh-κ

    Different affinities and tunneling are considered

    SiON

    f=1Hz

    f=1e4Hz

    1/γ

    SiO2 : 1×10-8 cm

    HfO2 : 2.1×10-8 cm[9] Y. Liu et al. SISPAD 2006, pp. 99-102, 2006.

    11/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: High‐κ

  • • Scaling trend: general trend

    – SiO2 trap density is much smaller than that of HfO2 .

    – 1/f noise increases much faster than the thermal noise when size scales down.

    9711/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Noise scaling (1 of 2)

  • • Scaling trend: traps at gate edge

    – High trap density in the gate edge region.

    – In the scaled devices traps in the gate edge becomes important so Sid /Id2 increases significantly.

    [14] Y. Yasuda et al., IEEE T-ED, vol.55, no. 1, pp. 417-422, Jan., 2008.9811/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Noise scaling (2 of 2)

  • – Halo doping profiles suppress the short channel effect.

    – The same amount of electrons greater Δ

    Id in halo.

    – Reduced inversion carrier density in the halo regions.

    [8] Y. Liu et al. SISPAD 2006, pp. 99-102, 2006.9911/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Halo doping

  • – The lowering of the 1/f noise: observed in the strong inversion regime.

    – Traps and charges at the gate dielectric interface: better screened by a metal gatealleviate remote phonon scattering.

    -

    +

    +

    -

    [15] E. Simoen et al., IEEE T-ED, vol.40, pp. 2054-2059, 1993.

    Poly SiGeHigh-κ

    (TiN)

    10011/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Metal gate

  • • Dual channel behavior

    [16] C.-Y. Chen et al., IEEE T-ED, vol.55, no.7, pp. 1741-1748, 2008.

    -2.0 -1.5 -1.0 -0.5 0.0

    1E-23

    1E-22

    1E-21

    1E-20

    S id

    (A2 /

    Hz)

    Gate Voltage (V)

    w/o layer dependence This work Measurements

    Vd= -0.1VSiGe p-HMOS

    n3-D

    – Surface and buried channels have different Coulomb interactions.

    – Both channels also have different material quality.

    10111/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: SiGe FET (1 of 2)

  • • Compact model

    – Physics based compact model can simulate dual-channel behavior for SiGe FETs.

    Vg

    Vth_buried

    Vth_surf

    SiSiGe

    SiSiGe

    Thin body MOS

    SiSi

    SiGe

    Si

    SiGe

    Surface channel Buried channelCase 1: low Vg

    Case 2: Medium Vg

    Case 3: High VgVth_surf

    -2.0 -1.5 -1.0 -0.5 0.0 0.51E-12

    1E-11

    1E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    S id/

    I d2

    (1/H

    z)

    Vg(V)

    TCAD Proposed model Measurements

    SiGe p-HMOSVd=-0.1V

    107 108 109

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    Sid

    (A2 /

    Hz)

    F requency (Hz)

    SiG e p-HM O S Si p-M O S

    10211/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: SiGe FET (2 of 2)

  • • Exponential tail in RTN

    – The slope of Vth instability shows an exponential tail.

    – The slope increases with technology scaling.[18] A. Ghetti et al., IEEE T-ED, vol.56, no.8, pp. 1746-1752, 2009.

    10311/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Random Telegraph Noise (1 of 2)

  • • Body bias dependence: explain

    – RTN: channel/gate dielectrics system in dynamic equilibrium.

    – NBTI relaxation: perturbed system returning to the equilibrium.

    10411/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Random Telegraph Noise (2 of 2)

  • • Switched MOS

    – Large switch in gate can reduce 1/f noise.[19] A. P. Wel et al., IEEE JSSC, vol.42, no.3, pp. 540-550, 2007.

    10511/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: Switched bias

  • • RTNBackup: Temperature effect

    1/f noise

    [20] M. J. Deen et al. AIR conf. vol. 282, pp. 165-188, 1992.10611/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

  • Noise floor ~ 10-10Amps/rootHz Bandwidth ~ 1MHz

    – The sensitivity is 2uA/V– High bandwidth mode is used.

    SR 570 settings

    10711/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: 1/f noise characterization (1 of 4)

  • SR 760 settings

    – Impedance ~ 1MΩ, 15pF– Bandwidth: DC to 100kHz

    – The bandwidth of noise measurement is limited by SR760.

    – Good for very low frequency measurements.

    10811/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: 1/f noise characterization (2 of 4)

  • – Impedance ~ 1MΩ.– Bandwidth: 5Hz to 500MHz

    – Convert high impedance to 50 Ω.

    HP4396A

    Active probe HP41800A

    – Impedance ~ 50Ω.– Bandwidth: 2Hz to 1.8GHz

    – Easy interface and high resolution.

    10911/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: 1/f noise characterization (3 of 4)

  • On‐package measurements

    11011/19/2010 C.‐Y. Chen UCB EE298‐12 Seminar

    Backup: 1/f noise characterization (4 of 4)

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Slide Number 58Slide Number 59Slide Number 60Slide Number 61Slide Number 62Slide Number 63Slide Number 64Slide Number 65Slide Number 66Slide Number 67Slide Number 68Slide Number 69Slide Number 70Slide Number 71Slide Number 72Slide Number 73Slide Number 74Slide Number 75Slide Number 76Slide Number 77Slide Number 78Slide Number 79Slide Number 80Slide Number 81Slide Number 82Slide Number 83Slide Number 84Slide Number 85Slide Number 86Slide Number 87Slide Number 88Slide Number 89Slide Number 90Slide Number 91Slide Number 92Slide Number 93Slide Number 94Slide Number 95Slide Number 96Slide Number 97Slide Number 98Slide Number 99Slide Number 100Slide Number 101Slide Number 102Slide Number 103Slide Number 104Slide Number 105Slide Number 106Slide Number 107Slide Number 108Slide Number 109Slide Number 110