lower macquarie river airborne electromagnetic (aem) mapping...

145
Lower Macquarie River Airborne Electromagnetic (AEM) Mapping Survey Acquisition and Processing Report for Commonwealth of Australia Represented by and acting through the Department of Agriculture, Fisheries and Forestry, Bureau of Rural Sciences (Commonwealth) Prepared by : M. Noteboom ………………………….. L. Stenning ………………………….. Authorised for release by : ………………………….. ………………………….. Survey flown: December 2006 – April 2007 by Fugro Airborne Surveys 65 Brockway Road, Floreat. WA 6014, Australia Tel: (61-8) 9273 6400 Fax: (61-8) 9273 6466 FAS JOB # 1835

Upload: others

Post on 07-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Airborne

Electromagnetic (AEM) Mapping Survey

Acquisition and Processing Report

for

Commonwealth of Australia Represented by and acting through the Department of Agriculture, Fisheries and

Forestry, Bureau of Rural Sciences (Commonwealth)

Prepared by : M. Noteboom ………………………….. L. Stenning ………………………….. Authorised for release by : ………………………….. …………………………..

Survey flown: December 2006 – April 2007

by

Fugro Airborne Surveys 65 Brockway Road, Floreat. WA 6014, Australia Tel: (61-8) 9273 6400 Fax: (61-8) 9273 6466

FAS JOB # 1835

Page 2: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 2

CONTENTS

SURVEY OPERATIONS AND LOGISTICS ............................................................................................ 4 1.1 INTRODUCTION ............................................................................................................................ 4 1.2 SURVEY BASE ............................................................................................................................. 4 1.3 SURVEY PERSONNEL ................................................................................................................... 4 1.4 AREA MAP .................................................................................................................................. 5

SURVEY SPECIFICATIONS AND PARAMETERS ............................................................................... 6 1.5 AREA CO-ORDINATES .................................................................................................................. 6 1.6 SURVEY AREA PARAMETERS ....................................................................................................... 7 1.7 JOB SAFETY PLAN ...................................................................................................................... 8

2. AIRCRAFT EQUIPMENT AND SPECIFICATIONS ........................................................................ 9 2.1 AIRCRAFT ................................................................................................................................... 9 2.2 TEMPEST SYSTEM SPECIFICATIONS .......................................................................................... 9

2.2.1 EM Receiver and Logging Computer .............................................................................. 10 2.2.2 TEMPEST Transmitter ..................................................................................................... 10 2.2.3 TEMPEST 3-Axis Towed Bird Assembly ......................................................................... 10

2.3 PDAS 1000 SURVEY COMPUTER .............................................................................................. 10 2.3.1 Caesium Vapour Magnetometer Sensor ......................................................................... 11 2.3.2 Magnetometer Processor Board ...................................................................................... 11 2.3.3 Fluxgate Magnetometer ................................................................................................... 11 2.3.4 GPS Receiver .................................................................................................................. 11 2.3.5 Differential GPS Demodulator ......................................................................................... 11

2.4 NAVIGATION SYSTEM ................................................................................................................ 11 2.5 ALTIMETER SYSTEM .................................................................................................................. 12

2.5.1 Radar Altimeter ................................................................................................................ 12 2.5.2 Laser Altimeter ................................................................................................................. 12 2.5.3 Barometric Altimeter ........................................................................................................ 12

2.6 VIDEO TRACKING SYSTEM ......................................................................................................... 12 2.7 DATA RECORDED BY THE AIRBORNE ACQUISITION EQUIPMENT ................................................... 12

3. GROUND DATA ACQUISITION EQUIPMENT AND SPECIFICATIONS ..................................... 13 3.1 MAGNETIC BASE STATION ......................................................................................................... 13 3.2 GPS BASE STATION ................................................................................................................. 13

4. EM AND OTHER CALIBRATIONS AND MONITORING .............................................................. 14 4.1 PRE-FLIGHT BAROMETER CALIBRATION: LINE C60FF ................................................................ 14 4.2 PRE/POST-FLIGHT TRANSMITTER-OFF: LINES C9000, 9006 ....................................................... 14 4.3 PRE/POST-FLIGHT NOISE ADDITIVE: LINES C9001, 9004 ........................................................... 14 4.4 PRE/POST-FLIGHT ZERO: LINE 70FF, 71FF............................................................................... 14 4.5 PRE-FLIGHT SWOOPS: LINE C9003 ........................................................................................... 14 4.6 POST-FLIGHT BAROMETER CALIBRATION: LINE C61FF .............................................................. 14 4.7 DYNAMIC MAGNETOMETER COMPENSATION ............................................................................... 14 4.8 PARALLAX CHECKS................................................................................................................... 15 4.9 RADAR ALTIMETER CALIBRATION .............................................................................................. 15 4.10 LASER ALTIMETER CALIBRATION ............................................................................................... 16 4.11 HEADING ERROR CHECKS ......................................................................................................... 18 4.12 REPEAT POINT GPS CHECK ...................................................................................................... 18

5. DATA PROCESSING .................................................................................................................... 24 5.1 FIELD DATA PROCESSING.......................................................................................................... 24

5.1.1 Quality Control Specifications .......................................................................................... 24 5.1.2 In-Field Data Processing ................................................................................................. 27

5.2 FINAL DATA PROCESSING ......................................................................................................... 27 5.2.1 Flight Path Recovery ....................................................................................................... 27 5.2.2 Magnetics......................................................................................................................... 27 5.2.3 Altimeters ......................................................................................................................... 29 5.2.4 Derived Ground Elevation ................................................................................................ 29 5.2.5 Electromagnetic Data Processing ................................................................................... 30 5.2.6 Conductivity Depth Images (CDI) .................................................................................... 34

Page 3: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 3

5.2.7 System Specifications for Modelling TEMPEST Data ..................................................... 36 5.2.8 Delivered Products .......................................................................................................... 37

5.3 DATA ANALYSIS AND COMPARISONS ......................................................................................... 38 5.3.1 Perpendicular line paths .................................................................................................. 38 5.3.2 Multiple aircraft ................................................................................................................ 41

REFERENCES ...................................................................................................................................... 43

APPENDIX I – WEEKLY ACQUISITION REPORTS VH-WGT ............................................................ 44

APPENDIX II – WEEKLY ACQUISITION REPORTS VH-TEM ............................................................ 60

APPENDIX III – FLIGHT SUMMARY (LINE LISTING) ........................................................................ 68

APPENDIX IV – PRE- AND POST-FLIGHT ZERO STATISTICS ........................................................ 98

APPENDIX V – LOCATED DATA FORMAT ...................................................................................... 100

APPENDIX VI – STANDBY DAYS ..................................................................................................... 137

APPENDIX VII – LIST OF ALL SUPPLIED DATA AND PRODUCTS............................................... 138

APPENDIX VIII – EM REPEAT LINE AND SEISMIC / BOREHOLE LINE CDIS .............................. 139

Page 4: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 4

SURVEY OPERATIONS AND LOGISTICS 1.1 Introduction Between the 14th of December 2006 and the 19th of April 2007, Fugro Airborne Surveys Pty. Ltd., (FAS) undertook an airborne TEMPEST electromagnetic and magnetic survey for the Commonwealth of Australia, over the Lower Macquarie River Project area in New South Wales. The survey was flown over two areas with total coverage of the survey amounting to 35,189 line kilometres flown in 118 flights. The survey was flown using a Casa C212-200 Turbo Prop aircraft, registration VH-TEM, and a Shorts Skyvan SC7 aircraft, registration VH-WGT, both owned and operated by FAS. This report summarises the procedures and equipment used by FAS in the acquisition, verification and processing of the airborne geophysical data. 1.2 Survey Base The survey was based out of Dubbo and Coonamble, New South Wales. The survey aircraft were operated from the Dubbo and Coonamble airports with the aircraft fuel available on site. Temporary offices were set up in rooms at the Tallarook Motor Inn, Dubbo, and the Castlereagh Motel, Coonamble, from where all survey operations were run and the post-flight data verification was performed. 1.3 Survey Personnel The following personnel were involved in this project: Project Supervision - Acquisition Bart Anderson - Processing Matthew Owers, Kathlene Oliver Pilot/s Grant Hamilton Joshua Cox Mark Harradence Mick Young Peter Hiskins Til Ribarich Tim Haldane System Operator/s Adam Ellis Danial Green Glendon Turner Luke Young Michael Wirski Scott Miller Field Data Processing Martyn Allen Kah Tho Lee Matthew Lawrence Matthew Noteboom Nadir Halim Stephen Carter Office Data Processing Matthew Noteboom Glenn Gooch

Page 5: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 5

1.4 Area Map

Page 6: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 6

SURVEY SPECIFICATIONS AND PARAMETERS 1.5 Area Co-ordinates The survey area was located within Universal Transverse Mercator (UTM) Zone 55S, Central Meridian = 147º E Note - Co-ordinates in Geocentric Datum of Australia 1994 (GDA94), Map Grid of Australia zone 55 (MGA55)

Coordinates of Survey Area S1 (Southern Survey Area).

Vertex Easting (m)

Northing (m) Vertex Easting

(m) Northing

(m) 1 558900 6411900 8 624900 6426300 2 558900 6451800 9 619500 6426300 3 624900 6451800 10 619500 6435900 4 624900 6444000 11 613800 6435900 5 639000 6444000 12 613800 6426300 6 639000 6431100 13 612600 6426300 7 624900 6431100 14 612600 6411900

Coordinates of the polygon that encloses Survey Areas N1, N2, N3, L1, L2, L3, L4, L5 and L6 i.e. the complete area to be flown with east-west lines (Northern Survey Area).

Vertex Easting (m)

Northing (m) Vertex Easting

(m) Northing

(m) 1 499200 6637200 16 503100 6517200 2 581100 6637200 17 503100 6523500 3 581100 6567437 18 554672 6523500 4 597855 6504531 19 543300 6561106 5 624900 6477900 20 543300 6565200 6 624900 6451200 21 505200 6565200 7 503100 6451200 22 505200 6570000 8 503100 6462000 23 543300 6570000 9 558900 6462000 24 543300 6610200 10 558900 6489000 25 505200 6610200 11 503100 6489000 26 505200 6616800 12 503100 6500700 27 543300 6616800 13 558900 6500700 28 543300 6626400 14 558900 6509516 29 499200 6626400 15 556550 6517200

Coordinates of Survey Area N1, L1, L2 and L3 (300m/900m spacing)

Vertex Easting (m)

Northing (m) Vertex Easting

(m) Northing

(m) 1 581100 6567437 10 503100 6500700 2 597855 6504531 11 558900 6500700 3 624900 6477900 12 558900 6509516 4 624900 6451200 13 556550 6517200 5 503100 6451200 14 503100 6517200 6 503100 6462000 15 503100 6523500 7 558900 6462000 16 554672 6523500 8 558900 6489000 17 544239 6558000 9 503100 6489000 18 583614 6558000

Page 7: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 7

Coordinates of Survey Area N2, L4 and L5 (600m spacing)

Vertex Easting (m)

Northing (m) Vertex Easting

(m) Northing

(m) 1 543300 6561106 8 505200 6616800 2 543300 6565200 9 543300 6616800 3 505200 6565200 10 543300 6626400 4 505200 6570000 11 581100 6626400 5 543300 6570000 12 581100 6567437 6 543300 6610200 13 583614 6558000 7 505200 6610200 14 544239 6558000

Coordinates of Survey Area N3 and L6 (300m/900m spacing)

Vertex Easting (m)

Northing (m)

1 499200 6637200 2 581100 6637200 3 581100 6626400 4 499200 6626400

Line Coordinates for Seismic and Borehole Lines

Line # Surveyed Line # Easting Northing Easting Northing

100 81090 613347 6434698 610966 6424986 200 82090 601924 6428719 603589 6438579 300 93090 596009 6435176 605968 6434261

400 84162, 84260 603860 6436700 610600 6429300

500 85010, 85161 606908 6454490 616415 6451390

Line Coordinates for Repeat Calibration Lines

Line # Surveyed Line #

Easting Northing Easting Northing

600 86xxa 627600 6439000 627600 6444000 700 87xxa 589001 6519000 594001 6519000 800 88xxa 576100 6570000 581100 6570000 900 89xxa 576100 6604800 581100 6604800

Note – “xx” is flight number in which repeat line was flown, “a” is attempt number See Appendix III for details.

1.6 Survey Area Parameters Coverage specifications for Survey Area S1

Line spacing 300 metres Tie line spacing N/A Line direction 0° grid (constant Easting) Tie line direction N/A Terrain clearance 116m Approximate line kilometres 8,661 kilometres Project number 1140

Page 8: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 8

Coverage specifications for Survey Areas N1, N2, N3, L1, L2, L3, L4, L5 AND L6 Line spacing 300m for Survey Areas N1 and N3

600m for Survey Areas N2, L4 and L5 900m for Survey Areas L1, L2, L3 and L6

Tie line spacing N/A Line direction 90° grid (constant Northing) Tie line direction N/A Terrain clearance 116m Approximate line kilometres 26,529 kilometres Project number 1140

Coverage specifications for Seismic/Borehole/Calibration lines

Line spacing N/A Tie line spacing N/A Line direction Multiple headings Tie line direction N/A Terrain clearance 116m Approximate distance (planned) 70 km Line kilometres flown 235.5 km Project number 1140

Job Number - 1835 Survey Company - Fugro Airborne Surveys Pty Ltd Date Flown - 14th December 2006 – 19th April 2007 Client - Commonwealth of Australia EM System - 25 Hz TEMPEST Navigation - Real-time differential GPS Datum - GDA94 (MGA 55) Nominal Terrain Clearance - 116 m 1.7 Job Safety Plan A Job Safety Plan was prepared and implemented in accordance with the Fugro Airborne Surveys Occupational Safety & Health Management System.

Page 9: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 9

2. AIRCRAFT EQUIPMENT AND SPECIFICATIONS 2.1 Aircraft Manufacturer - CASA Model - C212-200 Turbo Prop Registration - VH-TEM Ownership - Fugro Airborne Surveys Pty Ltd System number 1 (system flag in delivered dataset) Manufacturer - Shorts SKYVAN Model - SC7 Registration - VH-WGT Ownership - Fugro Airborne Surveys Pty Ltd System number 2 (system flag in delivered dataset)

Lines flown with VH-WGT are coloured blue; lines flown with VH-TEM are coloured red.

2.2 TEMPEST System Specifications Specifications of the TEMPEST Airborne EM System (Lane et al., 2000) are: • Base frequency - 25 Hz • Transmitter area - 221 m2 (TEM) 186 m2 (WGT) • Transmitter turns - 1 • Waveform - Square • Duty cycle - 50% • Transmitter pulse width - 10 ms • Transmitter off-time - 10 ms • Peak current - 280 A (TEM) 300 A (WGT) • Peak moment - 61880 Am2 (TEM) 55800 Am2 (WGT) • Average moment - 30940 Am2 (TEM) 27900 Am2 (WGT)

Page 10: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 10

• Sample rate - 75 kHz on X and Z • Sample interval - 13.333 microseconds • Samples per half-cycle - 1500 • System bandwidth - 25 Hz to 37.5 kHz • Tx Loop Flying height nominal - 116 m (subject to safety considerations) • Tx Loop Flying height average - 116.0 (TEM) 118.2 (WGT) • EM sensor - Towed bird with 3 component dB/dt coils • Tx-Rx horizontal separation average- -120.7 (TEM) -114.9 (WGT) • Tx-Rx vertical separation average - -39.4 (TEM) -45.2 (WGT) • Tx-Rx horizontal separation standard- -115 m (geometry corrected standard) • Tx-Rx vertical separation standard - -45 m (geometry corrected standard) • Stacked data output interval - 200 ms (~12 m) • Number of output windows - 15 • Window centre times - 13 µs to 16.2 ms • Magnetometer - Stinger-mounted caesium vapour • Magnetometer compensation - Fully digital • Magnetometer output interval - 200 ms (~12 m) • Magnetometer resolution - 0.001 nT • Typical noise level - 0.2 nT • GPS cycle rate - 1 second

2.2.1 EM Receiver and Logging Computer The EM receiver computer is a Picodas PDAS-1000 data acquisition system. The EM receiver computer executes a proprietary program for system control, timing, data acquisition and recording. Control, triggering and timing is provided to the TEMPEST transmitter and Digital Signal Processing (DSP) boards by the timing card, which ensures that all waveform generation and sampling is accomplished with high accuracy. The timing card is synchronised to the Global Positioning System (GPS) through the use of the Pulse Per Second (PPS) output from the system GPS card. Synchronisation is also provided to the magnetometer processor card for the purpose of accurate magnetic sampling with respect to the EM transmitter waveform. The EM receiver computer displays information on the main screen during system calibrations and survey line acquisition to enable the airborne operator to assess the data quality and performance of the system.

2.2.2 TEMPEST Transmitter The transmitted waveform is a square wave of alternating polarity, which is triggered directly from the EM receiver computer. The nominal transmitter base frequency was 25 Hz with a pulse width of 10ms (50 % duty cycle). Loop current waveform monitoring is provided by a current transformer located directly in the loop current path to allow for full logging of the waveform shape and amplitude, which is sampled by the EM receiver.

2.2.3 TEMPEST 3-Axis Towed Bird Assembly The TEMPEST 3-axis towed bird assembly provides accurate low noise sampling of the X (horizontal in line), Y (horizontal transverse) and Z (vertical) components of the electromagnetic field. Note that the Y component data were sampled at a lower rate and were not processed or delivered in the dataset for this survey. The receiver coils measure the time rate of change of the magnetic field (dB/dt). Signals from each axis are transferred to the aircraft through a tow cable specifically designed for its electrical and mechanical properties.

2.3 PDAS 1000 Survey Computer The SURVEY computer is a PICODAS PDAS 1000 data acquisition system. The SURVEY computer executes a proprietary program for acquisition and recording of location, magnetic and ancillary data.

Page 11: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 11

Data are presented both numerically and graphically in real time on the Video Graphics Array (VGA) Liquid Crystal Display (LCD) display, which provides an on-line display capability. The operator may alter the sensitivity of the displays on-line to assist in quality control. Selected EM data are transferred from the EM receiver computer to the SURVEY computer for quality control (QC) display.

2.3.1 Caesium Vapour Magnetometer Sensor A caesium vapour magnetometer sensor is utilised on the aircraft and consists of the sensor head, cable and the sensor electronics. The sensor head is housed at the end of a composite material tail stinger.

2.3.2 Magnetometer Processor Board A Picodas magnetometer processor board is used for de-coupling and processing the Larmor frequency output of the magnetometer sensor. The processor board interfaces with the PDAS 1000 survey computer, which initiates data sampling and transfer for precise sample intervals and also with the EM receiver computer to ensure that the magnetic samples remain synchronised with the EM system.

2.3.3 Fluxgate Magnetometer A tail stinger mounted Bartington MAG-03MC three-axis fluxgate magnetometer is used to provide information on the attitude of the aircraft. This information is used for compensation of the measured magnetic total field.

2.3.4 GPS Receiver A Novatel GPScard 951R is utilised for airborne positioning and navigation. Satellite range data are recorded for generating post processed differential solutions.

2.3.5 Differential GPS Demodulator The OMNISTAR differential GPS service provides real time differential corrections.

2.4 Navigation System A Picodas PNAV 2001 Navigation Computer is used for real-time navigation. The PNAV computer loads a pre-programmed flight plan from disk which contains boundary co-ordinates, line start and end co-ordinates, local co-ordinate system parameters, line spacing, and cross track definitions. The World Geodetic System 1984 (WGS84) latitude and longitude positional data received from the Novatel GPScard contained in the SURVEY computer is transformed to the local co-ordinate system for calculation of the cross track and distance to go values. This information, along with ground heading and ground speed, is displayed to the pilot numerically and graphically on a two line LCD display, and on an analogue Horizontal Strip Indicator (HSI). It is also presented on a LCD screen in conjunction with a pictorial representation of the survey area, survey lines, and ongoing flight path. The PNAV is interlocked to the SURVEY computer for auto selection and verification of the line to be flown. The GPS information passed to the PNAV 2001 navigation computer is corrected using the received real time differential data from the OMNISTAR service, enabling the aircraft to fly as close to the intended track as possible.

Page 12: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 12

2.5 Altimeter System

2.5.1 Radar Altimeter

Model: Sperry Stars RT-220 radar altimeter system (VH-TEM) Model: Collins ALT55 radar altimeter system (VH-WGT)

Sample interval: 0.2 second Accuracy: ± 1.5 % of indicated altitude (both instruments). The radar altimeters fitted to these aircraft are high quality instruments whose output is factory calibrated. The aircraft radar altitude is recorded onto hard drive as well as displayed on the aircraft chart recorder. The recorded value is the average of the altimeter’s output during the previous 0.2 seconds.

2.5.2 Laser Altimeter

Model: Optech 501SB (TEM) Regal LD90-3300HR (WGT)

Sample interval: 0.2 second Accuracy: ± 0.05m at survey altitude (both instruments)

2.5.3 Barometric Altimeter Output of a Digiquartz 215A-101pressure transducer is used for calculating the barometric altitude of the aircraft. The atmospheric pressure is taken from a gimbal-mounted probe projecting 0.5 metres from the wing tip of the aircraft and fed to the transducer mounted in the aircraft wingtip.

2.6 Video Tracking System The video tape recorded by a PAL VHS (VH-WGT) or digital (VH-TEM) video system is synchronised with the geophysical record by a digital fiducial display, which is recorded along with GPS latitude and longitude information and survey line number.

2.7 Data Recorded by the Airborne Acquisition Equipment Raw EM data including fiducial, local time, X and Z axis sensor response, current monitor and bird auxiliary sensor output are recorded on the EM receiver computer as “G” EM files. The Survey computer records all other survey data including aeromagnetic and GPS data using as “S” Survey files, and “R” Rover files containing GPS raw range data for post processing.

Page 13: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 13

3. GROUND DATA ACQUISITION EQUIPMENT AND SPECIFICATIONS 3.1 Magnetic Base Station A CF1 magnetometer was used for VH-TEM and two Geometrics G856 magnetometers for VH-WGT to measure the daily variations of the Earth’s magnetic field. The base stations were established in an area of low gradient, away from cultural influences. The base stations were run continuously throughout the survey flying period with a sampling interval of 0.5 seconds (CF1) or 5 seconds (G856) at a sensitivity of 0.1 nT. All magnetometer base stations at Dubbo were set up near an access track west of the airport, and at Coonamble (for VH-TEM only) approximately 100m from the aircraft parking position, away from the terminal building. 3.2 GPS Base Station A GPS base logging station integrated with the CF1 unit was used for VH-TEM throughout, setup at locations as for the magnetic base stations above (see 3.1). For VH-WGT, a GPS base station comprising a Novatel receiver and portable computer was set up at the Tallarook Motor Inn, Dubbo. The GPS antenna was mounted on the balcony of the office, with the antenna set above the roof level. Each GPS base station position was calculated by logging data continuously at the base position over a period of approximately 24 hours. These data were then averaged to obtain the position of the base station using GrafNav software. Dubbo (VH-WGT) The calculated GPS base position was (in WGS84):

Lat: 32° 12’ 54.55194” S Long: 148° 34’ 08.06473” E Height: 300.984 m. (WGS84 Ellipsoidal Height)

Dubbo (VH-TEM flts 32-38) The calculated GPS base position was (in WGS84):

Lat: 32° 14’ 56.37838” S Long: 148° 35’ 60.90650” E Height: 298.882 m. (WGS84 Ellipsoidal Height)

Coonamble (VH-TEM) The calculated GPS base position was (in WGS84):

Lat: 30° 57’ 14.04442” S Long: 148° 22’ 54.80051” E Height: 209.570 m. (WGS84 Ellipsoidal Height)

Page 14: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 14

4. EM AND OTHER CALIBRATIONS AND MONITORING At the beginning and end of each individual survey flight, the EM system is checked for background noise levels and performance. The airborne checks are conducted at a nominal terrain clearance of 1100 m (3600 ft) to eliminate ground response. These checks include:-

4.1 Pre-Flight Barometer Calibration: Line C60FF A recording of the barometer output at a known elevation is carried out before take-off to assist with calibration and determination of drift during the flight. The barometer is used as a back-up to the GPS for aircraft altitude. The GPS position of the aircraft in parking position is also recorded for GPS QC. Note: FF is the flight number

4.2 Pre/Post-Flight Transmitter-off: Lines C9000, 9006 These lines are recorded in straight and level flight with the system in standard survey geometry, with the transmitter turned off and bird response turned on to observe ambient noise and to check for noise in the receiver system (bird/coils tow cable winch computer).

4.3 Pre/Post-Flight Noise Additive: Lines C9001, 9004 These lines are recorded in straight and level flight with the system in standard survey geometry, with the transmitter on and the bird response turned off at the tow cable winch. This is to check the noise contribution from the acquisition system and is used in deconvolution of survey line data.

4.4 Pre/Post-Flight Zero: Line 70FF, 71FF These lines are recorded in straight and level flight with the system in standard survey configuration with transmitter and receiver turned on. This is used to determine the system’s response in the absence of ground signal and is used to determine a standard waveform for deconvolution of survey lines. Note: FF is the flight number Additionally, through all these calibrations the airborne operator can assess the system and ambient noise levels.

4.5 Pre-Flight Swoops: Line C9003 This line is recorded immediately after the pre-flight zero. During this manoeuvre the pilot conducts a series of ‘swoop’ manoeuvres (pitch up/pitch down) over approximately 30-40 seconds to vary the position of the towed sensor relative to the aircraft. The EM data are monitored by the airborne operator to confirm correct operation of the system during the manoeuvre. This data is used to determine coefficients used in the processing to compensate for such variations in the survey data 4.6 Post-Flight Barometer Calibration: Line C61FF A recording of the barometer output is repeated following landing at the end of the flight to assist with calibration and determination of drift during the flight. Again, the GPS position of the aircraft in parking position is also recorded for GPS QC. Note: FF is the flight number

4.7 Dynamic Magnetometer Compensation To limit aircraft manoeuvre effects on the magnetic data that can be of the same spatial wavelength as the signals from geological sources, compensation calibration lines are flown as high as practical in a low magnetic gradient area close to the survey. This involves flying a series of tests at 2500m or higher on the survey line heading and approximately 15 degrees either side to accommodate small heading variations whilst flying survey lines. The data for each heading consists of a series of aircraft manoeuvres, including pitches, rolls and yaws. This is done to artificially create the most extreme possible attitude the aircraft may encounter whilst on survey. Data from these lines are used to derive

Page 15: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 15

compensation coefficients for removing magnetic noise induced by the aircraft’s attitude in the naturally occurring magnetic field. Compensation data were acquired on the following dates:

Aircraft Compensation Date Flights Covered VH-TEM 1/3/2007 All Flights VH-WGT 16/1/2007 1 – 56 VH-WGT 28/3/2007 57 - 80

The following tables summarise the compensation improvement based on RMS values (in nanoTeslas) for high-pass filtered magnetic data from compensation flights.

Aircraft Date North South East West

VH-TEM 1/3/2007 RMS

Uncomp 2.23186 2.34532 2.04766 2.25468

RMS Comp 0.15455 0.14177 0.14672 0.18308

VH-WGT 16/1/2007 RMS

Uncomp 0.28943 0.16679 0.15944 0.17407

RMS Comp 0.07604 0.08381 0.08029 0.08654

VH-WGT 28/3/2007 RMS

Uncomp 0.14113 0.10225 0.11407 0.10630

RMS Comp 0.07588 0.07697 0.07637 0.07557

4.8 Parallax Checks Due to the relative positions of the EM towed bird and the magnetometer instruments on the aircraft and to processing / recording time lags, raw readings from each vary in position. To correct for this and to align selected anomaly features on lines flown in opposite directions, magnetics, EM data and the altimeters are ‘parallaxed’ with respect to the position information. System parallax is checked by flying in opposing directions over known geophysical features. This is also monitored routinely during processing of jobs and specifically checked following any major changes in the aircraft system which are likely to affect the parallax values. The last parallax check was performed in May 2006; all values were found to be consistent with previous results. VH-TEM

Variable Parallax Value Magnetics 0.6 s

GPS 0 s Radar Altimeter 0.6 s

EM – X 0.2 s EM – Z 1.4 s

VH-WGT

Variable Parallax Value Magnetics 0.4 s

GPS 0 s Radar Altimeter 0.6 s

EM - X 0.2 s EM – Z 1.4 s

Note that a positive parallax value in the tables above indicates that samples in that data stream are moved to lower fiducial numbers.

4.9 Radar Altimeter Calibration The radar altimeter is checked for accuracy and linearity every 12 months or when any change in a key system component requires this procedure to be carried out. This calibration involves flying a number of lines at a range of constant altitudes to allow the radar altimeter data to be compared to and assessed with other height data (GPS and barometric) to confirm the accuracy of the radar altimeter over its operating range.

Page 16: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 16

Absolute radar calibration for VH-WGT was carried out over Dubbo airport , NSW in January 2007 and was successful in calibrating the radar altimeter to information provided by the GPS and barometer instrument. The graph below shows the results of this calibration for VH-WGT as Radar Altimeter output (mV) versus the GPS height normalised to altitude above the airstrip (based on average GPS along the lowest altitude pass). This chart shows the linear behaviour of the radar altimeter in each range, and the coefficients to convert from millivolts to metres.

Radar Altimeter Calibration - VH-WGT

y = 0.0151x - 7.2232

y = 0.1007x - 911.5

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000 14000

RadaltV1_lag (mV)

GPS

Z no

rmal

ised

(m)

Absolute radar calibration for VH-TEM was carried out over Dubbo airport on 1st March 2007. Results are shown below. Similar to the VH-WGT results, GPS height is normalised based on a line recorded while taxiing along the runway.

Radar altimeter calibration - VH-TEM

y = 3E-07x2 + 0.0767x + 0.917

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500

RadaltV1_lag (mV)

GPS

Z no

rmal

ised

(m)

4.10 Laser Altimeter Calibration The Laser altimeters for both aircraft were checked based on the same process as that described above for the radar altimeters. The data used for VH-TEM was from the same flight and based on passes of the Dubbo airstrip, while VH-WGT flew similar passes over the Narromine airstrip. The two plots below show the laser altimeter heights compared to normalised GPS heights. Pitch and roll

Page 17: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 17

manoeuvres were also conducted to determine coefficients to correct for the laser’s deviation from the vertical. The following equation was used to correct the laser altimeter for changes in pointing direction:

( ) ( ) ( )000 sincoscos pphrrppll mlmmmc +−++= Where lc is the corrected altimeter value, lm the raw measured altimeter value, pm and rm are the measured transmitter loop pitch and roll respectively, p0 and r0 are the laser altimeter pointing pitch and roll offsets relative to the transmitter loop orientation respectively, and h0 is the horizontal offset between the laser altimeter and the aircraft’s centre of rotation. Based on the data acquired during the calibration flights, the following values for p0, r0 and h0 were used for corrections throughout the survey.

p0 r0 h0 VH-WGT -1.00 1.60 1.03 VH-TEM 0.90 -0.10 0.42

Laser Altimeter Linearity - VH-WGT

y = 0.9974x - 0.0222

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

PR-Corrected Laser Altimeter (m)

GPS

Z no

rmal

ised

(m)

Laser Altimeter Linearity - VH-TEM

y = 0.9973x - 0.0024

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

GPSZ normalised (m)

PR-C

orre

cted

Las

er A

ltim

eter

(m)

The following two plots show the radar altimeter compared to the laser altimeter, corrected for aircraft pitch and roll.

Page 18: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 18

Comparison of Laser and Radar Altimeters - VH-WGT

y = 0.9988x - 0.0766R2 = 1

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

PR-corrected Laser Altimeter (m)

Rad

ar A

ltim

eter

(m)

Comparison of Laser and Radar Altimeters - VH-TEM

y = 0.9964x + 0.0249

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

PR-Corrected Laser Altimeter (m)

Rad

ar A

ltim

eter

(m)

4.11 Heading Error Checks Historically, heading error checks have been part of the aeromagnetic data acquisition procedure but they are no longer used. Fugro Airborne Surveys now calculates these effects using the aircraft magnetic compensation system and specially developed software. The precision to which these effects are now calculated and corrected for is far in excess of the manual methods used in the past.

4.12 Repeat Point GPS Check At the end of each flight the aircraft were parked as close to the same position as possible. Before and after the flight 90-120 seconds of data was recorded in this location to provide a check for consistency in navigation data. The following pages show plots of the average GPS height, northing and easting for each ground calibration during the survey. Comments on spurious data follow each plot.

Page 19: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 19

GPS Easting Average - VH-WGT, Dubbo

647949

647950

647951

647952

647953

647954

647955

647956

647957

L600

8:8

L601

7:17

L602

3.1:

23

L602

9:29

L603

5:35

L604

0:40

L604

7:47

L605

2:52

L605

7.1:

57

L606

4:64

L606

9:69

L607

4:74

L607

9:79

L611

3:13

L612

0:20

L612

7:27

L613

3:33

L613

8:38

L614

3:43

L615

0:50

L615

5:55

L616

1:61

L616

7:67

L617

2:72

L617

7:77

Line

WG

S84

East

ing

(m)

GPS Northing Average - VH-WGT, Dubbo

6434403

6434404

6434405

6434406

6434407

6434408

6434409

6434410

6434411

L600

8:8

L601

7:17

L602

3.1:

23

L602

9:29

L603

5:35

L604

0:40

L604

7:47

L605

2:52

L605

7.1:

57

L606

4:64

L606

9:69

L607

4:74

L607

9:79

L611

3:13

L612

0:20

L612

7:27

L613

3:33

L613

8:38

L614

3:43

L615

0:50

L615

5:55

L616

1:61

L616

7:67

L617

2:72

L617

7:77

Line

WG

S84

Nor

thin

g (m

)

Page 20: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 20

GPS Height Average - VH-WGT, Dubbo

304

305

306

307

308

L600

8:8

L601

7:17

L602

3.1:

23

L602

9:29

L603

5:35

L604

0:40

L604

7:47

L605

2:52

L605

7.1:

57

L606

4:64

L606

9:69

L607

4:74

L607

9:79

L611

3:13

L612

0:20

L612

7:27

L613

3:33

L613

8:38

L614

3:43

L615

0:50

L615

5:55

L616

1:61

L616

7:67

L617

2:72

L617

7:77

Line

WG

S84

Hei

ght (

m)

Note: Data for outlying points generally displays significant drift during line record likely indicative of GPS system continuing initialisation during ground calibration line.

GPS Easting Average - VH-TEM, Dubbo

647972

647973

647974

647975

647976

647977

647978

647979

647980

L600

1:1

L600

2:2

L600

3:3

L600

4.1:

4L6

007:

7L6

008:

8L6

009:

9L6

010:

10L6

011:

11L6

026:

26L6

031:

31L6

032:

32L6

033:

33L6

034:

34L6

036:

36L6

037:

37L6

038:

38L6

101:

1L6

102:

2L6

103:

3L6

104:

4L6

107:

7L6

108:

8L6

109:

9L6

110:

10L6

111:

11L6

126:

26L6

131:

31L6

132:

32L6

133:

33L6

134:

34L6

136:

36L6

137:

37L6

138.

2:38

Ground Calibration Line

WG

S84

East

ing

(m)

Note: Flights 26 and 31-38 parking location different from previous parking in Dubbo.

Page 21: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 21

GPS Northing Average - VH-TEM, Dubbo

6434394

6434395

6434396

6434397

6434398

6434399

6434400

6434401

6434402

L600

1:1

L600

2:2

L600

3:3

L600

4.1:

4L6

007:

7L6

008:

8L6

009:

9L6

010:

10L6

011:

11L6

026:

26L6

031:

31L6

032:

32L6

033:

33L6

034:

34L6

036:

36L6

037:

37L6

038:

38L6

101:

1L6

102:

2L6

103:

3L6

104:

4L6

107:

7L6

108:

8L6

109:

9L6

110:

10L6

111:

11L6

126:

26L6

131:

31L6

132:

32L6

133:

33L6

134:

34L6

136:

36L6

137:

37L6

138.

2:38

Ground Calibration Line

WG

S84

East

ing

(m)

GPS Height Average - VH-TEM, Dubbo

300

301

302

303

304

305

306

307

308

309

310

L600

1:1

L600

2:2

L600

3:3

L600

4.1:

4L6

007:

7L6

008:

8L6

009:

9L6

010:

10L6

011:

11L6

026:

26L6

031:

31L6

032:

32L6

033:

33L6

034:

34L6

036:

36L6

037:

37L6

038:

38L6

101:

1L6

102:

2L6

103:

3L6

104:

4L6

107:

7L6

108:

8L6

109:

9L6

110:

10L6

111:

11L6

126:

26L6

131:

31L6

132:

32L6

133:

33L6

134:

34L6

136:

36L6

137:

37L6

138.

2:38

Ground Calibration Line

WG

S84

Hei

ght (

m)

Note: Flights 36-38 post-processed against a different GPS base station from that used for earlier flights.

Page 22: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 22

GPS Easting Average - VH-TEM, Coonamble

631848

631849

631850

631851

631852

631853

631854

631855

631856

L601

2:12

L601

3:13

L601

4:14

L601

5:15

L601

6:16

L601

7.1:

17L6

018:

18L6

019:

19L6

020:

20L6

021:

21L6

022:

22L6

023:

23L6

024.

1:24

L602

5:25

L602

7:27

L602

8:28

L602

9:29

L603

0:30

L611

2:12

L611

3:13

L611

4:14

L611

5:15

L611

6:16

L611

7:17

L611

8:18

L611

9:19

L612

0:20

L612

1:21

L612

2:22

L612

3:23

L612

4:24

L612

5:25

L612

7:27

L612

8.1:

28L6

129:

29L6

130:

30

Ground Calibration Line

WG

S84

East

ing

(m)

GPS Northing Average - VH-TEM, Coonamble

6572247

6572248

6572249

6572250

6572251

6572252

6572253

6572254

6572255

L601

2:12

L601

3:13

L601

4:14

L601

5:15

L601

6:16

L601

7.1:

17L6

018:

18L6

019:

19L6

020:

20L6

021:

21L6

022:

22L6

023:

23L6

024.

1:24

L602

5:25

L602

7:27

L602

8:28

L602

9:29

L603

0:30

L611

2:12

L611

3:13

L611

4:14

L611

5:15

L611

6:16

L611

7:17

L611

8:18

L611

9:19

L612

0:20

L612

1:21

L612

2:22

L612

3:23

L612

4:24

L612

5:25

L612

7:27

L612

8.1:

28L6

129:

29L6

130:

30

Ground Calibration Line

WG

S84

Nor

thin

g (m

)

Page 23: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 23

GPS Height Average - VH-TEM, Coonamble

207.5

208

208.5

209

209.5

210

210.5

211

211.5

L601

2:12

L601

3:13

L601

4:14

L601

5:15

L601

6:16

L601

7.1:

17L6

018:

18L6

019:

19L6

020:

20L6

021:

21L6

022:

22L6

023:

23L6

024.

1:24

L602

5:25

L602

7:27

L602

8:28

L602

9:29

L603

0:30

L611

2:12

L611

3:13

L611

4:14

L611

5:15

L611

6:16

L611

7:17

L611

8:18

L611

9:19

L612

0:20

L612

1:21

L612

2:22

L612

3:23

L612

4:24

L612

5:25

L612

7:27

L612

8.1:

28L6

129:

29L6

130:

30

Ground Calibration Line

WG

S84

Hei

ght (

m)

Page 24: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 24

5. DATA PROCESSING

5.1 Field Data Processing

5.1.1 Quality Control Specifications

5.1.1.1 Navigation Tolerance The re-flight specifications applied for the duration of the survey were: Electronic Navigation

- absence of electronic navigation data (e.g. GPS base station fails).

Flight Path

– flight path deviates by more than 40 metres over a continuous distance of 1500 metres or more unless the deviation is required by civil aviation requirements.

Altitude

– the average terrain clearance for any one flight line shall be within ±5 metres of the nominal aircraft terrain clearance. Portions of survey lines that are unable to be flown at the nominal survey height due to Australian Civil Aviation Safety Authority regulations of safety considerations shall be excluded from the average. Where the terrain clearance varies from that nominated by more than 20 metres over a continuous distance of two kilometres or more, a fill-in line will be flown at the Contractor’s expense unless it can be reasonably demonstrated that such flying would put pilot and crew at risk.

The following plots show the average transmitter ground clearance for all survey lines flown by VH-WGT and VH-TEM for this project. Some lines appear to violate the above specification for average height – comments are included below each plot.

Transmitter Terrain Clearance Average - VH-WGT, Area S1

110

115

120

125

130

L100

1:20

L101

1:20

L102

1:43

L103

1:41

L104

1:40

L105

1:39

L106

1:38

L107

1:38

L108

1:36

L109

1:35

L110

1:34

L111

1:33

L112

1:32

L113

1:31

L114

1:28

L115

1:28

L116

1:26

L117

1:25

L118

1:21

L119

1:21

L120

1:21

L121

1:19

L122

1:18

L123

1:17

L124

1:17

L125

1.1:

23

L126

1:16

L830

9:9

Survey Line

Tran

smitt

er T

erra

in C

lear

ance

(m)

Note: Some lines in this area violate contract specifications due to rough terrain.

Page 25: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 25

Notes from left to right: a) Biased by pilot climbing to 1500ft over Warren; b) Large spike due to pilot climbing to 1500ft over Nevertire, flat section due to a problem with pilot’s altimeter display; c) Biased by pilot climbing to 1500ft over Trangie.

Transmitter Terrain Clearance Average - VH-TEM, Area N1-N2-N3

110

115

120

125

L226

6:19

L227

1:19

L227

6:18

L228

1:18

L228

6:18

L229

1:18

L229

6.1:

17L2

301:

16L2

306:

15L2

311:

15L2

316:

15L2

321:

15L2

326:

13L2

331:

13L2

336:

13L2

341:

13L2

346:

12L2

351:

12L2

356:

7L2

361:

7L2

366:

7L2

371:

7L2

376:

12L2

381:

11L2

386:

10L2

391:

32L2

396:

8L2

401:

8L2

406:

4L2

411:

4L2

416.

1:24

L242

1.1:

24L2

426:

33L2

431:

33L2

436:

33L2

441:

33L2

446:

34L2

451:

36L2

456:

36L2

461:

36L2

466:

38L2

471:

37L2

476:

38L2

481:

37

Survey Line

Tran

smitt

er T

erra

in C

lear

ance

(m)

Note: Some lines early in survey were flown too high due to a discrepancy between pilots’ instruments and recorded radar/laser altimeter values. The worst cases were reflown.

Transmitter Terrain Clearance Average - VH-WGT, Area N1-L1-L2

110

115

120

125

130

L247

7:80

L248

5.1:

80

L249

0.1:

78

L249

5:77

L250

0:75

L250

5.1:

75

L251

0:72

L251

5:71

L252

0:70

L252

5:69

L253

0:67

L253

5:66

L254

0:65

L254

5.1:

64

L255

0:61

L255

5:60

L256

0:57

L256

5:56

L257

0:55

L257

5:54

L258

0:54

L258

5:53

L259

0:52

L259

5:50

L260

0:50

L260

5:49

L261

0:48

L261

5:47

L262

0.1:

48

Survey Line

Tran

smitt

er T

erra

in C

lear

ance

(m) a c b

Page 26: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 26

Transmitter Terrain Clearance Average - VH-TEM Area N2-L4-L5

110

115

120

L203

9:28

L204

9:28

L205

9:28

L206

9:28

L207

7:27

L208

7:27

L209

7:28

L210

7:25

L211

7:25

L212

7:25

L213

7:25

L214

7:23

L215

7:23

L216

7:23

L217

7:23

L218

7:22

L219

7:22

L220

7:21

L221

7:21

L222

7:21

L223

7:20

L224

7:20

L225

7:20

Survey Line

Tran

smitt

er T

erra

in C

lear

ance

(m)

Transmitter Terrain Clearance Average - VH-TEM Area N3-L6

110

115

120

L200

1.1:

32L2

002:

32L2

003:

31L2

004.

1:31

L200

5:32

L200

6:32

L200

7:31

L200

8:32

L200

9:32

L201

0:29

L201

1:32

L201

2:31

L201

3.1:

31L2

014:

32L2

015:

32L2

016:

29L2

017:

32L2

018:

31L2

019:

29L2

020:

31L2

021:

31L2

022:

29L2

023:

31L2

024:

31L2

025:

29L2

026:

31L2

027:

31L2

028:

29L2

029:

30L2

030:

30L2

031.

1:29

L203

2:30

L203

3:30

L203

4.2:

29L2

035.

1:30

L203

6:30

L203

7.1:

31

Survey Line

Tran

smitt

er T

erra

in C

lear

ance

(m)

5.1.1.2 Electromagnetic Data The quality control checks on the electromagnetic data were: Noise

– For any flight, if the standard deviation of the processed high altitude data for a window exceeds 2 times the corresponding window standard deviation specified in the table below, then that window will be deemed to be ‘noisy’. If more than 25% of the windows are deemed to be noisy in either component, then that flight must be reflown at the Contractor’s expense. See Appendix IV for full record of zero-line statistics.

Page 27: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 27

Window X component

standard deviation (fT)

Z component standard deviation

(fT) 1 0.021 0.014 2 0.019 0.010 3 0.018 0.009 4 0.017 0.009 5 0.016 0.008 6 0.015 0.008 7 0.014 0.008 8 0.013 0.007 9 0.013 0.008 10 0.016 0.009 11 0.021 0.009 12 0.014 0.007 13 0.012 0.006 14 0.009 0.004 15 0.009 0.005

Repeat lines – A number of repeat lines were flown regularly to check system repeatability. These lines were flown once every day for the first four successful production days, and once every three production days after that. Comparison plots of derived conductivity data are included as an attachment (see Appendix VIII). Borehole calibration lines – Five specified lines were flown by one or both aircraft to coincide with existing seismic and borehole data for comparison. Plots of these lines are also included as an attachment (see Appendix VIII).

5.1.2 In-Field Data Processing Following acquisition, multiple copies of the EM data are made onto DVDs or CDs. The EM, location, magnetic and ancillary data are then processed at the field base to the point that the quality of the data from each flight can be fully assessed. Copies of the raw and processed data are then transferred to Perth for final data processing. A more comprehensive statement of EM data processing is given in section 5.2.3.

5.2 Final Data Processing

5.2.1 Flight Path Recovery The GPS position of the aircraft at every point along the survey line is post-processed (differentially corrected) by applying the same X, Y and Z positional changes (deviations from averaged position) as seen at the base GPS unit (see 3.2 for a description of establishing the base GPS position). The post-processed flight path (X and Y co-ordinates) and GPS height are then checked for spikes and level shifts, and if required, edited or improved by re-running the GPS post-processing. Section 4.12 describes the GPS repeat point test we conducted on every flight to confirm the repeatability of the GPS system. No other calibration procedures are performed for the GPS.

5.2.2 Magnetics Magnetic data were compensated for aircraft manoeuvre noise using coefficients derived from the appropriate compensation flight (see 4.7). Base station data is edited so that all significant spikes, level shifts and null data are eliminated. A diurnal base value was then added.

Area Base Value All 56715 nT

Page 28: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 28

A lag was applied to synchronise the magnetic data with the navigation data. The International Geomagnetic Reference Field (IGRF) 2005 model (updated for secular variation 2006.9) was removed from the levelled total field magnetics. An IGRF base value was then added to the data.

Area Base Value All 56786 nT

Following this, microlevelling was applied in order to subtly level the data. The algorithm is a FAS proprietary operation used to remove the small across-line corrugations that may appear in any gridded data. The process attempts to de-corrugate the data without destroying the data’s integrity. This is achieved by confining the changes to very small values and applying them as a correction to the along-line data.

Page 29: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 29

5.2.3 Altimeters Radar altimeter data are recorded by the data acquisition system (DAS) as a value in millivolts. This value is converted to metres using the relationships determined during the altimeter calibration flights. This data has a parallax applied followed by a short smoothing filter to eliminate short-wavelength system noise. The Laser Altimeter data are recorded directly as a height in metres. As a first step all spurious values, and values of 0m were removed, followed by a routine that used local maxima and minima to remove small sharp steps & spikes, resulting from vegetation and other cultural features. The resulting channel from this process was splined and filtered, then finally the expression defined in section 4.10 was applied to correct for the changing pointing angle of the altimeter due to aircraft pitch and roll.

5.2.4 Derived Ground Elevation Aircraft navigation whilst in survey mode is via real time differential GPS, obtained by combining broadcast differential corrections with on-board GPS measurements. Terrain clearance is measured with a laser altimeter. The ground elevation, relative to the WGS84 spheroid used by GPS receiver units, is obtained by finding the difference between the terrain clearance (from the final processed laser altimeter) and the aircraft altitude above the ellipsoid (GPS height derived from post-processing of the DGPS data using the field base station data), and taking into account that the laser altimeter is mounted 2.4 metres below the GPS antenna. The digital elevation model derived from this survey can be expected to have an absolute accuracy of +/- several metres in areas of low to moderate topographic relief. Sources of error include uncertainty in the height of the GPS base station, variations in the laser altimeter characteristics over ground of varying surface texture, and the finite footprint of the laser altimeter. Following this, microlevelling was applied in order to more subtly level the data. The algorithm is a FAS proprietary operation used to remove the small across-line corrugations that may appear in any gridded data. The process attempts to de-corrugate the data without destroying the data’s integrity. This is achieved by confining the changes to very small values and applying them as a correction to the along-line data. An N-Value is subtracted to correct the final data to the Australian Height Datum (AHD). Available spot heights were supplied by Geoscience Australia and compared to the DEM data on a grid basis. The following table (over page) summarises these spot height comparisons. The largest discrepancies occur at stations FOSTER, MINORE, EUROMBEDAH and MOUNT HARRIS which are all in high topographic gradient locations (situated on hilltops). In these high gradient areas interpolation errors are much greater than in the low gradient areas that make up the vast majority of the survey area. Otherwise, in the low gradient areas the DEM appears to be accurate to within ± 2m.

Page 30: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 30

Station Name Station

Num. Height Easting Northing DTM

height Diff. (m)

Area

FROST NSW 2113

294.7 609010.01 6418587.99 290.02 -4.68 S1

GRADGERY NSW 2287

173.7 587369.16 6542272.48 177.06 3.36 N1/L1

NM C 114 NSW 5292

194.9 546962.10 6459701.28 195.9 1 N1/L1

NM C 115 NSW 5293

235.79 596769.12 6459286.60 237.62 1.83 N1/L1

EUROMBEDAH NSW 2007

292.2 623812.96 6434782.92 284.23 -7.97 S1

FOSTER NSW 2094

266.4 560144.00 6544540.75 227 -39.4 N1/L1

MOUNT HARRIS

NSW 2419

242.3 563205.54 6537353.36 237.08 -5.22 N1/L1

WARREN NSW 6227

195.22 577698.22 6492968.27 194.57 -0.65 N1/L1

MERRINELE NSW 3080

181.6 577307.61 6543604.34 180.37 -1.23 N1/L1

MINORE NSW 6692

365.69 632304.81 6431551.39 352.27 -13.42 S1

PM5008 PM5008 196.13 566687.49 6478030.07 198.35 2.23 N1/L1 Note: The accuracy of the elevation calculation is directly dependent on the accuracy of the two input parameters, laser altitude and GPS altitude. The GPS altitude value is primarily dependent on the number of available satellites. Although post-processing of GPS data will yield X and Y accuracies in the order of 0.5 metres, the accuracy of the altitude value is usually much less, but generally still within 1-2 metres. Further inaccuracies may be introduced during the interpolation and gridding process as only 1 out of every 5 points across-line is real data. Furthermore, along line obstructions may cause the pilot to veer laterally and so data interpolated between lines may vary significantly from real topography, and do not show artificial vertical obstructions. Because of the inherent inaccuracies of this method, no guarantee is made or implied that the information displayed is a true representation of the height above sea level. Although this product may be of some use as a general reference, THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. 5.2.5 Electromagnetic Data Processing Details of the pre-processing applied to TEMPEST data can be found in Lane et al. (2000), and are summarised below. Calibration High altitude pre and post flight zero line data (Section 4.4) are used to characterise the system response in the absence of any ground response. These calibration lines were acquired pre and post flight and were linearly interpolated during processing for use at individual transients during the flight. Cleaning and Stacking Routines to suppress sferic noise, powerline noise, VLF noise and coil motion noise (collectively termed “cleaning”) and to stack the data are applied to the survey line data. Output from the stacking filter is drawn at 0.2 second intervals. A cosine shaped filter making use of 152 transients (approximately 3 sec) is used in the stacking process. Deconvolution The survey height stacked data are deconvolved in the frequency domain using the interpolated high altitude reference waveform, to yield a quantity that is independent of system characteristics. This procedure accounts for slow variations in the transmitted current waveform’s amplitude and shape during the flight. It also accounts for the effect of eddy currents induced in the transmitter loop and

Page 31: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 31

airframe. The output of the deconvolved data is the summed effect of the direct coupling between the transmitter loop and receiver coils (primary field) and the coupling between currents induced in the ground and the receiver (secondary field). Primary Field Estimation Since the receiver’s orientation and position (relative to the transmitter) is not precisely known, the primary field cannot simply be theoretically computed and subtracted from the deconvolved data to yield the desired pure ground response. The primary field is instead estimated using knowledge of the asymptotic behaviour at the low frequency in-phase component of the deconvolved spectrum. The estimation of the primary field requires some assumptions to be made regarding the conductivity structure of the ground at depth. Once estimated the primary field is subtracted from the deconvolved data to yield the estimated pure ground response. Transmitter-Receiver Separation Estimation Once the primary field and coupling terms are estimated it is then possible to estimate the position of the receiver coils relative to the transmitter loop via basic dipole theory. Equations (1) and (2) define the coupling terms for an infinitesimal vertical magnetic dipole transmitter and an ideal receiver located at co-ordinates (x,z) with respect to the transmitter. The horizontal (or X) component coupling is defined by,

( ) 2522

3zxxzg x

+=

, (1)

and for the vertical (or Z) component data;

( ) 2522

222zx

xzg z+

−=

. (2)

The above equations are inverted to solve for the coil set position defined by the co-ordinates (x,z) as follows. From equations (1) and (2),

xzxzr

gg

x

z

3)2( 22 −

== (3)

Therefore,

023 22 =−+ zrxzx (4)

Therefore,

12222 2/)893(2/)893( zrrrzzzrrzx =+±−=+±−= (5)

Substituting back into the expression for gx, we get

252

13

1

)1(3+

=rz

rg x

(6)

and

3

1

2521

11

31

2521

1

)1(3,

)1(3

+=

+=

rgrrxand

rgrz

xx

(7)

where

{ } 2/8)/(9)/(3 2

1 ++−= xzxz ggggr (8)

The +/- solutions collapse to a single solution due to a basic knowledge that the bird is always going to be below and behind the transmitter. Therefore equations (7) and (8) provide the necessary calculation to convert gx and gz values to x and z values which define the position of the receiver with respect to the transmitter.

Page 32: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 32

An estimate of transmitter-receiver separation is made for every 0.2 second sample drawn from the stacking filter. Along with other system geometry variables (either measured or assumed) the survey wide averages of the system geometry for each aircraft is shown in the table following. Geometry Variable VH-WGT VH-TEM Transmitter loop pitch measured 2.97 deg 1.64 deg Transmitter loop roll measured -0.15 deg -0.62 deg Transmitter loop yaw measured 0.0 deg 0.0 deg Transmitter loop terrain clearance measured 118.15 m 116.00 m Transmitter-receiver in-line horizontal separation estimated -114.86 m -120.71 m Transmitter-receiver vertical separation estimated -45.16 m -39.41 m Transmitter-receiver transverse horizontal l separation assumed 0.0 m 0.0 m Receiver pitch assumed 0.0 deg 0.0 deg Receiver roll assumed 0.0 deg 0.0 deg Receiver yaw assumed 0.0 deg 0.0 deg Transformation to B-field Response The pure ground response data are transformed from dB/dt to B-field responses equivalent to that which would be observed for a perfect 100% duty cycle square wave waveform with a 1 A peak to peak step. Windowing Finally, the evenly spaced samples are binned into a number of windows. Table of TEMPEST window information for 25Hz base frequency Window # Start

sample End sample

No of samples

start time (s)

End time (s)

centre time (s)

centre time (ms)

1 1 2 2 0.000007 0.000020 0.000013 0.013 2 3 4 2 0.000033 0.000047 0.000040 0.040 3 5 6 2 0.000060 0.000073 0.000067 0.067 4 7 10 4 0.000087 0.000127 0.000107 0.107 5 11 16 6 0.000140 0.000207 0.000173 0.173 6 17 26 10 0.000220 0.000340 0.000280 0.280 7 27 42 16 0.000353 0.000553 0.000453 0.453 8 43 66 24 0.000567 0.000873 0.000720 0.720 9 67 102 36 0.000887 0.001353 0.001120 1.120 10 103 158 56 0.001367 0.002100 0.001733 1.733 11 159 246 88 0.002113 0.003273 0.002693 2.693 12 247 384 138 0.003287 0.005113 0.004200 4.200 13 385 600 216 0.005127 0.007993 0.006560 6.560 14 601 930 330 0.008007 0.012393 0.010200 10.200 15 931 1500 570 0.012407 0.019993 0.016200 16.200 Geometry Corrections to EM Data The final EM dataset includes both “non-geometry corrected” and geometry-corrected” located EM data. The non-geometry corrected EM amplitudes reflect, not only the variations in ground conductivity, but the variations in geometry of the various parts of the EM measurements (i.e. transmitter loop pitch, transmitter loop roll, transmitter loop terrain clearance, transmitter loop to receiver coil horizontal longitudinal separation, transmitter loop to receiver coil horizontal transverse separation, and transmitter loop to receiver coil vertical separation) during the survey. For example, the largest influence on the early time EM amplitude is the terrain clearance of the transmitter loop. The larger the terrain clearance, the smaller the amplitude. Later window times (larger window number) show diminished variations due to terrain clearance. Geometry-corrected located data are produced for optimum presentation of the EM amplitude data in image format (e.g. window amplitude images, principal component analysis images derived from the window amplitudes (Green,1998b)). Between non-geometry and geometry corrected states, the

Page 33: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 33

ground response data undergo an approximate correction to produce data that would be measured if the system had always maintained a nominated standard (constant) geometry. A dipole-image method (Green, 1998a) is used to adjust the data to the response that would be expected at a standard terrain clearance (115m), standard transmitter loop pitch and roll (zero degrees), and a standard transmitter loop to receiver coil geometry (115m behind and 45 below the aircraft). These geometry variables have been set to their respective standard values in the geometry corrected located data. The non- geometry corrected located data file contains the measured (or estimated) geometry variables. Zero parallax is applied to transmitter loop pitch, roll, terrain clearance, X component EM and Z component EM data prior to geometry correction. Over extremely conductive ground (e.g. > 100 S conductance), the estimates for transmitter loop to receiver coil separation determined from the primary field coupling factors may be in error at the metre scale due to uncertainty in the estimation of the primary field. This will influence the accuracy of very early time window amplitude information in the geometry-corrected located data. Receiver coil pitch has a significant effect on early time Z component response and late time X component response (Green and Lin, 1996). Receiver coil roll impacts early time Z component response. Due to a miscommunication in the field, the data from the two aircraft were not corrected to the same geometry (due to a slightly higher average airspeed, the receiver generally flies higher behind VH-TEM). This led to a large amplitude change, where the data acquired from each aircraft abutted in the field-processed dataset that was returned from the field and was delivered to GA at that time. To correct this, the first phase of the final processing was to re-geometry correct the VH-TEM data to the same standard geometry as VH-WGT (see table below) since levelling of area S1 had already commenced. Values used to standardise transmitter height, pitch and roll and transmitter-receiver geometry Geometry Variable Standard Value Transmitter loop pitch 0.0 deg Transmitter loop roll 0.0 deg Transmitter loop yaw 0.0 deg Transmitter loop terrain clearance 115.0 m Transmitter-receiver in-line horizontal separation -115.0 m Transmitter-receiver vertical separation -45.0 m Transmitter-receiver transverse horizontal separation 0.0 m Receiver pitch 0.0 deg Receiver roll 0.0 deg Receiver yaw 0.0 deg Based on the overall character of the data, and statistics of the geometry figures determined from the high-altitude zero calibration line, it was inferred that the receiver ‘bird’ operating with VH-TEM had some coil suspension issues (ie. the support and the way the coil-set is suspended within the bird-shell) throughout the survey. This resulted in small changes in the apparent tilt of the coil-set, and as steps (or level shifts) in the signal amplitudes of the Z-component data. Fortunately the day-to-day changes were slight, but based on observations of the geometry of all 38 flights, a system of small corrections was applied, prior to re-applying geometry corrections hence both the geometry corrected and non-geometry corrected EM data have been adjusted. The rotation corrections applied are tabulated below.

Flights Rotation (degrees) 17,19,28,30,31 7

24,29 5 16,18,20,21,22,23,25,26,27 6

4,7,9,13,15 4 8,12 3

2 2 34 1

10,11 4.5 Levelling Once the full dataset had been corrected to the same standard geometry, limited range micro-levelling was applied to all windows for presentation purposes and to ensure the input data for CDI processing was free of striping.

Page 34: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 34

5.2.6 Conductivity Depth Images (CDI) CDI conductivity sections for TEMPEST data were calculated using EMFlow and then modified to reflect the finite depth of investigation using an in-house routine, Sigtime. The Sigtime routine removes many of the spurious conductive features that appear at depth as a result of fitting long time constant exponential decays to very small amplitude features in the late times. For each observation, the time when the response falls below a signal threshold amplitude is determined. This time is transformed into a diffusion depth with reference to the conductivity values determined for that observation. Anomalous conductivity values below this depth are replaced by background values or set to undefined, reflecting the uncertainty in their origin. The settings and options applied are indicated in the appropriate header files for Sigtime output. This procedure is different to that which would be obtained by filtering conductivity values using either a constant time or constant depth across the entire line. The “final” data for each area were input into version 5.10 of EMFlow to calculate Conductivity Depth Images (CDI). Conductivity values were calculated at each point then run through Sigtime. EMFlow was developed within the CRC-AMET through AMIRA research projects (Macnae et al, 1998, Stolz and Macnae, 1998). The software has been commercialised by Encom Technology Pty Ltd. Examples of TEMPEST conductivity data can be seen in Lane et al. (2000), Lane et al. (1999), and Lane and Pracillio (2000). Conductivity values were calculated to a depth of 200m below surface at each point, using a depth increment of 5m and a conductivity range of 1-1000mS/m.

5.2.6.1 Factors and Corrections Geometric Factor The geometric factor gives the ratio of the strength of the primary field coupling between the transmitter loop and the receiver coil at each observation relative to the coupling observed at high altitude during acquisition of reference waveform data. Variations in this factor indicate a change in the attitude and/or relative separation of the transmitter loop and the receiver coil. Transmitter-Receiver Geometry Transmitter-to-receiver geometry values for each observation are derived from the high altitude reference waveforms and knowledge of the system characteristics. These data are available in the located data (see section 5.2.4 for “standardised” values) GPS Antenna, Laser Altimeter and Transmitter Loop Offset Corrections For VH-TEM the transmitter loop was mounted 0.1m above the GPS antenna, whilst for VH-WGT it was mounted 0.25m below the GPS antenna. The GPS antenna is 2.3m above the belly of the aircraft on VH-TEM, and 3.3m above the belly on VH-WGT. For both aircraft the laser altimeter sensor is mounted in the belly. Therefore a total of 2.4m and 3.05m was added to the laser altimeter data for VH-TEM and VH-WGT, respectively, to determine the transmitter loop height above the ground. Transmitter Loop Pitch and Roll Correction Measured vertical gyro aircraft pitch and roll attitude measurements are converted to transmitter loop pitch and roll by adding -0.9 degrees for pitch and -0.1 degrees for roll, for VH-TEM, and -0.45 for pitch and 0.6 degrees for roll, for VH-WGT. Nose up is positive for pitch, and left wing up is positive for roll.

5.2.6.2 Primary Sources of EM Noise A number of “monitor” values are calculated during processing to assist with interpretation. They generally represent quantities that have been removed as far as is practical from the data, but may still be present in trace amounts. These are more significant for interpretation of discrete conductors than for general mapping applications.

Page 35: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 35

Sferic Monitor Sferics are the electromagnetic signals associated with lightning activity. These signals travel large distances around the Earth. Background levels of sferics are present at all times from lightning activity in tropical areas of the world (eg tropical parts of Asia, South America and Africa). Additional higher amplitude signals are produced by "local" lightning activity (ie at distances of kilometres to hundreds of kilometres). The sferic monitor is the sum of the absolute differences brought about by the sferic filter operations, summed over 0.2 second intervals, normalised by the receiver effective area. It is given in units of uV/sq.m/0.2s. Many sferics have a characteristic form that is well illustrated by figure 2 in Garner and Thiel (2000), over page. The high frequency, initial part of a sferic event can be detected and filtered more easily than the later, low frequency portion. The sferic monitor indicates where at least the high frequency portion of a sferic has been successfully removed, but it is quite possible that lower frequency elements of the sferic event may have eluded detection, passing through to the window amplitude data. Thus, discrete anomalies coincident with sferic activity as indicated by the sferic monitor should be down-weighted relative to features clear of any sign of sferic activity.

An electric field time-series sampled at 48 kilo samples per second using MIMDAS. The top panel exhibits the entire event, while the lower panel depicts a close up view of an individual sferic from that event. The sample rate and resolution in time are denoted by fs and tres, respectively. (Garner & Thiel, 2000.) Low Frequency Monitor The Low Frequency Monitor (LFM) makes use of amplitudes at frequencies below the base frequency which are present in the streamed data to estimate the amplitude of coil motion noise at the base frequency in log10(pV/sqrt(Hz)/sq.m). This noise is primarily induced by the coil’s motion through the earth’s magnetic field – a change in coupling between the receiver coil and the ambient magnetic field will induce a voltage in the receiver coil. This noise is referred to as coil motion or Earth field noise. Receiver coils in the towed bird are suspended in a fashion that attempts to keep this noise below the noise floor at frequencies equal to and above the base frequency of the system. Severe turbulence, however, can result in ‘coil knock events’ that introduce noise into the processed data. Note that the LFM will also respond to sferic events with an appreciable low frequency (sub-base frequency) component. This situation can be inferred when both the LFM and sferic monitors show a discrete kick. The coil motion noise below the base frequency is rejected through the use of tapered stacking, but the coil motion noise at the base frequency itself is not easily removed.

Page 36: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 36

Powerline Monitor The powerline monitor gives the amplitude of the received signal at the powerline frequency (50 or 60 Hz) in log10(pV/sqrt(Hz)/sq.m). Careful selection of the base frequency (such that the powerline frequency is an even harmonic of the base frequency) and tapered stacking combine to strongly attenuate powerline signals. When passing directly over a powerline, the rapid lateral variations in the strength and direction of the magnetic fields associated with the powerline can result in imperfect cancellation of the powerline response during stacking. Some powerline-related interference can manifest itself in a form that is similar to the response of a discrete conductor. The exact form of the monitor profile over a powerline depends on the line direction, powerline direction, powerline current, and receiver component, but the monitor will show a general increase in amplitude approaching the powerline. Grids (or images) of the powerline monitor reveal the location of the transmission lines. Note that the X component (horizontal receiver coil axis parallel with the flight line direction) does not register any response from powerlines parallel to the flight line direction since the magnetic fields associated with powerlines only vary in a direction perpendicular to the powerline. Note also that the Z component (vertical receiver coil axis) shows a narrow low directly over the powerline where the magnetic fields are purely horizontal. Very Low Frequency Monitors Wide area VLF communication signals in the 15 to 25 kHz frequency band are monitored by the TEMPEST system. In the Australian region, signals at 18.2 kHz, 19.8 kHz, 21.4 kHz and 22.2 kHz are monitored as the amplitude of the received signal at these frequencies in log10(pV/sqrt(Hz)/sq.m). The strongest signal comes from North West Cape (19.8 kHz). The signal at 18.2 kHz is often observed to pulse in a regular sequence. These strong narrow band signals have some impact on the high frequency response of the system, but they are strongly attenuated by selection of the base frequency and tapered stacking. The VLF transmissions are strongest in amplitude, in the horizontal direction at right angles to the direction to the VLF transmitter. This directional dependence enables the VLF monitors to be used to indicate the receiver coil attitude.

5.2.6.3 Other Sources of EM Noise Man-made periodic discharges If an image of the Z component sferic monitor shows the presence of spatially coherent events, then pulsed cultural interference would be strongly suspected. Since sferic signals are much stronger in the horizontal plane than in the vertical plane, few sferics of significant amplitude are recorded in Z component data. In contrast, evidence of cultural interference is generally swamped by true sferics in X component sferic monitor images. Electric fences are the most common source of pulsed cultural interference. Periodic discharges (eg every second or so) into a large wire loop (fence) produce very large spikes in raw data. These are attenuated to a large degree by the sferic filter, but a residual artefact can still be present in the processed data. Grounded metal objects Grounded extensive metal objects such as pipelines and rail lines can qualify as conductors and may produce a response that is visible in processed data. Grounded metal objects produce a response similar to shallow, highly conductive, steeply dipping conductors. These objects can sometimes be identified from good quality topographic maps, from aerial photographs, by viewing the tracking video, from their unusual spatial distribution (ie often a series of linear segments) and in some circumstances from their effect on the powerline monitor. A powerline running close to a long metal object will induce a 50 Hz response in the object.

5.2.7 System Specifications for Modelling TEMPEST Data Differences between the specifications for the acquisition system, and those of the virtual system for which processed results are given, must be kept in mind when forward modelling, transforming or inverting TEMPEST data. Acquisition is carried out with a 50% duty cycle square transmitter current waveform and dB/dt sensors.

Page 37: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 37

During processing, TEMPEST EM data are transformed to the response that would be obtained with a B-field sensor for a 100% duty cycle square waveform at the base frequency, involving a 1A change in current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. Data are given in units of femtoTesla (fT = 10-15 Tesla). It is this configuration, rather than the actual acquisition configuration, which must be specified when modelling fully pre-processed TEMPEST data. Window timing information is given above (see section 5.2.5). The geometry-corrected EM data have been standardised through an approximate transformation to a standard transmitter loop terrain clearance, transmitter loop pitch and roll of zero degrees, and a fixed transmitter loop to receiver coil geometry (roughly equal to the average estimated geometry values). Transmitter loop pitch, transmitter loop roll and transmitter loop terrain clearance values for each observation have been modified to reflect the standard values. Hence, the standardised geometry values should be used if modelling with the geometry- corrected X- and Z-component amplitude data (see table section 5.2.5).

5.2.7.1 Parallax The located data files utilise the following parallax values :- • magnetics (TEM) = 0.6 fiducials (3 observations from the zero parallax position), • magnetics (WGT) = 0.4 fiducials (2 observations from the zero parallax position), • radar altimeter = 0.6 fiducials (3 observations from the zero parallax position), • EM X-component = 0.2 fiducials (1 observation from the zero parallax position), • EM Z-component = 1.4 fiducials (7 observations from the zero parallax position), These EM parallax values are optimised for aligning, from line to line, the EM response amplitudes for horizontal or broad steeply dipping conductors, which account for the majority of responses in regolith-dominated terrains such as this. For optimum gridded display of the response for discrete vertical or narrow conductors, the following EM parallax values are appropriate :- • EM X-component = 1.8 fiducials (9 observations from the zero parallax position, or 8 observations

from the “horizontal” parallax position), • EM Z-component = 0.6 fiducials (3 observations from the zero parallax position, or -4 observations

from the “horizontal” parallax position). (NB Positive parallax values are defined in this case as shifting the indicated quantity back along line to smaller fiducial values. Location information remains in the zero parallax state.) The final corrected and levelled data were gridded using a bi-directional spline interpolation (with no anti-aliasing) algorithm with a square cell size of 60m.

5.2.8 Delivered Products Appendix VII contains a complete list of all data supplied digitally. Digital located data in ASCII format was produced containing the non-geometry corrected and geometry corrected X and Z EM data as well as magnetics, digital elevation and derived conductivity data. The header file can be found in Appendix IV. Grids (in ER Mapper format) of selected conductivity slices, total magnetic field and digital elevation were also produced. Acquisition and processing report in hardcopy and digital format.

Page 38: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 38

5.3 Data Analysis and Comparisons The survey contained two variables that could affect the continuity of the results across the dataset. These were the perpendicular line paths between the northern and southern areas, and the fact that multiple aircraft were utilised for the survey. Boundaries where the differences occur were examined and a summary of the observations is documented below.

5.3.1 Perpendicular line paths Final data was processed to minimise the difference between the two blocks flown on different headings (E/W for blocks L1/N1 and N/S for block S1). Lines flown on either side of this join were acquired by a single aircraft (VH-WGT) which helped to minimise differences and resulted in a high level of consistency between datasets. The following image shows the overlap area between area L1/N1 and S1. The overlap is approximately 600m wide.

To check the continuity of the results across this overlap, grids of the separate survey components TMI, DEM and a sample of the interval conductivity grids were examined. In all cases the sun shade is from the north, which will highlight any level shifts across the join. In all grids there is a slight textural change between the E/W and N/S flown lines. This is purely an artefact of the gridding with respect to the sunshade applied to it. Magnetics - The image below shows the final merged TMI grid. The magnetic field is not affected by geometry of the aircraft with respect to the local geology and the same diurnal and IGRF base values were applied to the data. This resulted in a consistent join between the two areas.

Page 39: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 39

Digital Elevation Model - The image below shows the final merged DEM grid. The GPS data collected by the aircraft is absolute if operating correctly. The radar altimeter data also came from a single aircraft using the same calibrated conversion factors. The result is a smooth join across the two areas.

Page 40: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 40

Interval conductivities Conductance and depth values derived from EMFlow are used to calculate specific interval conductivities. An example from a near surface and deeper interval conductivity are examined. Interval Conductivity (5m-10m) - The image below shows the final merged interval conductivity grid, for the depth range 5m to 10m. As we can see there is a consistent join between the two areas.

Page 41: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 41

Interval Conductivity (60m-100m) - The image below shows the final merged interval conductivity grid, for the depth range 60m to 100m. There is a slight level shift to the north of the cross-over area, however this is a shift within area L1/N1 itself, and not a shift between the two areas. The join itself is acceptable.

5.3.2 Multiple aircraft As described in Section 2, there were two different survey aircraft involved in the acquisition, VH-TEM and VH-WGT. To test the consistency and repeatability of the data collected from each, we created CDI data for two lines, 2477 and 2480, that were flown by both aircraft. The EMFLOW output for these are shown on the next page. In general, a high-level of consistency is evident between the CDI’s derived from both aircraft, in terms of both conductivity and depth distribution. This consistency is further demonstrated in Appendix VIII which contains CDI sections of the repeat and seismic / borehole lines that were flown by both aircraft.

Page 42: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 42

Line 2477 (24771 flown by VH-TEM, 24772 flown by VH-WGT)

Line 2480 (24801 flown by VH-TEM, 24802 flown by VH-WGT)

Page 43: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River, Tempest Survey – Commonwealth of Australia Job No. 1835 Page 43

REFERENCES Garner, S.J., Thiel, D.V., 2000, Broadband (ULF-VLF) surface impedance measurements using

MIMDAS: Exploration Geophysics, 31, 173-178. Green, A., 1998. Altitude correction of time domain AEM data for image display and geological

mapping, using the Apparent Dipole Depth (ADD) method. Exploration Geophysics. 29, 87-91. Green, A., 1998. The use of multivariate statistical techniques for the analysis and display of AEM

data. Exploration Geophysics. 29, 77-82. Green, A., Lin, Z., 1996. Effect of uncertain or changing system geometry on airborne transient

electromagnetic data: CSIRO Exploration. and Mining Research News No. 6, August 1996, 9-11, CSIRO Division of Exploration and Mining.

Lane, R., 2000, Conductive unit parameters : summarising complex conductivity distributions: Paper

accepted for presentation at the SEG Annual Meeting, August 2000. Lane, R., Green, A., Golding, C., Owers, M., Pik, P., Plunkett, C., Sattel, D., Thorn, B., 2000, An

example of 3D conductivity mapping using the TEMPEST airborne electromagnetic system: Exploration Geophysics, 31, 162-172.

Lane, R., Leeming, P., Owers, M., Triggs, D., 1999, Undercover assignment for TEMPEST: Preview,

Issue 82, 17-21. Lane, R., Pracilio, G., 2000: Visualisation of sub-surface conductivity derived from airborne EM,

SAGEEP 2000, 101-111. Macnae, J.C., King, A., Stolz, N., Osmakoff, A. and Blaha, A., 1998, Fast AEM data processing and

inversion: Exploration Geophysics, 29, 163-169. Stolz, E., and Macnae, J., 1998, Evaluating EM waveforms by singular-value decomposition of

exponential basis functions: Geophysics, 63, 64–74.

Page 44: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 44

APPENDIX I – Weekly Acquisition Reports VH-WGT

Monday Pilots:Techs: Michael Wirski, Craig LyraClient: BRS, Geo Australia

34065 Contact #: 0429 109 240 / 02 6884 5222Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 11-Dec-06 nil 0.0

Julian 10-Dec-00 0.0Day 1 0.0 0.0 0.0 0.0 0.0 0.0Tuesday 12-Dec-06 test GH SM/NA 5:55 6:45 0.8 400

Ferry GH SM/NA 9:33 12:21 2.8Julian 346 0.0Day 2 3.6 0.0 0.0 0.0 0.0 0.0Wednesday 13-Dec-06 0.0 799

0.0Julian 347 0.0Day 3 0.0 0.0 0.0 0.0 0.0 0.0Thursday 14-Dec-06 1 GH/TR SM/NA 8:43 10:07 1.4 900

TRAINING TW/TR 11:34 13:07 1.6 600Julian 348 TRAINING TW/TR 14:34 15:33 1.0Day 4 3.9 0.0 0.0 0.0 0.0 0.0Friday 15-Dec-06 2 TW/GH NA 6:43 7:05 0.4 799

Training MH/TR TR 8:54 12:29 3.6Julian 349 TRAINING MH/TR/TW 21:34 21:55 0.4Day 5 4.3 0.0 0.0 0.0 0.0 0.0Saturday 16-Dec-06 3 TW/GH NA/MW 17:39 18:33 0.9 401

TRAINING MH/TR NA 11:55 12:17 0.4Julian 350 0.0Day 6 1.3 0.0 0.0 0.0 0.0 0.0Sunday 17-Dec-06 4 MH/TR NA/CL 0.8

5 MH/TR SM/MW 0.0Julian 351 Training MH/TR MW/CL 0.0Day 7 0.8 0.0 0.0 0.0 0.0 0.0

Total Job Hours 13.9 Weekly Totals 0 0 3899 0.0 0.0 0.0 0.0Aircraft Hrs at Total Aircraft Hours 280 Total Standby 0.0start of job 7873.1 Hours to Next Periodic 0.0 km/day % Complete 0.0 % Seismic Line 50Next service 8042.7 Anticipated Hours Next week 0.0 km/hr km Remaining 34065.0 km Area North 16015

Country:Kah Tho LeeScott MillerCrew Leader:Australia

Area Name:This Flight

VH-WGT Grant Hamilton, Troy Wilhelmi, Mark Harradence, Til Ribarich

Oil

Cattleman's Country

Nathan Alexander

Comments

Aircraft:Base:

To Date

Operators:Data Proc:

Accom:

Running Avg

Week Commencing:Job Number:

Area S1 Total km:183534065.0

11-Dec-06

Time

S1

Dubbo

Hours Today

Hours Today

13.9155.7

Hours Today

Hours Today

Hours Today

Date Crew

Hours Today

7887.0 Ltrs/Hr13.9

Hours Today

Weather: Strong Cool S winds +24CRemarks: Replaced tow cable and standardised wiring to match.

Safety Meeting:

Remarks : Quick Test flight for Tow cable then Mobilised to Dubbo, Mark Harradence, Troy Wilhelmi & Til Ribarich arrive on site at 20:20Safety Meeting:

Weather: Cool morning S Winds 15kts. +20C. Dubbo NE winds +32C

Remarks: Set up base mags, Base GPS and liaise with Airport Manager for permission to park aircraft in suitable locationSafety Meeting:

Weather: NE winds 15kts +34C

Remarks: Liaised with Client and met with CMA. Training fliight M.HarradenceSafety Meeting:

Weather: NE winds 5kts +30C

Weather: +22C NE winds; Midday Winds 15kts +28CRemarks: Test flight in morning to check LIDAR data. Liased with Office forassistance. Micheal Wirski & Craig Lyra to help. Night flying for pilotsSafety Meeting:

Weather: +20C NE winds 20kts; Midday Winds 25kts +26CRemarks: Michael Wirski & Craig Lyra arrive on site. Work on LIDARTest flights of LIDAR with new software.Safety Meeting:

1835 Total Area KM:

Weather: +20C NE winds 20kts; Midday Winds 25kts +26CRemarks: Test flight in morning to check LIDAR data. Craig & Michael re writingsoftware. Safety Meeting:

Page 45: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 45

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 18-Dec-06 0.0

0.0Julian 352 0.0Day 8 0.0 0.0 0.0 0.0 0.0 0.0Tuesday 19-Dec-06 Training MH?TR/TW 1.8

0.0Julian 353 0.0Day 9 1.8 0.0 0.0 0.0 0.0 0.0Wednesday 20-Dec-06 0.0

0.0Julian 354 0.0Day 10 0.0 0.0 0.0 0.0 0.0 0.0Thursday 21-Dec-06 MH MW 0.5

MH MW 0.5Julian 355 0.0Day 11 1.0 0.0 0.0 0.0 0.0 0.0Friday 22-Dec-06 MH MW 7:50 9:00 1.2

0.0Julian 356 0.0Day 12 1.2 0.0 0.0 0.0 0.0 0.0Saturday 23-Dec-06 0.0

0.0Julian 357 0.0Day 13 0.0 0.0 0.0 0.0 0.0 0.0Sunday 24-Dec-06 0.0

0.0Julian 358 0.0Day 14 0.0 0.0 0.0 0.0 0.0 0.0

Total Job Hours 17.9 Weekly Totals 0 0 0 0.0 0.0 0.0 0.0Aircraft Hrs at Total Aircraft Hours 0 Total Standby 0.0start of job 7873.1 Hours to Next Periodic 0.0 km/day % Complete 0.0Next service 8042.7 Anticipated Hours Next week 0.0 km/hr km Remaining 34065.0

Grant Hamilton, Troy Wilhelmi, Mark Harradence, Til RibarichNathan Alexander

Cattleman's CountryTo Date

Weather:

Michael Wirski, Craig LyraOperators:Data Proc:

S1

151.7

Hours Today

Hours Today

Hours Today

This Flight

Crew Leader:Accom:

Week Commencing:Job Number:

Area S1 Total km:

Aircraft:Base:

Country:Kah Tho LeeMark Harradence

Dubbo183534065

18-Dec-06

Australia

VH-WGT

Survey Equipment Problems:

Hours Today

Hours Today

Hours Today

8.9

4.07891.0

Running AvgLtrs/Hr

Area Name:

Hours Today

Date Crew

1835 Total Area KM:OilTime

Remarks: Work On Software for LIDARScott Miller back to Sydney for Family emergency. Mark Harradence Crew LeaderSafety Meeting:

Remarks: Software trials on the ground, rewired LIDAR cable

Safety Meeting:

Weather:

Remarks:Testing of LIDAR software and relaibilityClean aircraft and pack up fo equipment for pending departures 21/22DECSafety Meeting:

Weather:

Remarks: Ferry to Naromine, for Opening of projectOther crew demob for Home for XmasSafety Meeting:

Weather:

Remarks: Ferry Aircraft to Bankstown for service in JanuaryMark and Michael home for XmasSafety Meeting:

Remarks:

Safety Meeting:

Remarks:

Safety Meeting:

BRS, Geo Australia0429 109 240 / 02 6884 5222

Weather:

Weather:

Weather:

Comments

Page 46: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 46

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 8-Jan-07 TEST GH 16:45 17:50 1.8

0.0Julian 8 0.0Day 29 1.8 0.0 0.0 0.0 0.0 0.0Tuesday 9-Jan-07 Ferry GH MW 9:54 11:13 1.3

0.0Julian 9 0.0Day 30 1.3 0.0 0.0 0.0 0.0 0.0Wednesday 10-Jan-07 TEST GH GS 7:02 7:32 0.5

TEST GH GS 16:48 17:19 0.5Julian 10 0.0Day 31 1.0 0.0 0.0 0.0 0.0 0.0Thursday 11-Jan-07 TEST GH/TR MW 9:52 10:20 0.5

0.0Julian 11 0.0Day 32 0.5 0.0 0.0 0.0 0.0 0.0Friday 12-Jan-07 TEST GH/TR AM 14:38 15:03 0.9

0.0Julian 12 0.0Day 33 0.9 0.0 0.0 0.0 0.0 0.0Saturday 13-Jan-07 0.0

0.0Julian 13 0.0Day 34 0.0 0.0 0.0 0.0 0.0 0.0Sunday 14-Jan-07 TEST TR/GH MW 8:32 8:58 0.4

TEST TR/GH 15:18 15:45 0.5Julian 14 0.0Day 35 0.9 0.0 0.0 0.0 0.0 0.0

Total Job Hours 24.3 Weekly Totals 0 0 0 0.0 0.0 0.0 0.0Aircraft Hrs at Total Aircraft Hours 0 Total Standby 0.0start of job 7873.1 Hours to Next Periodic 0.0 km/day % Complete 0.0Next service 8042.7 Anticipated Hours Next week 0.0 km/hr km Remaining 34065.0

Grant Hamilton, Til RibarichOperators:Data Proc:

Running Avg

Weather:

Weather: Warm day, NW winds +38C

Weather: Warm Day NW winds +39C

Weather: Very Hot day +42C Westerly winds

Scott Miller

S1

Base:Country:

Matt Lawrence, Nadir HalimScott Miller

DubboAustralia Crew Leader:

Area Name:

Survey Equipment Problems:

Week Commencing:Job Number:

Area S1 Total km:183534065

Aircraft:8-Jan-07 VH-WGT

4.7

This Flight

Ltrs/Hr6.4

7896.5146.2

Hours Today

Hours Today

OilTime

Hours Today

Hours Today

Hours Today

Hours Today

1835 Total Area KM: 0To Date

Talarook Motor InnAccom:

Hours Today

Date Crew

Micheal WriskiBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather:Remarks: Test flight for engine change only

Safety Meeting:

Remarks: Ferry Aircraft to Dubbo for further engine work as Bankstownwas too restrictive for flight testsSafety Meeting:

Remarks: Engine test flight only

Safety Meeting:

Remarks: Engine test flight onlySurvey equipment will not work in hot daily temperatures system locks upSafety Meeting:

Remarks: Engine test flight onlySurvey equipment will not work in hot daily temperatures system locks upSafety Meeting:

Remarks:Survey equipment will not work in hot daily temperatures system locks upSafety Meeting:

Weather: Very Hot day +42C

Weather: Warm Day NE winds +35CRemarks: Engine test flight onlyRelocated aircraft due to bushfire waterbombing using previous facilitiesSafety Meeting:

Page 47: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 47

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 15-Jan-07 TEST GH/TR MW 6:45 7:45 1.0

0.0Julian 15 0.0Day 36 1.0 0.0 0.0 0.0 0.0 0.0Tuesday 16-Jan-07 6 TR/GH MW 0.0

7 TR/GH MWJulian 16 0.0Day 37 3.4 0.0 0.0 0.0 0.0 0.0Wednesday 17-Jan-07 8 TR/GH MW 2.1 64.5 25.8

0.0Julian 17 0.0Day 38 2.1 64.5 0.0 25.8 38.7 0.0Thursday 18-Jan-07 9 TR/GH SM 6:50 9:15 2.4

0.0Julian 18 0.0Day 39 2.4 0.0 0.0 0.0 38.7 0.0Friday 19-Jan-07 10 TR/GH SM 0.0

11 GH SM 0.0Julian 19 0.0Day 40 2.6 0.0 0.0 0.0 38.7 0.0Saturday 20-Jan-07 0.0

0.0Julian 20 0.0Day 41 0.0 0.0 0.0 0.0 38.7 0.0Sunday 21-Jan-07 12 GH/TR SM 1.4

0.0Julian 21 0.0Day 42 1.4 0.0 0.0 0.0 38.7 0.0

Total Job Hours 37.2 Weekly Totals 0 0 0 64.5 0.0 25.8 0.0Aircraft Hrs at Total Aircraft Hours 0 Total Standby 0.0start of job 7873.1 Hours to Next Periodic 9.2 km/day % Complete 0.1Next service 8042.7 Anticipated Hours Next week 5.0 km/hr km Remaining 34026.3

Grant Hamilton, Til RibarichOperators:Data Proc:

Running Avg

Weather: Strong Easterly wind 15-20 Kts Cool AM +20C Midday +35C

Weather: North East winds 10kts AM 20C, PM 36C

Weather:North East Winds 15-20kts AM +25C PM +38C

Weather:Hot Nrtherly winds midday +38C

Scott Miller

S1

Base:Country:

Matt Lawrence, Nadir HalimScott Miller

DubboAustralia Crew Leader:

Area Name:

Survey Equipment Problems:

Week Commencing:Job Number:

Area S1 Total km:183534065

Aircraft:15-Jan-07 VH-WGT

6.1

This Flight

Ltrs/Hr12.9

7909.4133.3

Hours Today

Hours Today

OilTime

Hours Today

Hours Today

Hours Today

Hours Today

1835 Total Area KM: 0To Date

Talarook Motor InnAccom:

Hours Today

Date Crew

Micheal WriskiBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather: Strong Easterly wind 15-20 Kts Cool AM +20C Midday +35CRemarks: Test of LIDARWGT now located near RFDS due to emergency fire bombing programSafety Meeting:

Remarks: Test of LIDAR over waterSecond flight LIDAR Stacks over airportSafety Meeting:

Remarks: Production

Safety Meeting:

Remarks: Seismic lines and reflight of 400 foot ptiches and rolls

Safety Meeting:

Remarks: Flights to fix low Z problems

Safety Meeting:

Remarks: PDO work on "Matilda"

Safety Meeting:

Weather: Strong Winds 25-30kts +41C

Weather: Strong Westerly winds 13-25kts AM +28C PM +40CRemarks: Test flight resolved Z problems and LIDAR drop outs caused by TX off.Safety Meeting: Delayed until crew changes completed.

Page 48: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 48

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 22-Jan-07 13 GH/TR SM 7:07 8:29 1.4 501

14 GH/TR SM 0.5Julian 22 15 GH SM 20:20 20:45 0.4Day 43 2.3 0.0 0.0 0.0 38.7 0.0Tuesday 23-Jan-07 TEST TR/GH SM/MW 0.5 850

0.0Julian 23 0.0Day 44 0.5 0.0 0.0 0.0 38.7 0.0Wednesday 24-Jan-07 16 TR/GH MW 7:00 10:08 3.1 220 154.8 12.9

0.0 1150Julian 24 0.0Day 45 3.1 154.8 0.0 12.9 180.6 0.0Thursday 25-Jan-07 17 TR/GH MW 7:57 11:29 3.5 1129 335.4 12.9

0.0Julian 25 0.0Day 46 3.5 335.4 0.0 12.9 503.1 0.0Friday 26-Jan-07 18 TR/GH SM 7:07 10:34 3.5 1160 332.4

0.0Julian 26 0.0Day 47 3.5 332.4 0.0 0.0 835.5 0.0Saturday 27-Jan-07 0.0

0.0Julian 27 0.0Day 48 0.0 0.0 0.0 0.0 835.5 0.0Sunday 28-Jan-07 19 TR/GH SM 6:23 9:24 3.0 1062 245.4 12.9

0.0Julian 28 0.0Day 49 3.0 245.4 12.9 0.0 1093.8 12.9

Total Job Hours 53.1 Weekly Totals 0 0 6072 1068.0 12.9 25.8 0.0Aircraft Hrs at Total Aircraft Hours 382 Total Standby 0.0start of job 7873.1 Hours to Next Periodic 152.6 km/day % Complete 3.2Next service 8042.7 Anticipated Hours Next week 67.2 km/hr km Remaining 32971.2

Grant Hamilton, Til Ribarich

Survey Equipment Problems: \

Week Commencing:Job Number:

Area S1 Total km:183534065

Scott MillerMatt Lawrence, Nadir HalimScott Miller

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

7.5

This Flight

Ltrs/Hr15.9

7925.3117.4

Hours Today

Time

Hours Today

22-Jan-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: S1

Aircraft:

Date Crew

Hours Today

Micheal WriskiBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather: Slight Southerly 3kts +18C AM +35C MiddayRemarks: Flew seismic lines, errors in LidarSubsequent flights for LIDAR problem. Final flight landed at 2045Could not work on EMPDAS due to heat failures. (Crashes at > +35C)

Remarks: Test flights of LIDAR, assumed fixed at this stage.LIDAR mounted into shock mount as per specifications.Safety Meeting: Nil due to long work hours

Weather: South Easterly breeze.

Remarks: Production flight with no LIDAR problems. 2 lines flown short, due to checks of LIDAR.Safety Meeting:

Weather: Slight Easterly breeze 3 kts +23C AM +36C Midday

Remarks: Delay of flight as LIDAR output error message in Laptop Data stream(Using Hyperterminal). Changed to +12V. No problemsSafety Meeting: Nil due to long work hours

Weather: +23C AM Slight Easterly Breeze, 6 Kts. +35C Midday

Remarks: Production flight. Still getting PDAS reboots in flight for no reasonWaiting for Cable to build new LIDAR cable. Temp on floor.Safety Meeting: Nil due to long work hours

Remarks:PDO no flying

Safety Meeting: Nil due to long work hours

Remarks: Production flight with repaet lines. PDAS reboot still occuringAttempted to swap PNAV but was supplied with wrong one.Safety Meeting: Nil due to long work hours

1835 Total Area KM: 0

Weather: Southerly change winds 7 Kts +14C AM +29C Midday

Running Avg

Weather: Strong Easterly breeze 15-20Kts

Weather: Sout Easterly Breeze 6Kts. +16C AM +34C midday

Page 49: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 49

Monday Pilots: Grant Hamilton, Til Ribarich

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 29-Jan-07 20 GH/TR SM 6:26 9:54 3.5 1160 438.9

0.0Julian 29 0.0Day 50 3.5 438.9 0.0 0.0 1532.7 12.9Tuesday 30-Jan-07 21 TR/GH SM 6:25 10:03 3.6 1110 372.3

0.0Julian 30 0.0Day 51 3.6 372.3 0.0 0.0 1905.0 12.9Wednesday 31-Jan-07 22 GH/TR SM 6:29 7:01 0.5 381 1.0

0.0Julian 31 0.0Day 52 0.5 0.0 0.0 0.0 1905.0 12.9Thursday 1-Feb-07 0.0 1.0

0.0Julian 32 0.0Day 53 0.0 0.0 0.0 0.0 1905.0 12.9Friday 2-Feb-07 23 TR SM 6:37 8:37 2.0 159.6 12.9 0.5

24 TR MW 13:26 13:36 0.2 720Julian 33 0.0Day 54 2.2 159.6 12.9 0.0 2077.5 25.8Saturday 3-Feb-07 25 GH SM 6:37 9:55 3.3 1160 399.0

0.0Julian 34 0.0Day 55 3.3 399.0 0.0 0.0 2476.5 25.8Sunday 4-Feb-07 26 TR MW 6:37 9:39 3.0 1086 279.3 39.9

0.0Julian 35 0.0Day 56 3.0 279.3 0.0 39.9 2715.9 25.8

Total Job Hours 69.2 Weekly Totals 0 0 5617 1649.1 12.9 39.9 2.5Aircraft Hrs at Total Aircraft Hours 348 Total Standby 2.5start of job 7873.1 Hours to Next Periodic 235.6 km/day % Complete 8.0Next service 8042.7 Anticipated Hours Next week 102.2 km/hr km Remaining 31349.1

Survey Equipment Problems:

Week Commencing:Job Number:

Area S1 Total km:183534065

29-Jan-07 Aircraft:Base:

Country:

Scott MillerSteve CarterScott Miller

VH-WGT Operators:

Crew Leader:Dubbo

8.5

This Flight

Ltrs/Hr16.1

7941.5101.3

Hours Today

OilTime

Hours Today

To Date

Talarook Motor InnAccom:S1

Hours Today

Hours Today

AustraliaData Proc:

Area Name:1835 Total Area KM: 0

Hours Today

Hours Today

Hours Today

Date Crew

Micheal WriskiBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather:S;ight Southerly brreze 3 kts +13C AM +29C MiddayRemarks: Production flight. PDAS reboot in flight still occuring

Safety Meeting:

Remarks: Production flight. Pdas reboot in flight cost 2 lines

Safety Meeting:

Weather:Slight southerly 8kts, +18C AM +37C Midday

Remarks: Severe Sferix in flight while doing cals. No production possibleS.Miller visited Dr for neck injurrySafety Meeting: Held today

Weather: Easterly breeze 9kts. +18C AM +40C Midday

Remarks: Winds too strong for survey. No flightsS.Miller on sick leave (1 day)Safety Meeting:

Weather: Strong easterly breeze 25Kts gusting to 28. +18C AM + 35C midday

Weather: Strong easterly breeze 15kts, +20C AM +37C middayRemarks: Winds too strong for continued EM (bird) survey. Test flight of LDAR protection with optical glass. Did not work with protectiveglass plate. Plate removed after test.

Weather:Slight Northerly breeze 8Kts, +22C AM, +38C MiddayRemarks:Production flight cut short by 30 minutes due to incresed turbulence.PDAS reboot cost 20 minutes and one line reflown inflightPNAV replacement installed after flight, check test OK

Weather: Winds East 8 kts +23C AM +40C MiddayRemarks: Several system problems with PDAS, EM XFR, GPS and HDD.Production shortened due to problems.Work on Robyn ongoing, installed new Regulator board

Running Avg

Page 50: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 50

Monday Pilots: Grant Hamilton, Til Ribarich

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 5-Feb-07 0.0 1.0

0.0Julian 36 0.0Day 57 0.0 0.0 0.0 0.0 2715.9 25.8Tuesday 6-Feb-07 27 TR SM 6:26 10:14 3.8 1159 319.2 39.9

0.0Julian 37 0.0Day 58 3.8 319.2 39.9 0.0 3075.0 65.7Wednesday 7-Feb-07 0.0

0.0Julian 38 0.0Day 59 0.0 0.0 0.0 0.0 3075.0 65.7Thursday 8-Feb-07 28 TR SM 6:30 10:12 3.7 1120 478.8 39.9

0.0Julian 39 0.0Day 60 3.7 478.8 0.0 39.9 3513.9 65.7Friday 9-Feb-07 0.0

0.0Julian 40 0.0Day 61 0.0 0.0 0.0 0.0 3513.9 65.7Saturday 10-Feb-07 0.0

0.0Julian 41 0.0Day 62 0.0 0.0 0.0 0.0 3513.9 65.7Sunday 11-Feb-07 29 GH SM\GT 6:25 9:05 2.7 1085 279.3 39.9

0.0Julian 42 0.0Day 63 2.7 279.3 39.9 0.0 3833.1 105.6

Total Job Hours 79.4 Weekly Totals 0 0 3364 1077.3 79.8 39.9 1.0Aircraft Hrs at Total Aircraft Hours 331 Total Standby 3.5start of job 7873.1 Hours to Next Periodic 153.9 km/day % Complete 11.3Next service 8042.7 Anticipated Hours Next week 106.0 km/hr km Remaining 30231.9

Survey Equipment Problems:

Week Commencing:Job Number:

Area S1 Total km:183534065

5-Feb-07 Aircraft:Base:

Country:

Scott MillerSteve CarterScott Miller

VH-WGT Operators:

Crew Leader:Dubbo

8.7

This Flight

Ltrs/Hr10.2

7951.691.1

Hours Today

OilTime

Hours Today

To Date

Talarook Motor InnAccom:S1

Hours Today

Hours Today

AustraliaData Proc:

Area Name:1835 Total Area KM: 0

Hours Today

Hours Today

Hours Today

Date Crew

Micheal WriskiBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather:Strong Easterly winds 19kts +23C AM +38C middayRemarks: No flight due to strong windsWork on Robyn and PDASSafety Meeting: Nil

Remarks: Full production flight PDAS reboot inflight.

Safety Meeting: Nil

Weather: Winds From East 8kts +22C AM +40C midday

Remarks: No flight due to strong winds. Work ongoing with Robyn.M. Wirski to complete coil balance and re install into bird sheel.Safety : Incident report in for LIDAR. QIR submitted on glass.

Weather: Stong gusting winds, Average 20kts gusting to 30Kts +23C AM, +39C

Remarks: Full production flight. ! Scrub due to cross track of PNAV.

Safety Meeting:Held at 1800.

Weather: North Easterly breeze, 7kts. +19C AM, +36C Midday

Weather: Strong Easterly +16kts. +19C AM +36C MiddayRemarks: No flight due to system crash and strong winds.

Safety Meeting:

Weather: Strong Winds +20Kts by 9AM. +18C AM +35C MiddayRemarks: Rebuilding EMPDAS & PDAS software files including backups.Robyn Bird ready for test flight, no brass bolts for tailSafety Meeting:

Weather: Slight Easterly Breeze 6 Kts. +16C AM +34C MiddayRemarks: Production flght short due to strong turbulence and windsAlso had High Sferix in flight.Safety Meeting:

Running Avg

Page 51: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 51

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 12-Feb-07 30 TR SM/GT 6:30 7:16 0.8 290 1.0

0.0Julian 43 0.0Day 64 0.8 0.0 0.0 0.0 3833.1 105.6Tuesday 13-Feb-07 0.0 1.0

0.0Julian 44 0.0Day 65 0.0 0.0 0.0 0.0 3833.1 105.6Wednesday 14-Feb-07 31 TR SM/GT 6:30 9:26 2.9 961 239.4

0.0Julian 45 0.0Day 66 2.9 239.4 0.0 0.0 4072.5 105.6Thursday 15-Feb-07 32 GH SM/GT 6:35 9:48 3.2 1100 399.0

0.0Julian 46 0.0Day 67 3.2 399.0 0.0 0.0 4471.5 105.6Friday 16-Feb-07 33 TR SM/GT 7:05 10:10 3.1 971 279.3

0.0Julian 47 0.0Day 68 3.1 279.3 0.0 0.0 4750.8 105.6Saturday 17-Feb-07 34 GH SM/GT 6:30 10:06 3.6 1160 438.9

0.0Julian 48 0.0Day 69 3.6 438.9 0.0 0.0 5189.7 105.6Sunday 18-Feb-07 35 GH SM/GT 6:25 9:27 3.0 1100 359.1

0.0Julian 49 0.0Day 70 3.0 359.1 0.0 0.0 5548.8 105.6

Total Job Hours 96.0 Weekly Totals 0 0 5582 1715.7 0.0 0.0 2.0Aircraft Hrs at Total Aircraft Hours 336 Total Standby 5.5start of job 7873.1 Hours to Next Periodic 245.1 km/day % Complete 16.3Next service 8042.7 Anticipated Hours Next week 103.1 km/hr km Remaining 28516.2

Grant Hamilton, Til Ribarich

Survey Equipment Problems:

Week Commencing:Job Number:

Area S1 Total km:183534065

Glendon TurnerSteve CarterScott Miller

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

9.5

This Flight

Ltrs/Hr16.6

7968.374.4

Hours Today

Time

Hours Today

12-Feb-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: S1

Aircraft:

Date Crew

Hours Today

Glendon Turner/ Scott MillerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather: Strong winds 30 Kts +18C AM +29C Midday Large storms in regionRemarks: Strong winds just after take off, resulted in flight cancelled. Sferix also highElectrical failure of main supply rail for Rack just before landingSafety Meeting:

Remarks: All wiring checked by Engineer on site. Rack Supply battery OK. Possible Relay No Production due to contined strong winds, from Low pressure trough throughout inlandEastern Australia. (QLD - VIC)

Weather: Winds 18-20KTs 6AM. +17C AM +25C Midday

Remarks: Production flight cut short due winds. Mid air near miss incident.Safety Meeting:

Weather: Easterly breeze, 7 kts +18C AM, +30C Midday Storms in afternoon

Remarks: Production Flight cut short by 25 mins due to turbulence and windsJohn Stewart arrived on site 2030, assitance on RH Gen and voltages.Safety Meeting:

Weather: Winds 070/7kts +19C AM +30C Midday. Storms in afternoon

Remarks: Aircraft Voltage Regulator adjusted to 28V, turbulence cut short survey flightTested Flash card in C: Drive of PDAS OKSafety Meeting:

Remarks: Full Production flight

Safety Meeting:

Remarks: Shorter flight due to turbulence. Trialed CF Flash in PDAS C: drive for last line.

Safety Meeting:

1835 Total Area KM: 0

Weather: 060 / 8 kts +20C AM +32C Midday

Running Avg

Weather: 110/04 kts +18C AM +33C Midday

Weather: 060/6Kts +19C AM +32C Midday Storms in Afternoon

Page 52: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 52

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 19-Feb-07 36 GH GT/SM 6:35 10:16 3.7 1160 478.8

0.0Julian 50 0.0Day 71 3.7 478.8 0.0 0.0 6027.6 105.6Tuesday 20-Feb-07 37 GH GT 6:27 9:46 3.3 600 359.1 39.9

Test GH GT 11:13 11:44 0.5 842Julian 51 0.0Day 72 3.8 359.1 0.0 39.9 6346.8 105.6Wednesday 21-Feb-07 38 GH GT 6:34 9:56 3.4 1140 359.1 39.9

0.0Julian 52 0.0Day 73 3.4 359.1 39.9 0.0 6745.8 145.5Thursday 22-Feb-07 39 GH GT 6:38 10:26 3.8 241 478.8

Test 14:00 14:15 0.2 1161Julian 53 0.0Day 74 4.1 478.8 0.0 0.0 7224.6 145.5Friday 23-Feb-07 0.0

0.0Julian 54 0.0Day 75 0.0 0.0 0.0 0.0 7224.6 145.5Saturday 24-Feb-07 40 GH GT 6:45 10:35 3.8 1120 478.8

0.0Julian 55 0.0Day 76 3.8 478.8 0.0 0.0 7703.4 145.5Sunday 25-Feb-07 41 GH/MY SM 7:01 10:26 3.4 1119 359.1

0.0Julian 56 0.0Day 77 3.4 359.1 0.0 0.0 8062.5 145.5

Total Job Hours 118.2 Weekly Totals 0 0 7383 2513.7 39.9 39.9 0.0Aircraft Hrs at Total Aircraft Hours 333 Total Standby 5.5start of job 7873.1 Hours to Next Periodic 359.1 km/day % Complete 23.7Next service 8042.7 Anticipated Hours Next week 113.3 km/hr km Remaining 26002.5

Grant Hamilton

Survey Equipment Problems:

Week Commencing:Job Number:

Area S1 Total km:183534065

Glendon TurnerSteve CarterScott Miller

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

10.7

This Flight

Ltrs/Hr22.2

7990.452.3

Hours Today

Time

Hours Today

19-Feb-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: S1

Aircraft:

Date Crew

Hours Today

Glendon Turner/ Scott MillerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather: 090/07kts +22C AM +36C midday Clouds 6/8 AM Cumulous MiddayRemarks: Full production flight using CF in PDAS C: Drive.Unable to trial CF in EMPDAS D: Drive due to full flight.Safety Meeting: Held at 1745

Remarks: Production cut short due to winds, and equipment failure. Test of Robyn Birdsuccesfully completed before temps got too high for take off.Safety Meeting:

Weather: 140 /11kts +21C AM, +36C Midday. Clouds 1/8 AM, Cumulous and storms Midd

Remarks: Production short due turbulence, and PDAS lockup on line. Replaced CF with HReflight from previous day flown OKSafety Meeting:

Weather: 100 /12Kts +23C AM Clouds 4/8, +30C Midday, 350/ 10kts +35C PM Clouds 3/8

Remarks: Full production flight, light winds and cloud cover kept thermals and temps lowTest flight for Co Pilot Altimeter (not used for survey acquisition)Safety Meeting:

Weather: 020/05 Kts +23C AM clouds 7/8 light showers in area, +35 PM 350/10 kts thunde

Remarks: PDO No flying today

Safety Meeting:

Remarks: Full production flight

Safety Meeting:

Remarks: Full production flight with 50km ferry from/to Dubbo Safety Meeting:

1835 Total Area KM: 0

Weather: 140/06kts +20C AM Clouds 3/8. +33C PM 120/08kts clouds 6/8

Running Avg

Weather: 300/06kts +21C AM cloud 1/8, +35C PM 320/12kts clouds 5/8

Weather: 030/7kts +22C AM clouds 4/8 +33C PM 350/12Kts hail / thundersorms

Page 53: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 53

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 26-Feb-07 42 MY/GH GT 6:48 9:00 2.2 1119 199.5

0.0Julian 57 0.0Day 78 2.2 199.5 0.0 0.0 8262.0 145.5Tuesday 27-Feb-07 43 MY GT 6:55 10:28 3.6 1260 399.0 39.9

0.0Julian 58 0.0Day 79 3.6 399.0 0.0 39.9 8621.1 145.5Wednesday 28-Feb-07 44 GH SM 6:49 8:21 1.5 550 0.0 1.0

0.0Julian 59 0.0Day 80 1.5 0.0 0.0 0.0 8621.1 145.5Thursday 1-Mar-07 45 MY GT 7:00 10:45 3.8 1140 375.6 375.6

0.0Julian 60 0.0Day 81 3.8 375.6 0.0 375.6 8621.1 145.5Friday 2-Mar-07 46 MY GT 7:25 10:30 3.1 1021 253.8 121.8

0.0Julian 61 0.0Day 82 3.1 253.8 121.8 0.0 8996.7 267.3Saturday 3-Mar-07 0.0

0.0Julian 62 0.0Day 83 0.0 0.0 0.0 0.0 8996.7 267.3Sunday 4-Mar-07 47 MY GT 6:50 10:15 3.4 1100 441.6

0.0Julian 63 0.0Day 84 3.4 441.6 0.0 0.0 9438.3 267.3

Total Job Hours 135.8 Weekly Totals 0 0 6190 1669.5 121.8 415.5 1.0Aircraft Hrs at Total Aircraft Hours 353 Total Standby 6.5start of job 7873.1 Hours to Next Periodic 238.5 km/day % Complete 27.7 39.9Next service 8042.7 Anticipated Hours Next week 95.2 km/hr km Remaining 24626.7 10

399

Grant Hamilton / Mick Young

Survey Equipment Problems:

Week Commencing:Job Number:

Area S1 Total km:183534065

Glendon TurnerSteve CarterMick Young

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

11.2

This Flight

Ltrs/Hr17.5

8008.034.7

Hours Today

Time

Hours Today

26-Feb-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: S1/N1

Aircraft:

Date Crew

Hours Today

Glendon Turner/ Scott MillerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

110/10 +20C AM CLD6/8 HEAVY RAIN AT 1000. +28CPMFlight cut short due rain and wind

Safety Meeting:

Full flight 1 line scrubed due to system noise

Safety Meeting:

Am 120/05 +19C CLD 7/8 Pm 100/10 +28c

Spherics no production possible

Safety Meeting:

Am 070/08 +19c CLD 4/8 (storms) Pm +28c

Remarks:Extreme spherics

Safety Meeting:Held by SM

Weather:130/07 20c

Remarks:Cut short due turbulence

Safety Meeting:

Remarks:Nil flying due rebalancing bird

Safety Meeting:

Remarks:Cut short due spherics and turbulence

Safety Meeting:

1835 Total Area KM: 0

Weather: VRB/05 20c-30c Fine cond.

Running Avg

Weather:

Weather:010/05 20c-25c Fine cond.

Page 54: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 54

Monday Pilots:

Techs:Client:

34165 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 5-Mar-07 0.0

0.0Julian 64 0.0Day 85 0.0 0.0 0.0 0.0 9438.3 267.3 1.0

Tuesday 6-Mar-07 0.00.0

Julian 65 0.0Day 86 0.0 0.0 0.0 0.0 9438.3 267.3 1.0

Wednesday 7-Mar-07 0.00.0 1.0

Julian 66 0.0Day 87 0.0 1 0.0 0.0 0.0 9438.3 267.3Thursday 8-Mar-07 0.0 1.0

0.0Julian 67 0.0Day 88 0.0 0.0 0.0 0.0 9438.3 267.3Friday 9-Mar-07 48 MY GT 10:00 13:25 3.4 1200 198.0 172.0

0.0Julian 68 0.0Day 89 3.4 198.0 172.0 0.0 9808.3 439.3Saturday 10-Mar-07 49 MY GT 7:00 10:40 3.7 1 1272 452.0 122.0

0.0Julian 69 0.0Day 90 3.7 452.0 122.0 0.0 10382.3 561.3Sunday 11-Mar-07 50 MY GT 7:00 10:45 3.8 1250 574.0

0.0Julian 70 0.0Day 91 3.8 574.0 0.0 0.0 10956.3 561.3

Total Job Hours 146.6 Weekly Totals 0 2 3722 1224.0 294.0 0.0 4.0Aircraft Hrs at Total Aircraft Hours 344 Total Standby 10.5start of job 7873.1 Hours to Next Periodic 174.9 km/day % Complete 32.1Next service 8042.7 Anticipated Hours Next week 113.0 km/hr km Remaining 23208.7

Mick Young

Survey Equipment Problems:

Week Commencing:Job Number:

Total km183534165

Glendon TurnerMatt NoteboomMick Young

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

11.2

This Flight

Ltrs/Hr10.8

8018.823.9

Hours Today

Time

Hours Today

5-Mar-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: N1

Aircraft:

Date Crew

Hours Today

Glendon TurnerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather:

1835 Total Area KM: 0

Remarks:Nil flying due wx - rain/storms

Safety Meeting:

Remarks:Nil flying due wx - 13017

Safety Meeting:

Weather:

Nil Flying due wx - rain low cld

Safety Meeting:

Weather:

Nil flying due storms am and turb pm

Safety Meeting:Held no items raised

Weather:

Remarks: Re-fly due to spherics

Safety Meeting:

Weather: Early fog then fine w/v 12007

Remarks: Re-fly due to spherics

Safety Meeting:

Weather:Fine 08011

Remarks:

Safety Meeting:

Weather:Perfect 12007

Running Avg

Page 55: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 55

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 12-Mar-07 51 MY GT 7:00 10:40 3.7 1340 553.0

0.0Julian 71 0.0Day 92 3.7 553.0 0.0 0.0 11509.3 561.3Tuesday 13-Mar-07 52 MY GT 9:10 10:50 1.7 600 132.0

0.0Julian 72 0.0Day 93 1.7 132.0 0.0 0.0 11641.3 561.3Wednesday 14-Mar-07 53 MY GT 7:40 11:20 3.7 1232 452.0

0.0Julian 73 0.0Day 94 3.7 452.0 0.0 0.0 12093.3 561.3Thursday 15-Mar-07 54 MY GT 7:00 10:00 3.0 1004 396.0

0.0Julian 74 0.0Day 95 3.0 396.0 0.0 0.0 12489.3 561.3Friday 16-Mar-07 N/A MY GT 9:30 10:00 0.5 460

12:15 12:40 0.4Julian 75 0.0Day 96 0.9 0.0 0.0 0.0 12489.3 561.3Saturday 17-Mar-07 55 MY GT 7:00 10:40 3.7 1460 528.0

0.0Julian 76 0.0Day 97 3.7 528.0 0.0 0.0 13017.3 561.3Sunday 18-Mar-07 56 MY GT 8:15 11:00 2.8 920 330.0

0.0Julian 77 0.0Day 98 2.8 330.0 0.0 0.0 13347.3 561.3

Total Job Hours 165.9 Weekly Totals 0 0 7016 2391.0 0.0 0.0 0.0Aircraft Hrs at Total Aircraft Hours 363 Total Standby 10.5start of job 7873.1 Hours to Next Periodic 341.6 km/day % Complete 39.1Next service 8042.7 Anticipated Hours Next week 123.7 km/hr km Remaining 20817.7

Mick Young

Survey Equipment Problems:

Week Commencing:Job Number:

Total km183534165

Glendon TurnerMatt NoteboomMick Young

Oil

Data Proc:

To Date

Talarook Motor InnThis Flight

Ltrs/Hr19.3

8038.1

Hours Today

Time

Hours Today

Hours Today

Hours Today

Hours Today

VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

N1Date Crew

Hours Today

12-Mar-07

Area Name:

Aircraft:Base:

Country:1835 Total Area KM: 0

11.84.6

Hours Today

Glendon TurnerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather: Fine 19005 to 08012Remarks:

Safety Meeting:

Remarks: Flight cut short due turbulence

Safety Meeting:

Weather: Marginal 10018 to 08018

Remarks:

Safety Meeting:

Weather: Fine 11011 to 10010

Remarks:

Safety Meeting:

Weather: Fine 06010 to 06011

Remarks: CMOS battery failure so no production. Warren open day

Safety Meeting:

Weather: 33013 to 31014

Remarks: Compac flash card reader problem + data cable problem. Field repair carr

Safety Meeting: Held, no issue's raised

Weather: Fine 06004 to 28008

Remarks: Flight cut short due turbulence

Safety Meeting:

Weather: Windy + Turbulent 09016 to 09017

Running Avg

Page 56: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 56

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 19-Mar-07 0.0

0.0Julian 78 0.0Day 99 0.0 0.0 0.0 0.0 13347.3 561.3Tuesday 20-Mar-07 0.0

0.0Julian 79 0.0Day 100 0.0 0.0 0.0 0.0 13347.3 561.3Wednesday 21-Mar-07 0.0

0.0Julian 80 0.0Day 101 0.0 0.0 0.0 0.0 13347.3 561.3Thursday 22-Mar-07 0.0

0.0Julian 81 0.0Day 102 0.0 0.0 0.0 0.0 13347.3 561.3Friday 23-Mar-07 0.0

0.0Julian 82 0.0Day 103 0.0 0.0 0.0 0.0 13347.3 561.3Saturday 24-Mar-07 0.0

0.0Julian 83 0.0Day 104 0.0 0.0 0.0 0.0 13347.3 561.3Sunday 25-Mar-07 0.0

0.0Julian 84 0.0Day 105 0.0 0.0 0.0 0.0 13347.3 561.3

Total Job Hours 165.9 Weekly Totals 0 0 0 0.0 0.0 0.0 0.0Aircraft Hrs at Total Aircraft Hours - Total Standby 10.5start of job 7873.1 Hours to Next Periodic 0.0 km/day % Complete 39.1Next service 8042.7 Anticipated Hours Next week - km/hr km Remaining 20817.7

Mick Young

Survey Equipment Problems:

Week Commencing:Job Number:

Total km183534165

Glendon TurnerMatt NoteboomMick Young

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

11.0

This Flight

Ltrs/Hr0.0

8038.14.6

Hours Today

Time

Hours Today

19-Mar-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: N1

Aircraft:

Date Crew

Hours Today

Glendon TurnerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather:Remarks: Maintenance

Safety Meeting:

Remarks: Maintenance

Safety Meeting:

Weather:

Remarks: Maintenance

Safety Meeting:

Weather:

Remarks: Maintenance

Safety Meeting:

Weather:

Remarks: Maintenance

Safety Meeting:

Remarks: Maintenance

Safety Meeting:

Remarks: Maintenance

Safety Meeting:

1835 Total Area KM: 0

Weather:

Running Avg

Weather:

Weather:

Page 57: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 57

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 26-Mar-07 MY 18:15 19:35 1.3

0.0Julian 85 0.0Day 106 1.3 0.0 0.0 0.0 13347.3 561.3Tuesday 27-Mar-07 57 MY GT/LK 8:15 10:25 2.2 691 198.0

0.0 658Julian 86 0.0Day 107 2.2 198.0 0.0 0.0 13545.3 561.3Wednesday 28-Mar-07 58 MY GT/LK 7:20 9:30 2.2 600 198.0 66.0

59 MY GT/LK 16:55 18:10 1.3 540 Comp. BoxJulian 87 0.0Day 108 3.4 198.0 0.0 66.0 13677.3 561.3Thursday 29-Mar-07 60 MY GT/LK 7:10 10:05 2.9 1 1000 330.0 66.0

MY GT/LK 11:10 12:10 1.0 370 30.0 30.0Julian 88 0.0Day 109 3.9 360.0 66.0 30.0 14073.3 627.3Friday 30-Mar-07 61 MY GT/LK 7:15 10:20 3.1 1050 264.0

0.0Julian 89 0.0Day 110 3.1 264.0 0.0 0.0 14337.3 627.3Saturday 31-Mar-07 62 MY GT/LK 7:00 10:00 3.0 1 990 330.0 330.0

63 MY GT/LK 11:25 13:15 1.8 624 132.0Julian 90 0.0Day 111 4.8 462.0 0.0 330.0 14469.3 627.3Sunday 1-Apr-07 64 MY GT/LK 6:10 9:10 3.0 1124 264.0 198.0

0.0Julian 91 0.0Day 112 3.0 264.0 198.0 0.0 14931.3 825.3

Total Job Hours 187.7 Weekly Totals 0 2 7647 1746.0 264.0 426.0 0.0Aircraft Hrs at Total Aircraft Hours 352 Total Standby 10.5start of job 7873.1 Hours to Next Periodic 249.4 km/day % Complete 43.7Next service 8140 Anticipated Hours Next week 80.3 km/hr km Remaining 19233.7

Survey Equipment Problems:

Week Commencing:Job Number:

Total km183534165

26-Mar-07 Aircraft:Base:

Country:

Glendon TurnerMatt NoteboomMick Young

VH-WGT Operators:

Crew Leader:Dubbo

11.7

This Flight

Ltrs/Hr21.8

8059.980.1

Hours Today

OilTime

Hours Today

To Date

Talarook Motor InnAccom:N1

Hours Today

Hours Today

AustraliaData Proc:

Area Name:1835 Total Area KM: 0

Hours Today

Hours Today

Hours Today

Date Crew

Mick YoungGlendon TurnerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather:Remarks: Ferry Bankstown to Dubbo

Safety Meeting:

Remarks: Cut short due ill crew member.

Safety Meeting:

Weather: 06014

Remarks: Line scrubbed due coil knock. Flight shortend due turb.

Safety Meeting:

Weather: 08007

Remarks:2nd flight failed due rain

Safety Meeting: Yes

Weather:06004

Weather:23008Remarks:

Safety Meeting:

Weather:00000 and 13009Remarks: 1st flight scrubbed due flown wrong direction 2nd flight cut shortdue to turbulanceSafety Meeting:

Weather:13009Remarks:

Safety Meeting:

Running Avg

Page 58: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 58

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 2-Apr-07 65 MY LK/GT 6:15 9:00 2.8 988 198.0

66 MY LK/GT 9:55 12:35 2.7 906 330.0Julian 92 0.0Day 113 5.4 528.0 0.0 0.0 15459.3 825.3Tuesday 3-Apr-07 0.0

0.0Julian 93 0.0Day 114 0.0 0.0 0.0 0.0 15459.3 825.3Wednesday 4-Apr-07 67 MY LK/GT 6:25 10:30 4.1 1006 327.0 66.0

68 MY LK/GT 10:30 12:15 1.8 596 129.0Julian 94 0.0Day 115 5.8 456.0 0.0 66.0 15849.3 825.3Thursday 5-Apr-07 69 MY LK/GT 6:15 9:00 2.8 906 254.0 66.0

70 MY LK 10:05 12:15 2.2 729 248.0Julian 95 0.0Day 116 4.9 502.0 66.0 0.0 16417.3 891.3Friday 6-Apr-07 71 MY LK 6:10 9:10 3.0 984 244.0 60.0

0.0Julian 96 0.0Day 117 3.0 244.0 0.0 60.0 16601.3 891.3Saturday 7-Apr-07 0.0

0.0Julian 97 0.0Day 118 0.0 0.0 0.0 0.0 16601.3 891.3Sunday 8-Apr-07 72 MY LK 6:05 8:25 2.3 898 119.0 60.0

73 MY LK 9:15 10:50 1.6 520 59.0 59.0Julian 98 0.0Day 119 3.9 178.0 0.0 119.0 16660.3 891.3

Total Job Hours 210.8 Weekly Totals 0 0 7533 1908.0 66.0 245.0 0.0Aircraft Hrs at Total Aircraft Hours 326 Total Standby 10.5start of job 7873.1 Hours to Next Periodic 272.6 km/day % Complete 48.8Next service 8140 Anticipated Hours Next week 82.7 km/hr km Remaining 17504.7

Mick Young

Survey Equipment Problems:

Week Commencing:Job Number:

Total km183534165

Glendon TurnerMatt NoteboomMick Young

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

12.3

This Flight

Ltrs/Hr23.1

8083.057.0

Hours Today

Time

Hours Today

2-Apr-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: N1

Aircraft:

Date Crew

Hours Today

Glendon TurnerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather: 13010Remarks:

Safety Meeting:

Remarks:PDO

Safety Meeting:

Weather:

Remarks:

Safety Meeting:

Weather:11009

Remarks:

Safety Meeting:

Weather: 15007

Remarks:

Safety Meeting:

Remarks: PDO

Safety Meeting:

Remarks:

Safety Meeting:

1835 Total Area KM: 0

Weather: 08006

Running Avg

Weather:

Weather: 14010

Page 59: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 59

Monday Pilots:

Techs:Client:

34065 Contact #:Flight M/R Fuel Standby

Number Plt(s) Op T/O Land Hrs L R Added Prod Refly Scrub Prod Refly (0, 0.5, 1)Monday 9-Apr-07 74 MY LK 6:10 8:25 2.3 750 115.0 119.0

75 MY LK 9:20 12:05 2.8 906 342.0Julian 99 0.0Day 120 5.0 457.0 119.0 0.0 17236.3 1010.3Tuesday 10-Apr-07 76 MY LK 6:05 8:50 2.8 1100 277.0

77 MY LK 9:55 12:10 2.3 780 274.0Julian 100 0.0Day 121 5.0 551.0 0.0 0.0 17787.3 1010.3Wednesday 11-Apr-07 78 MY LK 6:05 9:10 3.1 1044 372.0

79 MY LK 10:00 12:00 2.0 658 215.0Julian 101 0.0Day 122 5.1 587.0 0.0 0.0 18374.3 1010.3Thursday 12-Apr-07 80 MY LK 6:00 9:15 3.3 0 313.0

0.0Julian 102 0.0Day 123 3.3 313.0 0.0 0.0 18687.3 1010.3Friday 13-Apr-07 0.0

0.0Julian 103 0.0Day 124 0.0 0.0 0.0 0.0 18687.3 1010.3Saturday 14-Apr-07 0.0

0.0Julian 104 0.0Day 125 0.0 0.0 0.0 0.0 18687.3 1010.3Sunday 15-Apr-07 0.0

0.0Julian 105 0.0Day 126 0.0 0.0 0.0 0.0 18687.3 1010.3

Total Job Hours 229.1 Weekly Totals 0 0 5238 1908.0 119.0 0.0 0.0Aircraft Hrs at Total Aircraft Hours 286 Total Standby 10.5start of job 7873.1 Hours to Next Periodic 272.6 km/day % Complete 54.7Next service 8140 Anticipated Hours Next week 104.1 km/hr km Remaining 15477.7

Mick Young

Survey Equipment Problems:

Week Commencing:Job Number:

Total km183534165

Glendon TurnerMatt NoteboomMick Young

Oil

Data Proc:

To Date

Talarook Motor Inn

Base:Country:

Hours Today

Hours Today

Hours Today

Hours Today

12.7

This Flight

Ltrs/Hr18.3

8101.338.7

Hours Today

Time

Hours Today

9-Apr-07 VH-WGT

Accom:Crew Leader:

DubboAustralia

Operators:

Area Name: N1

Aircraft:

Date Crew

Hours Today

Glendon TurnerBRS, Geo Australia0429 109 240 / 02 6884 5222

Comments

Weather: 12006Remarks:

Safety Meeting:

Remarks:

Safety Meeting:

12006

Remarks:

Safety Meeting:

13005

Remarks: Last flight for WGT on 1835. Casa to finish

Safety Meeting: Yes, no items

Weather:13007

Remarks:

Safety Meeting:

Remarks:

Safety Meeting:

Remarks:

Safety Meeting:

1835 Total Area KM: 0

Weather:

Running Avg

Weather:

Weather:

Page 60: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 60

APPENDIX II – Weekly Acquisition Reports VH-TEM

VH-TEM 17157.0Lower Macquarie River

13345.300 Kms F4, N30.000 Kms 13345.300 Country Comfort

12891.600 Kms 12891.600 Dubbo Airport3.40 % BRS

qwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvbPilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTS

initials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety MeetingsOper Scrubs & flown Off on Inspection to to to to Crew movements etc

initials Reflights today M/R Date Date Date DateDate 26-Feb 0.0 Landing gear on Casa being repaired

Julian Day 57 0.00.00.00.0

0.000 0.000 0.000 0.0 92.2 0.0 0.000 0.000 0.000 1.0 Weather► Overcast skies, rain in afternoon, high windsDate 27-Feb 0.0 Landing gear on Casa being repaired

Julian Day 58 0.00.00.00.0

0.000 0.000 0.000 0.0 92.2 0.0 0.000 0.000 0.000 1.0 Weather► Overcast skies, rain in afternoon, high windsDate 28-Feb 0.0 Landing gear on Casa being repaired

Julian Day 59 0.00.00.00.0

0.000 0.000 0.000 0.0 92.2 0.0 0.000 0.000 0.000 1.0 Weather►Overcast, thunder and lightning storms, rain in afternoon, extremely high winds

Date 1-Mar 1 TH,SC AE,SM TF 0.0Julian Day 60 0.0

0.00.00.0

0.000 0.000 0.000 0.0 92.2 0.0 0.000 0.000 0.000 Weather► Overcast skies, calm winds, light rain in afternoonDate 2-Mar 2 TH,SC AE 37.700 113.000 7:16 9:08 1.9

Julian Day 61 0.00.00.00.0

37.700 0.000 113.000 1.9 90.3 1.9 37.700 0.000 113.000 Weather►Clear Skies, Calm winds, hot temperatures in afternoon

Date 3-Mar 3 TH,JC AE 75.400 188.600 6:25 9:09 2.7Julian Day 62 0.0

0.00.00.0

75.400 0.000 188.600 2.7 87.6 4.6 113.100 0.000 301.600 Weather► Clear Skies, Calm winds, hot temperature in afternoonDate 4-Mar 4 TH,JC AE 340.600 151.300 6:55 10:44 3.8

Julian Day 63 0.00.00.00.0

340.600 0.000 151.300 3.8 83.8 8.4 453.700 0.000 452.900 Weather►Clear skies, calm winds which turned high in afternoon creating turbulance in late morning

453.700 0.000 452.900 8.4 0.0 3.0

% Complete:

Thursday

Week Hours:►

Flt Time

Sunday

Date

Monday

Tuesday

Saturday

Friday

Proc. Reflight Kms:Kms Remain:

▲: A/C Hrs to Next Service

Wednesday

Totals This Week: ►

Aircraft:

Total Job kms:

Contract Number:Job Name:

Activity

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsArea Names:

Accommodation:Flying Base:

Client:Kms - Kms remaining including Proc. Reflights

Page 61: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 61

VH-TEM 17157.0 0Lower Macquarie River

13345.300 Kms F4, N30.000 Kms 13345.300 Country Comfort

11762.800 Kms 11762.800 Dubbo Airport11.86 % BRS

qwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvbPilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTS

initials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety MeetingsOper Scrubs & flown Off on Inspection to to to to Crew movements etc

initials Reflights today M/R Date Date Date DateDate 5-Mar 0.0

Julian Day 64 0.00.00.00.0

0.000 0.000 0.000 0.0 83.8 8.4 453.700 0.000 452.900 1.0 Weather► Overcast rain, high windsDate 6-Mar 0.0

Julian Day 65 0.00.00.00.0

0.000 0.000 0.000 0.0 83.8 8.4 453.700 0.000 452.900 1.0 Weather► Overcast rain, high windsDate 7-Mar 0.0

Julian Day 66 0.00.00.00.0

0.000 0.000 0.000 0.0 83.8 8.4 453.700 0.000 452.900 1.0 Weather► Overcast, rain, high windsDate 8-Mar 0.0

Julian Day 67 0.00.00.00.0

0.000 0.000 0.000 0.0 83.8 8.4 453.700 0.000 452.900 1.0 Weather► Lightning storms, cloudyDate 9-Mar 5 TH,JC AE 0.000 0.000 0.000 8:47 10:06 1.3 Laser Altimeter issues, monitored and fixed.

Julian Day 68 6 TH,JC AE 0.000 0.000 0.000 11:02 12:17 1.30.00.00.0

0.000 0.000 0.000 2.6 81.2 11.0 453.700 0.000 452.900 Weather►Morning Fog, cleared in late morning, sunny and clear for remainder of day

Date 10-Mar 7 TH,JC AE 613.000 0.000 0.000 6:42 11:09 4.4Julian Day 69 0.0

0.00.00.0

613.000 0.000 0.000 4.4 76.8 15.4 1066.700 0.000 452.900 Weather► Clear, calm windsDate 11-Mar 8 TH,JC AE 515.800 38.000 6:59 10:54 3.9

Julian Day 70 0.00.00.00.0

515.800 0.000 38.000 3.9 72.9 19.3 1582.500 0.000 490.900 Weather► Clear, calm winds

1128.800 0.000 38.000 10.9 0.0 4.0

Activity

▲: A/C Hrs to Next Service

Flt

Week Hours:►

Plan Kms Remain:% Complete:

Time

Monday

Date

Saturday

Totals This Week: ►

Tuesday

Wednesday

Thursday

Aircraft:

Total Job kms:Proc. Reflight Kms:

Contract Number:Job Name:

Area Names:

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsKms - Kms remaining including Proc. Reflights

Client:

Accommodation:Flying Base:

Friday

Sunday

Page 62: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 62

VH-TEM 17157.0 0

Lower Macquarie River13345.300 Kms F4, N3

0.000 Kms 13345.300 Country Comfort9483.100 Kms 9483.100 Dubbo Airport

28.94 % BRSqwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvb

Pilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTSinitials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety Meetings

Oper Scrubs & flown Off on Inspection to to to to Crew movements etcinitials Reflights today M/R Date Date Date Date

Date 12-Mar 9 PH,JC AE 113.400 37.700 6:54 8:53 2.0Julian Day 71 0.0 Turbulence caused early end of flight

0.00.00.0

0.000 113.400 37.700 2.0 70.9 21.3 1582.500 113.400 528.600 Weather► Clear and sunny, high winds and hot in afternoonDate 13-Mar 0.0

Julian Day 72 0.0 No flying due to high winds0.00.00.0

0.000 0.000 0.000 0.0 70.9 21.3 1582.500 113.400 528.600 Weather► Clear and sunny, extremely high windsDate 14-Mar 10 PH,JC AE 512.400 38.000 6:42 11:03 4.4

Julian Day 73 0.00.00.00.0

512.400 0.000 38.000 4.4 66.5 25.7 2094.900 113.400 566.600 Weather► Clear and sunny. Hot in afternoonDate 15-Mar 11 PH,JC AE 114.300 6:59 9:04 2.1

Julian Day 74 0.0 Turbulence caused early end of flight0.00.00.0

114.300 0.000 0.000 2.1 64.4 27.8 2209.200 113.400 566.600 Weather► Clear, little clouds, high winds in afternoonDate 16-Mar 9:30 10:00 0.5

Julian Day 75 12:00 12:30 0.5Pete Hiskins and Josua Cox flew to Warren then flew to Coonamble after showcase in Warren.

0.00.00.0

0.000 0.000 0.000 1.0 63.4 28.8 2209.200 113.400 566.600 Weather► Clear and sunny.Date 17-Mar 12 PH,JC AE 844.000 6:47 12:00 5.2

Julian Day 76 0.00.00.00.0

844.000 0.000 0.000 5.2 58.2 34.0 3053.200 113.400 566.600 Weather► Clear and sunny, hot in afternoonDate 18-Mar 13 PH,JC AE 695.600 6:46 11:30 4.7

Julian Day 77 0.0 Turbulence caused early end of flight.0.00.00.0

695.600 0.000 0.000 4.7 53.5 38.7 3748.800 113.400 566.600 Weather► Clear and sunny, hot in afternoon

2166.300 113.400 75.700 19.4 0.0 0.0

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsKms - Kms remaining including Proc. Reflights

Client:

Accommodation:Flying Base:

Friday

Sunday

Contract Number:Job Name:

Area Names:

Tuesday

Wednesday

Thursday

Aircraft:

Total Job kms:Proc. Reflight Kms:

Week Hours:►

Plan Kms Remain:% Complete:

Time

Monday

Date

Saturday

Totals This Week: ►

Flt

▲: A/C Hrs to Next Service

Activity

Page 63: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 63

VH-TEM 17157.0 0

Lower Macquarie River13345.300 Kms F4, N3

0.000 Kms 13345.300 Country Comfort7054.100 Kms 7054.100 Dubbo Airport

47.14 % BRSqwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvb

Pilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTSinitials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety Meetings

Oper Scrubs & flown Off on Inspection to to to to Crew movements etcinitials Reflights today M/R Date Date Date Date

Date 19-Mar 14 PH,JC AE 163.800 7:03 8:44 1.7Julian Day 78 0.0 Turbulance caused early end to flight.

0.00.00.0

163.800 0.000 0.000 1.7 51.8 40.4 3912.600 113.400 566.600 Weather► Clear and Sunny, windy in afternoonDate 20-Mar 0.0

Julian Day 79 0.00.00.00.0

0.000 0.000 0.000 0.0 51.8 40.4 3912.600 113.400 566.600 Weather► Clear and sunny, little cloud.Date 21-Mar 15 PH,JC AE,DG 777.000 6:46 11:39 4.9

Julian Day 80 0.00.00.00.0

777.000 0.000 0.000 4.9 46.9 45.3 4689.600 113.400 566.600 Weather► CloudyDate 22-Mar 16 PH,JC AE,DG 234.000 78.000 6:49 9:19 2.5

Julian Day 81 0.0 Turbulance caused early end of flight.0.00.00.0

234.000 0.000 78.000 2.5 44.4 47.8 4923.600 113.400 644.600 Weather► Clear and sunny, windy in afternoon.Date 23-Mar 17 PH,JC AE,DG 117.600 78.000 39.200 6:47 8:50 2.1

Julian Day 82 0.00.00.00.0

117.600 78.000 39.200 2.1 42.3 49.9 5041.200 191.400 683.800 Weather► Cloudy, windy in afternoonDate 24-Mar 18 PH,JC AE,DG 665.700 78.300 6:45 11:35 4.8

Julian Day 83 0.00.00.00.0

665.700 0.000 78.300 4.8 37.5 54.7 5706.900 191.400 762.100 Weather► Cloudy, overcast, rain in afternoonDate 25-Mar 19 PH,JC AE,DG 314.600 78.300 5:41 9:08 3.5

Julian Day 84 0.00.00.00.0

314.600 78.300 0.000 3.5 34.0 58.2 6021.500 269.700 762.100 Weather► Overcast

2272.700 156.300 195.500 19.5 0.0 0.0

Activity

▲: A/C Hrs to Next Service

Flt

Week Hours:►

Plan Kms Remain:% Complete:

Time

Monday

Date

Saturday

Totals This Week: ►

Tuesday

Wednesday

Thursday

Aircraft:

Total Job kms:Proc. Reflight Kms:

Contract Number:Job Name:

Area Names:

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsKms - Kms remaining including Proc. Reflights

Client:

Accommodation:Flying Base:

Friday

Sunday

Page 64: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 64

VH-TEM 17157.0 0

Lower Macquarie River13345.300 Kms F4, N3

0.000 Kms 13345.300 Country Comfort3896.100 Kms 3896.100 Dubbo Airport

70.81 % BRSqwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvb

Pilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTSinitials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety Meetings

Oper Scrubs & flown Off on Inspection to to to to Crew movements etcinitials Reflights today M/R Date Date Date Date

Date 26-Mar 20 PH,JC AE,DG 772.900 39.400 39.400 5:45 10:54 5.2Julian Day 85 0.0

0.00.00.0

772.900 39.400 39.400 5.2 28.8 63.4 6794.400 309.100 801.500 Weather► Clear and sunny, slight cloud cover in afternoonDate 27-Mar 0.0

Julian Day 86 0.0 Pilots Day Off0.00.00.0

0.000 0.000 0.000 0.0 28.8 63.4 6794.400 309.100 801.500 Weather►Date 28-Mar 0.0

Julian Day 87 0.0 New Pilot arrived in late afternoon, no survey flight0.00.00.0

0.000 0.000 0.000 0.0 28.8 63.4 6794.400 309.100 801.500 Weather►Date 29-Mar 21 PH,MH DG 796.200 6:00 10:50 4.8

Julian Day 88 0.00.00.00.0

796.200 0.000 0.000 4.8 24.0 68.2 7590.600 309.100 801.500 Weather► Cloudy, overcast, light windsDate 30-Mar 22 PH,MH DG 378.000 0.0

Julian Day 89 0.00.00.00.0

378.000 0.000 0.000 0.0 24.0 68.2 7968.600 309.100 801.500 Weather► Clear, Sunny, high winds in afternoonDate 31-Mar 23 PH,G DG 567.000 8:33 12:49 4.3

Julian Day 90 0.00.00.00.0

567.000 0.000 0.000 4.3 19.7 72.5 8535.600 309.100 801.500 Weather► Clear and sunny, cloudy in afternoonDate 1-Apr 24 PH,G DG 151.200 453.300 6:02 10:50 4.8 Reflights from flight 3 and 4 flown

Julian Day 91 0.00.00.00.0

151.200 453.300 0.000 4.8 14.9 77.3 8686.800 762.400 801.500 Weather► Clear and sunny, windy in afternoon

2665.300 492.700 39.400 19.1 0.0 0.0

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsKms - Kms remaining including Proc. Reflights

Client:

Accommodation:Flying Base:

Friday

Sunday

Contract Number:Job Name:

Area Names:

Tuesday

Wednesday

Thursday

Aircraft:

Total Job kms:Proc. Reflight Kms:

Week Hours:►

Plan Kms Remain:% Complete:

Time

Monday

Date

Saturday

Totals This Week: ►

Flt

▲: A/C Hrs to Next Service

Activity

Page 65: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 65

VH-TEM 17157.0 0

Lower Macquarie River13345.300 Kms F4, N3

0.000 Kms 13345.300 Castleraegh Motel464.800 Kms 464.800 Coonamble NSW

96.52 % BRSqwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvb

Pilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTSinitials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety Meetings

Oper Scrubs & flown Off on Inspection to to to to Crew movements etcinitials Reflights today M/R Date Date Date Date

Date 2-Apr 25 PH, GH DG 680.400 6:13 10:49 4.6Julian Day 92 FERRY PH, GH NIL 11:58 12:30 0.5 FERRY TO DUBBO FOR 150HRLY MAINT

26 PH, GH AE 13:48 14:53 1.1 REFLY BORE HOLE LINE PROB WITH PNAV FILE0.00.0

680.400 0.000 0.000 6.2 8.7 83.5 9367.200 762.400 801.500 Weather► windDate 3-Apr 0.0 150 HRLY MAINT AT DUBBO

Julian Day 93 0.00.00.00.0

0.000 0.000 0.000 0.0 8.7 83.5 9367.200 762.400 801.500 Weather►Date 4-Apr 0.0 150 HRLY MAINT AT DUBBO

Julian Day 94 0.0 REPLACED WINCH MTR TIME EXP0.00.00.0

0.000 0.000 0.000 0.0 8.7 83.5 9367.200 762.400 801.500 Weather►Date 5-Apr ferry PH, GH nil 6:04 6:40 0.6

Julian Day 95 27 PH, GH DG 758.400 7:14 12:05 4.8 M/R TIME 17254.50.00.0 NEW WINCH MOTOR FAILED ON RETREVAL0.0 ENGR Dubbo TO Coonamble TO CHANGE

758.400 0.000 0.000 5.4 3.3 88.9 10125.600 762.400 801.500 Weather► very windyDate 6-Apr 28 PH,GH DG 946.600 6:00 11:53 5.9

Julian Day 96 0.00.00.00.0

946.600 0.000 0.000 5.9 -2.6 94.8 11072.200 762.400 801.500 Weather► very windyDate 7-Apr 29 PH,GH DG 737.000 81.900 101.900 0.0 scrub HDD WRITE PROB LOST LINE & EM TRANSFER

Julian Day 97 0.0 Proc scrub due turb / coil knocks0.0

0.0LIMITED FUEL AVAIL FOR NEXT FLT DUE NO DELIVERY THROUGH EASTER

0.0 M/R TIME 17265.7737.000 81.900 101.900 0.0 -2.6 94.8 11809.200 844.300 903.400 Weather► very windy

Date 8-Apr 30 PH,GH DG 227.000 6:08 8:33 2.4 M/R TIME 17268.1 LDGS 9140

Julian Day 98 0.0NO FUEL REMAING DELAY ON DELIVERY DUE EASTER

0.0 EXPECT TUESDAY0.00.0

227.000 0.000 0.000 2.4 -5.0 97.2 12036.200 844.300 903.400 Weather► very windy

3349.400 81.900 101.900 19.9 0.0 0.0

Activity

▲: A/C Hrs to Next Service

Flt

Week Hours:►

Plan Kms Remain:% Complete:

Time

Monday

Date

Saturday

Totals This Week: ►

Tuesday

Wednesday

Thursday

Aircraft:

Total Job kms:Proc. Reflight Kms:

Contract Number:Job Name:

Area Names:

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsKms - Kms remaining including Proc. Reflights

Client:

Accommodation:Flying Base:

Friday

Sunday

Page 66: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 66

VH-TEM 17157.0 0

Lower Macquarie River13345.300 Kms F4, N3

0.000 Kms 13345.300 COUNTRY COMFORT-1665.000 Kms -1665.000 DUBBO NSW

112.48 % BRSqwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvb

Pilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTSinitials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety Meetings

Oper Scrubs & flown Off on Inspection to to to to Crew movements etcinitials Reflights today M/R Date Date Date Date

Date 9-Apr 0.0

Julian Day 99 0.0Waiting on fuel drums to arrive, contacted truck driver he advised not possible until Wednesday afternoon

0.0 Plan move to Dubbo to complete survey0.0 Cancel fuel order0.0

0.000 0.000 0.000 0.0 -5.0 97.2 12036.200 844.300 903.400 Weather► okDate 10-Apr Ferry PH, GH 6:52 7:24 0.5 Reposition crew to Dubbo

Julian Day 100 0.00.00.00.0

0.000 0.000 0.000 0.5 -5.5 97.7 12036.200 844.300 903.400 Weather► okDate 11-Apr 31 PH, GH DG 667.800 5:50 11:25 5.6 Long ferry to northern area Approx 2 hours total ferry

Julian Day 101 0.00.00.00.0

667.800 0.000 0.000 5.6 -11.1 103.3 12704.000 844.300 903.400 Weather► okDate 12-Apr 32 PH, GH DG 536.000 5:52 11:18 5.4 Long ferry to northern area Approx 2 hours total ferry

Julian Day 102 0.0 Complete northern area0.00.00.0

536.000 0.000 0.000 5.4 -16.5 108.7 13240.000 844.300 903.400 Weather► okDate 13-Apr 33 PH, GH DG 646.000 6:54 11:39 4.8 Commence south part of block

Julian Day 103 0.0 M/R 17284.4 LDG 91440.00.00.0

646.000 0.000 0.000 4.8 -21.3 113.5 13886.000 844.300 903.400 Weather► ok

Date 14-Apr 34 PH, GH DG 280.000 6:24 8:54 2.5Return early very turbulent condits possible data issues

Julian Day 104 0.00.00.00.0

280.000 0.000 0.000 2.5 -23.8 116.0 14166.000 844.300 903.400 Weather► very windyDate 15-Apr 35 PH, GH DG 0.000 5:58 7:32 1.6 very high spherics in all directions no lines flown

Julian Day 105 PH, GH 18:19 18:58 0.7 night currency circuits0.00.00.0

0.000 0.000 0.000 2.3 -26.1 118.3 14166.000 844.300 903.400 Weather►2129.800 0.000 0.000 21.1 0.0 0.0

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsKms - Kms remaining including Proc. Reflights

Client:

Accommodation:Flying Base:

Friday

Sunday

Contract Number:Job Name:

Area Names:

Tuesday

Wednesday

Thursday

Aircraft:

Total Job kms:Proc. Reflight Kms:

Week Hours:►

Plan Kms Remain:% Complete:

Time

Monday

Date

Saturday

Totals This Week: ►

Flt

▲: A/C Hrs to Next Service

Activity

Page 67: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 67

VH-TEM 17157.0 0

Lower Macquarie River13345.300 Kms F4, N3

0.000 Kms 13345.300 COUNTRY COMFORT-3816.900 Kms -3816.900 DUBBO NSW

128.60 % BRSqwertyui qwertyuiopas qwertyui qwertyuiopa qwertyui qwertyui qwertyu qwerty qwertyui qwertyuiopasd qwertyuiopa qwertyuiop qwertyuiop qwertyuiopasdfghjklzxcvbnm qwertyuiopasdfghjklzxcvb

Pilot On Production Processing Fugro Flt Hours to Job Prod. Proc. Scrubs Stdby Lost COMMENTSinitials board excludes Reflights Scrub Take Land Hrs Periodic Hrs Reflights Days Days Weather, Data delivery, Safety Meetings

Oper Scrubs & flown Off on Inspection to to to to Crew movements etcinitials Reflights today M/R Date Date Date Date

Date 16-Apr PDO 0.0Julian Day 106 0.0

0.00.00.0

0.000 0.000 0.000 0.0 -26.1 118.3 14166.000 844.300 903.400 Weather►Date 17-Apr 36 PH, GH DG 658.000 5:59 10:39 4.7

Julian Day 107 0.00.00.0 D.Carden IN0.0

658.000 0.000 0.000 4.7 -30.8 123.0 14824.000 844.300 903.400 Weather► ok / turbulentDate 18-Apr 37 PH, GH DG 810.000 5:50 10:47 5.0

Julian Day 108 0.00.00.0 M/R 17298.9 LDG 91510.0 M. Harradence IN

810.000 0.000 0.000 5.0 -35.8 128.0 15634.000 844.300 903.400 Weather► ok / becoming turbulentDate 19-Apr 38 PH, GH DG 683.900 0.0

Julian Day 109 0.0 T. Wilhelmi IN0.0 M/R 17303.6 LDG 91520.00.0 Area completed

683.900 0.000 0.000 0.0 -35.8 128.0 16317.900 844.300 903.400 Weather► ok / becoming turbulentDate 20-Apr 0.0

Julian Day 110 0.0 Wait for confirmation of data prior to de-mob0.0 Maint on aircraft brakes and rear door hyd lines0.0 Maint on EM das0.0 Maint on External power Inverter

0.000 0.000 0.000 0.0 -35.8 128.0 16317.900 844.300 903.400 Weather►Date 21-Apr TW, PH, MH 12:59 14:28 1.5

Julian Day 111 0.0 Wait for confirmation of data prior to de-mob0.00.0 Training flights Hiskins, Wilhelmi, Harradence0.0

0.000 0.000 0.000 1.5 -37.3 129.5 16317.900 844.300 903.400 Weather►Date 22-Apr 0.0

Julian Day 112 0.00.00.00.0

0.000 0.000 0.000 0.0 -37.3 129.5 16317.900 844.300 903.400 Weather►2151.900 0.000 0.000 11.2 0.0 0.0

Activity

▲: A/C Hrs to Next Service

Flt

Week Hours:►

Plan Kms Remain:% Complete:

Time

Monday

Date

Saturday

Totals This Week: ►

Tuesday

Wednesday

Thursday

Aircraft:

Total Job kms:Proc. Reflight Kms:

Contract Number:Job Name:

Area Names:

Hrs - Progressive M/R Hrs at the start of job

Kms - Total Job Kms including Proc. ReflightsKms - Kms remaining including Proc. Reflights

Client:

Accommodation:Flying Base:

Friday

Sunday

Page 68: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 68

APPENDIX III – Flight Summary (Line Listing) Notes on Line numbers included below:

60FF – pre-flight barometer calibration for flight FF 61FF -- post=-flight barometer calibration for flight FF 70FF – pre-flight ‘zero’ calibration line for flight FFf 71FF – post-flight ‘zero’ calibration line for flight FF 9000-9006 – other pre/post flight EM calibrations (See Chapter 4) 18?? – magnetic compensation lines 81FF-89FF – repeat/seismic/borehole line from flight FF 1001-1268 – Area S1 2001-2621 – Area N1-3/L1-6

Shorts Skyvan – VH-WGT

Flight Date (yyyymmdd)

Line Direction Start Fid End Fid Start Time End Time

6 20070116 6006 N 1 100 8:28:49 8:30:28 6 20070116 1810 N 1356 1588 10:12:10 10:16:02 6 20070116 1811 E 1589 1874 10:17:08 10:21:53 6 20070116 1812 S 1875 2157 10:22:39 10:27:21 6 20070116 1813 W 2158 2442 10:28:35 10:33:19 6 20070116 6106 N 2443 2534 10:47:29 10:49:00 8 20070117 6008 N 1 90 6:55:54 6:57:24 8 20070117 9000.1 S 391 480 7:24:14 7:25:44 8 20070117 9001.1 S 481 570 7:26:40 7:28:10 8 20070117 7008.1 S 571 660 7:28:49 7:30:19 8 20070117 9003 N 661 713 7:31:02 7:31:55 8 20070117 8608 N 714 804 7:39:16 7:40:47 8 20070117 8608.1 S 805 897 7:43:01 7:44:34 8 20070117 1268 N 898 1118 7:51:49 7:55:30 8 20070117 1265 S 1578 1793 8:08:15 8:11:51 8 20070117 1264 N 1794 2026 8:13:11 8:17:04 8 20070117 9004 N 2027 2116 8:21:53 8:23:23 8 20070117 7108 N 2117 2206 8:24:47 8:26:17 8 20070117 9006 N 2207 2296 8:27:19 8:28:49 8 20070117 6108 N 2444 2533 9:16:56 9:18:26 9 20070118 6009 N 1 60 6:50:55 6:51:55 9 20070118 9000 N 61 150 7:08:02 7:09:32 9 20070118 9001 W 151 240 7:11:41 7:13:11 9 20070118 7009 S 241 330 7:14:47 7:16:17 9 20070118 9003 S 331 442 7:16:49 7:18:41 9 20070118 8109 N 443 801 7:26:44 7:32:43 9 20070118 8209 S 802 1044 7:37:54 7:41:57 9 20070118 8309 W 1045 1288 7:52:48 7:56:52 9 20070118 9004.1 N 2085 2174 8:38:34 8:40:04 9 20070118 7109 N 2175 2264 8:40:53 8:42:23 9 20070118 9006 N 2265 2354 8:43:05 8:44:35 9 20070118 6109 N 1 60 9:25:41 9:26:41 12 20070121 6012 N 1 60 6:55:08 6:56:08 12 20070121 9000 N 61 150 7:09:51 7:11:21 12 20070121 9001 N 151 240 7:12:16 7:13:46 12 20070121 7012 N 241 330 7:14:24 7:15:54 12 20070121 9003 N 331 400 7:16:37 7:17:47 12 20070121 8612 N 401 569 7:36:28 7:39:17 12 20070121 9004 N 570 659 7:46:34 7:48:04

Page 69: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 69

12 20070121 7112 N 660 749 7:48:46 7:50:16 12 20070121 9006 S 750 839 7:51:28 7:52:58 12 20070121 6112 N 1 59 8:27:37 8:28:36 16 20070124 6016 N 1 91 6:53:56 6:55:27 16 20070124 9000 N 92 181 7:09:50 7:11:20 16 20070124 7016 N 272 363 7:15:28 7:17:00 16 20070124 9001.1 N 364 453 7:18:21 7:19:51 16 20070124 9003 N 454 527 7:21:23 7:22:37 16 20070124 8516.1 E 773 963 8:02:42 8:05:53 16 20070124 8416.2 E 964 1223 8:17:30 8:21:50 16 20070124 8616 S 1224 1338 8:30:48 8:32:43 16 20070124 1254 N 1339 1575 8:41:26 8:45:23 16 20070124 1255 S 1576 1797 8:46:53 8:50:35 16 20070124 1256 N 1798 2024 8:51:46 8:55:33 16 20070124 1257 S 2025 2244 8:57:00 9:00:40 16 20070124 1258 N 2245 2463 9:02:18 9:05:57 16 20070124 1259 S 2464 2678 9:07:32 9:11:07 16 20070124 1260 N 2679 2904 9:12:46 9:16:32 16 20070124 1261 S 2905 3138 9:18:21 9:22:15 16 20070124 1262 N 3139 3362 9:23:42 9:27:27 16 20070124 1263 S 3364 3569 9:29:25 9:32:51 16 20070124 1266.1 N 3570 3797 9:34:25 9:38:13 16 20070124 1267 S 3798 4042 9:39:26 9:43:31 16 20070124 7116 N 4143 4232 9:51:32 9:53:02 16 20070124 9006 S 4233 4322 9:53:48 9:55:18 16 20070124 6116 N 1 90 10:12:16 10:13:46 17 20070125 6017 N 1 90 7:49:31 7:51:01 17 20070125 9000 N 91 180 8:06:20 8:07:50 17 20070125 9001 N 181 270 8:09:51 8:11:21 17 20070125 7017 N 271 360 8:12:06 8:13:36 17 20070125 9003 N 361 445 8:14:38 8:16:03 17 20070125 8617 S 446 573 8:28:03 8:30:12 17 20070125 1253 S 575 806 8:35:48 8:39:40 17 20070125 1252 N 807 1028 8:41:27 8:45:09 17 20070125 1251 S 1029 1247 8:47:44 8:51:23 17 20070125 1250 N 1248 1474 8:52:58 8:56:45 17 20070125 1249 S 1475 1720 8:58:34 9:02:40 17 20070125 1248 N 1721 1939 9:04:18 9:07:57 17 20070125 1247 S 1940 2193 9:09:21 9:13:35 17 20070125 1246 N 2194 2416 9:15:27 9:19:10 17 20070125 1245 S 2417 2674 9:20:56 9:25:14 17 20070125 1244 N 2675 2898 9:26:57 9:30:42 17 20070125 1243 S 2900 3153 9:32:38 9:36:52 17 20070125 1242 N 3154 3364 9:38:28 9:41:59 17 20070125 1241 S 3365 3602 9:43:37 9:47:35 17 20070125 1240 N 3603 3834 9:49:17 9:53:09 17 20070125 1239 S 3835 4089 9:55:00 9:59:15 17 20070125 1238 N 4090 4313 10:01:16 10:05:01 17 20070125 1237 S 4315 4560 10:07:03 10:11:09 17 20070125 1236 N 4561 4793 10:12:37 10:16:30 17 20070125 1235 S 4794 5035 10:18:45 10:22:47 17 20070125 1234 N 5036 5257 10:24:17 10:27:59 17 20070125 1233 S 5258 5492 10:29:57 10:33:52 17 20070125 1232 N 5493 5727 10:35:55 10:39:50 17 20070125 1231 S 5728 5994 10:41:32 10:45:59 17 20070125 1230 N 5995 6224 10:47:39 10:51:29 17 20070125 1229 S 6225 6480 10:52:48 10:57:05 17 20070125 1228 N 6482 6696 10:58:38 11:02:13

Page 70: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 70

17 20070125 9004 N 6697 6786 11:08:11 11:09:41 17 20070125 7117 N 6787 6880 11:10:44 11:12:18 17 20070125 9006 N 6881 6970 11:13:09 11:14:39 17 20070125 6117 N 6971 7061 11:32:20 11:33:51 18 20070126 6018 N 1 77 6:59:08 7:00:25 18 20070126 9000 N 1 90 7:15:35 7:17:05 18 20070126 9001 N 91 180 7:18:13 7:19:43 18 20070126 7018 N 181 270 7:20:14 7:21:44 18 20070126 9003 S 271 360 7:23:07 7:24:37 18 20070126 8618 S 361 454 7:30:12 7:31:46 18 20070126 1227 S 455 715 7:38:25 7:42:46 18 20070126 1226 N 716 946 7:46:33 7:50:24 18 20070126 1225 S 1 249 8:02:37 8:06:46 18 20070126 1224 N 250 485 8:08:39 8:12:35 18 20070126 1223 S 486 735 8:14:39 8:18:49 18 20070126 1222 N 736 977 8:21:21 8:25:23 18 20070126 1221 S 978 1437 8:28:52 8:36:33 18 20070126 1220 N 1439 1880 8:38:58 8:46:20 18 20070126 1219 S 1881 2337 8:48:14 8:55:51 18 20070126 1218 N 2338 2804 8:57:46 9:05:33 18 20070126 1217 S 2805 3255 9:07:43 9:15:14 18 20070126 1216 N 3256 3703 9:16:51 9:24:19 18 20070126 1215 S 3704 4153 9:26:11 9:33:41 18 20070126 1214 N 4154 4706 9:35:18 9:44:31 18 20070126 1213 S 4707 5236 9:46:16 9:55:06 18 20070126 1212 N 5237 5686 9:56:42 10:04:12 18 20070126 9004 N 5687 5776 10:09:54 10:11:24 18 20070126 7118 N 5777 5866 10:12:23 10:13:53 18 20070126 9006 N 5869 5958 10:14:53 10:16:23 18 20070126 6118 N 1 60 10:38:22 10:39:22 19 20070128 6019 N 1 60 6:11:24 6:12:24 19 20070128 9000 N 61 150 6:33:18 6:34:48 19 20070128 9001 N 151 240 6:35:43 6:37:13 19 20070128 7019 S 241 330 6:38:28 6:39:58 19 20070128 9003 S 331 450 6:40:23 6:42:23 19 20070128 8619 S 1 166 6:47:59 6:50:45 19 20070128 1263 S 167 411 6:55:31 6:59:36 19 20070128 1211 S 412 909 7:08:12 7:16:30 19 20070128 1210 N 910 1309 7:18:49 7:25:29 19 20070128 1209 S 1310 1883 7:27:20 7:36:54 19 20070128 1208 N 1884 2301 7:39:24 7:46:22 19 20070128 1207 S 2302 2812 7:48:27 7:56:58 19 20070128 1206 N 2813 3329 7:59:37 8:08:14 19 20070128 1205 S 3330 3844 8:13:20 8:21:55 19 20070128 1204 N 3845 4250 8:23:42 8:30:28 19 20070128 1203 S 4251 4807 8:32:52 8:42:09 19 20070128 1202 N 4808 5072 8:44:56 8:49:21 19 20070128 9004 S 5073 5162 8:57:12 8:58:42 19 20070128 7119 S 5163 5252 8:59:05 9:00:35 19 20070128 9006 S 5253 5342 9:01:12 9:02:42 19 20070128 6119 N 1 60 9:29:01 9:30:01 20 20070129 6020 N 1 67 6:21:05 6:22:12 20 20070129 9000 N 68 157 6:35:23 6:36:53 20 20070129 9001 N 158 247 6:38:03 6:39:33 20 20070129 7020 N 248 337 6:39:59 6:41:29 20 20070129 9003 S 338 410 6:42:21 6:43:34 20 20070129 1001 S 411 1106 7:00:52 7:12:28 20 20070129 1002 N 1107 1696 7:15:51 7:25:41

Page 71: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 71

20 20070129 1003 S 1697 2455 7:27:49 7:40:28 20 20070129 1004 N 2456 3050 7:41:52 7:51:47 20 20070129 1005 S 3051 3815 7:53:21 8:06:06 20 20070129 1006 N 1 615 8:09:51 8:20:06 20 20070129 1007 S 616 1372 8:21:42 8:34:19 20 20070129 1008 N 1373 1986 8:35:35 8:45:49 20 20070129 1009 S 1987 2744 8:47:10 8:59:48 20 20070129 1010 N 2745 3352 9:00:51 9:10:59 20 20070129 1011 S 3353 4114 9:12:07 9:24:49 20 20070129 9004 N 4115 4204 9:31:15 9:32:45 20 20070129 7120 N 4205 4294 9:33:24 9:34:54 20 20070129 9006 N 4295 4384 9:35:22 9:36:52 20 20070129 6120 N 1 60 9:57:57 9:58:57 21 20070130 6021 N 1 60 6:14:30 6:15:30 21 20070130 9000 N 61 150 6:33:01 6:34:31 21 20070130 9001 N 151 240 6:35:25 6:36:55 21 20070130 7021 N 241 330 6:37:41 6:39:11 21 20070130 9003 N 331 450 6:39:31 6:41:31 21 20070130 1201 S 451 758 6:49:11 6:54:19 21 20070130 1200 N 759 1033 6:56:02 7:00:37 21 20070130 1199 S 1034 1344 7:02:23 7:07:34 21 20070130 1198 N 1 290 7:19:06 7:23:56 21 20070130 1197 S 291 596 7:25:48 7:30:54 21 20070130 1196 N 597 883 7:32:16 7:37:03 21 20070130 1195 S 884 1192 7:38:48 7:43:57 21 20070130 1194 N 1193 1473 7:45:31 7:50:12 21 20070130 1193 S 1474 1783 7:51:44 7:56:54 21 20070130 1192 N 1784 2086 7:59:11 8:04:14 21 20070130 1191 S 2087 2392 8:06:15 8:11:21 21 20070130 1190 N 2393 2686 8:13:01 8:17:55 21 20070130 1189 S 2687 2994 8:19:33 8:24:42 21 20070130 1188 N 2996 3289 8:26:12 8:31:06 21 20070130 1187 S 3290 3584 8:32:54 8:37:49 21 20070130 1186 N 3585 3875 8:39:19 8:44:10 21 20070130 1185 S 3876 4178 8:46:09 8:51:12 21 20070130 1184 N 4179 4666 8:55:08 9:03:16 21 20070130 1183 S 4667 5128 9:05:21 9:13:03 21 20070130 1182 N 5129 5573 9:14:19 9:21:44 21 20070130 1181 S 5574 6034 9:23:32 9:31:13 21 20070130 9004 N 6035 6128 9:45:42 9:47:16 21 20070130 7121 N 6129 6218 9:47:52 9:49:22 21 20070130 9006 N 6219 6308 9:50:21 9:51:51 21 20070130 6121 N 1 60 10:07:29 10:08:29 23 20070202 6023.1 N 61 120 6:29:22 6:30:22 23 20070202 9000 N 121 180 6:44:51 6:45:51 23 20070202 9001 N 181 270 6:46:32 6:48:02 23 20070202 7023 N 271 360 6:48:32 6:50:02 23 20070202 9004 N 361 461 6:50:26 6:52:07 23 20070202 8623 S 462 614 6:58:51 7:01:24 23 20070202 1251.1 S 615 865 7:05:50 7:10:01 23 20070202 1180 N 866 1559 7:18:51 7:30:25 23 20070202 1179 S 1560 2240 7:32:19 7:43:40 23 20070202 1178 N 2241 2943 7:45:39 7:57:22 23 20070202 1177 S 2944 3664 7:59:09 8:11:10 23 20070202 9004 N 3665 3754 8:18:23 8:19:53 23 20070202 7123 N 3755 3844 8:20:17 8:21:47 23 20070202 9006 N 3845 3934 8:22:17 8:23:47 23 20070202 6123 N 1 60 8:37:48 8:38:48

Page 72: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 72

25 20070203 6025 N 1 120 6:26:24 6:28:24 25 20070203 9000 N 1 90 6:46:06 6:47:36 25 20070203 9001 S 91 180 6:48:22 6:49:52 25 20070203 7025 S 187 276 6:50:50 6:52:20 25 20070203 9003 N 277 350 6:53:38 6:54:52 25 20070203 1176 N 351 1053 7:03:14 7:14:57 25 20070203 1175 S 1054 1731 7:16:22 7:27:40 25 20070203 1174 N 1732 2509 7:30:30 7:43:28 25 20070203 1173 S 2510 3152 7:44:39 7:55:22 25 20070203 1172 N 3153 3866 7:56:41 8:08:35 25 20070203 1171 S 3867 4505 8:10:06 8:20:45 25 20070203 1170 N 4506 5261 8:22:13 8:34:49 25 20070203 1169 S 5262 5891 8:35:57 8:46:27 25 20070203 1167 S 1 624 9:05:07 9:15:31 25 20070203 1168 N 625 1422 9:17:30 9:30:48 25 20070203 9004 S 1423 1512 9:36:27 9:37:57 25 20070203 7125 S 1513 1602 9:38:46 9:40:16 25 20070203 9006 S 1605 1694 9:41:16 9:42:46 25 20070203 6125 N 1 120 10:00:32 10:02:32 26 20070204 6026.1 N 13 132 6:29:41 6:31:41 26 20070204 9000 S 1 90 6:46:47 6:48:17 26 20070204 9001 S 91 180 6:49:39 6:51:09 26 20070204 7026 S 181 269 6:51:59 6:53:29 26 20070204 9003 S 271 360 6:54:20 6:55:50 26 20070204 1165.1 S 1189 1891 7:38:08 7:49:51 26 20070204 1164 N 1892 2605 7:51:18 8:03:12 26 20070204 1163 S 2606 3270 8:05:10 8:16:15 26 20070204 1162 N 3271 3987 8:17:41 8:29:38 26 20070204 1161 S 3988 4659 8:31:24 8:42:37 26 20070204 1160 N 4661 5430 8:44:02 8:56:52 26 20070204 9004 N 1 90 9:13:30 9:15:00 26 20070204 7126.2 N 118 207 9:17:28 9:18:58 26 20070204 9006 N 208 297 9:19:42 9:21:12 26 20070204 6126 N 298 417 9:42:46 9:44:46 27 20070206 6027 N 1 120 6:17:02 6:19:02 27 20070206 9000 N 121 210 6:38:30 6:40:00 27 20070206 9001 N 211 300 6:43:58 6:45:28 27 20070206 7027 S 301 390 6:46:05 6:47:35 27 20070206 9003 S 391 489 6:48:05 6:49:44 27 20070206 8627 S 490 606 6:56:50 6:58:47 27 20070206 1166.1 N 607 1323 7:08:29 7:20:26 27 20070206 1165.1 S 1324 1951 7:24:41 7:35:09 27 20070206 1164.1 N 1952 2664 7:36:57 7:48:50 27 20070206 1159 S 2831 3472 7:59:59 8:10:41 27 20070206 1158 N 3473 4187 8:12:18 8:24:13 27 20070206 1157 S 1 742 8:29:01 8:41:23 27 20070206 1156 N 743 1484 8:43:10 8:55:32 27 20070206 1155 S 1485 2149 8:57:17 9:08:22 27 20070206 1154 N 2150 2940 9:09:54 9:23:05 27 20070206 1153 S 2941 3672 9:25:06 9:37:18 27 20070206 1152 N 3673 4407 9:38:41 9:50:56 27 20070206 9004 N 4408 4497 9:59:15 10:00:45 27 20070206 7127 N 4498 4587 10:01:28 10:02:58 27 20070206 9006 S 4588 4677 10:03:52 10:05:22 27 20070206 6127 N 1 120 10:18:28 10:20:28 28 20070208 6028 N 1 120 6:20:18 6:22:18 28 20070208 9000 N 121 210 6:40:00 6:41:30 28 20070208 9001 S 211 300 6:46:02 6:47:32

Page 73: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 73

28 20070208 7028 S 301 390 6:48:08 6:49:38 28 20070208 9003 N 391 470 6:51:03 6:52:23 28 20070208 1151 S 471 1174 7:00:56 7:12:40 28 20070208 1150 N 1175 1877 7:14:05 7:25:48 28 20070208 1149 S 1878 2824 7:28:03 7:43:50 28 20070208 1148 N 2825 3522 7:46:28 7:58:06 28 20070208 1147 S 3523 4288 8:00:24 8:13:10 28 20070208 1146 N 4289 5024 8:14:39 8:26:56 28 20070208 1145 S 5026 5877 8:29:06 8:43:18 28 20070208 1144 N 5878 6548 8:44:28 8:55:39 28 20070208 1143 S 6549 7326 8:57:24 9:10:22 28 20070208 1142 N 7327 7992 9:11:54 9:23:00 28 20070208 1141 S 7993 8734 9:24:38 9:37:00 28 20070208 1140 N 8735 9398 9:38:03 9:49:07 28 20070208 9004 N 9399 9488 9:56:04 9:57:34 28 20070208 7128 N 9489 9579 9:58:20 9:59:51 28 20070208 9006 S 9580 9669 10:01:11 10:02:41 28 20070208 6128 N 1 120 10:16:27 10:18:27 29 20070211 6029 N 1 120 6:18:53 6:20:53 29 20070211 9000 N 1 90 6:34:21 6:35:51 29 20070211 9001 N 91 181 6:37:12 6:38:43 29 20070211 7029 N 182 271 6:39:15 6:40:45 29 20070211 9003 N 272 351 6:41:19 6:42:39 29 20070211 1139 S 352 1030 6:51:21 7:02:40 29 20070211 1138 N 1031 1723 7:04:16 7:15:49 29 20070211 1137 S 1724 2419 7:19:08 7:30:44 29 20070211 1136 N 2420 3094 7:32:15 7:43:30 29 20070211 1135 S 3095 3790 7:45:18 7:56:54 29 20070211 1134 N 3794 4466 7:58:19 8:09:35 29 20070211 1133 S 4467 5164 8:11:10 8:22:48 29 20070211 1140.1 N 5165 5857 8:24:40 8:36:13 29 20070211 9004 N 5858 5947 8:42:42 8:44:12 29 20070211 7129 N 5948 6037 8:44:48 8:46:18 29 20070211 9006 N 6038 6127 8:47:21 8:48:51 29 20070211 6129 N 1 120 9:07:21 9:09:21 31 20070214 6031 N 1 120 6:23:13 6:25:13 31 20070214 9000 N 121 210 6:45:15 6:46:45 31 20070214 9001.1 N 487 576 7:00:27 7:01:57 31 20070214 7031.1 N 606 666 7:02:33 7:04:03 31 20070214 9003.1 N 667 753 7:05:31 7:06:58 31 20070214 8631 S 754 862 7:17:47 7:19:36 31 20070214 1132 N 863 1554 7:33:42 7:45:14 31 20070214 1131 S 1555 2225 7:47:27 7:58:40 31 20070214 1130 N 2228 2920 8:00:45 8:12:18 31 20070214 1129 S 2921 3582 8:17:55 8:28:57 31 20070214 1128 N 3583 4278 8:31:21 8:42:57 31 20070214 1127 S 4279 4927 8:45:12 8:56:01 31 20070214 9004 N 4928 5017 9:05:40 9:07:10 31 20070214 7131 N 5018 5107 9:08:37 9:10:07 31 20070214 9006 N 5108 5197 9:10:57 9:12:27 31 20070214 6131 N 1 120 9:30:03 9:32:03 32 20070215 6032 N 1 120 6:27:44 6:29:44 32 20070215 9000 N 121 210 6:49:52 6:51:22 32 20070215 9001 N 211 300 6:53:58 6:55:28 32 20070215 7032 N 301 391 6:56:19 6:57:50 32 20070215 9003 N 392 466 6:58:40 6:59:55 32 20070215 1126 N 467 1201 7:12:57 7:25:12 32 20070215 1125 S 1202 1868 7:27:06 7:38:13

Page 74: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 74

32 20070215 1124 N 1869 2597 7:40:00 7:52:09 32 20070215 1123 S 2598 3237 7:53:35 8:04:16 32 20070215 1122 N 3239 3960 8:06:04 8:18:06 32 20070215 1121 S 3961 4600 8:19:39 8:30:19 32 20070215 1120 N 4601 5326 8:31:48 8:43:54 32 20070215 1119 S 5327 5953 8:45:29 8:55:56 32 20070215 1118 N 5954 6698 8:57:41 9:10:06 32 20070215 1117 S 6699 7317 9:12:07 9:22:26 32 20070215 9004 N 7318 7407 9:29:28 9:30:58 32 20070215 7132 N 7408 7497 9:31:32 9:33:02 32 20070215 9006 N 7498 7587 9:33:45 9:35:15 32 20070215 6132 N 1 120 9:50:36 9:52:36 33 20070216 6033 N 1 120 6:57:35 6:59:35 33 20070216 9000 S 1 90 7:23:59 7:25:29 33 20070216 9001 S 91 180 7:26:38 7:28:08 33 20070216 7033 S 181 270 7:28:45 7:30:15 33 20070216 9003 S 271 370 7:30:42 7:32:22 33 20070216 1116 N 1 768 7:49:00 8:01:49 33 20070216 1115 S 770 1376 8:04:23 8:14:30 33 20070216 1114 N 1377 2144 8:17:08 8:29:57 33 20070216 1113 S 2146 2733 8:35:30 8:45:18 33 20070216 1112 N 2734 3501 8:47:33 9:00:22 33 20070216 1111 S 3503 4101 9:03:40 9:13:39 33 20070216 1110 N 4102 4874 9:16:33 9:29:26 33 20070216 9004 N 4875 4964 9:38:32 9:40:02 33 20070216 7133 N 4965 5054 9:40:39 9:42:09 33 20070216 9006 N 5055 5144 9:42:43 9:44:13 33 20070216 6133 N 271 390 10:13:44 10:15:44 34 20070217 6034 N 1 120 6:23:14 6:25:14 34 20070217 9000 N 121 210 6:39:15 6:40:45 34 20070217 9001.1 N 253 342 6:43:00 6:44:30 34 20070217 7034 N 343 432 6:45:25 6:46:55 34 20070217 9003 N 433 493 6:48:16 6:49:17 34 20070217 8634 S 494 608 6:57:28 6:59:23 34 20070217 1109 S 609 1262 7:13:22 7:24:16 34 20070217 1108 N 1263 2009 7:27:07 7:39:34 34 20070217 1107 S 2010 2660 7:41:33 7:52:24 34 20070217 1106 N 2661 3384 7:54:08 8:06:12 34 20070217 1105 S 3385 4035 8:07:48 8:18:39 34 20070217 1104 N 4036 4754 8:20:15 8:32:14 34 20070217 1103 S 4755 5401 8:33:37 8:44:24 34 20070217 1102 N 5402 6124 8:45:47 8:57:50 34 20070217 1101 S 6125 6759 8:59:13 9:09:48 34 20070217 1100 N 6760 7490 9:11:38 9:23:49 34 20070217 1099 S 7491 8121 9:25:11 9:35:42 34 20070217 9004 N 8122 8211 9:41:45 9:43:15 34 20070217 7134 N 8212 8301 9:43:50 9:45:20 34 20070217 9006 N 8302 8391 9:45:53 9:47:23 34 20070217 6134 N 1 120 10:07:15 10:09:15 35 20070218 6035 N 1 120 6:19:29 6:21:29 35 20070218 9000 S 1 90 6:34:54 6:36:24 35 20070218 9001 S 105 194 6:37:48 6:39:18 35 20070218 7035 S 195 284 6:40:00 6:41:30 35 20070218 9003 S 285 354 6:41:57 6:43:07 35 20070218 1098 N 355 1137 6:51:10 7:04:13 35 20070218 1097 S 1138 1769 7:05:49 7:16:21 35 20070218 1096 N 1770 2560 7:18:13 7:31:24 35 20070218 1095 S 2561 3180 7:33:08 7:43:28

Page 75: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 75

35 20070218 1094 N 3181 3976 7:45:07 7:58:23 35 20070218 1093 S 3977 4611 8:00:17 8:10:52 35 20070218 1092 N 4612 5391 8:12:41 8:25:41 35 20070218 1091 S 5392 6017 8:27:24 8:37:50 35 20070218 1090 N 1 876 8:44:13 8:58:49 35 20070218 9004 N 877 966 9:04:53 9:06:23 35 20070218 7135 N 967 1056 9:06:56 9:08:26 35 20070218 9006 N 1057 1146 9:08:52 9:10:22 35 20070218 6135 N 1 120 9:30:05 9:32:05 36 20070219 6036 N 1 120 6:29:13 6:31:13 36 20070219 9000 N 121 210 6:44:48 6:46:18 36 20070219 9001 N 211 300 6:47:29 6:48:59 36 20070219 7036 N 301 390 6:49:38 6:51:08 36 20070219 9003 N 391 474 6:51:31 6:52:55 36 20070219 1089 S 475 1124 7:07:53 7:18:43 36 20070219 1088 N 1125 1857 7:20:52 7:33:05 36 20070219 1087 S 1858 2499 7:34:39 7:45:21 36 20070219 1086 N 2500 3301 7:47:09 8:00:31 36 20070219 1085 S 3302 3916 8:03:14 8:13:29 36 20070219 1084 N 3917 4716 8:15:36 8:28:56 36 20070219 1083 S 4717 5323 8:30:32 8:40:39 36 20070219 1082 N 5324 6122 8:42:37 8:55:56 36 20070219 1081 S 6123 6716 8:57:34 9:07:28 36 20070219 1080 N 6717 7503 9:09:07 9:22:14 36 20070219 1079 S 7504 8095 9:23:35 9:33:27 36 20070219 1078 N 8096 8801 9:35:07 9:46:53 36 20070219 9004 N 8802 8891 9:54:49 9:56:19 36 20070219 7136 N 8892 8981 9:56:49 9:58:19 36 20070219 9006 N 8982 9071 9:58:54 10:00:24 36 20070219 6136 N 1 120 10:19:17 10:21:17 37 20070220 6037 N 1 120 5:52:39 5:54:39 37 20070220 9000 N 121 210 6:35:15 6:36:45 37 20070220 9001.1 N 256 345 6:38:20 6:39:50 37 20070220 7037 N 346 435 6:40:30 6:42:00 37 20070220 9003 N 436 512 6:42:26 6:43:43 37 20070220 8637 S 513 630 6:50:29 6:52:27 37 20070220 1077 S 631 1319 7:06:02 7:17:31 37 20070220 1076 N 1320 2031 7:19:40 7:31:32 37 20070220 1075 S 2032 2707 7:33:08 7:44:24 37 20070220 1074 N 2708 3423 7:46:21 7:58:17 37 20070220 1073 S 3424 4044 7:59:50 8:10:11 37 20070220 1072 N 4045 4738 8:11:56 8:23:30 37 20070220 1070 N 1 744 8:53:51 9:06:15 37 20070220 1069 S 745 1343 9:07:43 9:17:42 37 20070220 9004 N 1344 1433 9:24:59 9:26:29 37 20070220 7137 N 1434 1523 9:27:04 9:28:34 37 20070220 9006 N 1524 1613 9:29:20 9:30:50 37 20070220 6137 N 1 120 9:48:20 9:50:20 38 20070221 6038 N 1 120 6:01:19 6:03:19 38 20070221 9000 N 121 210 6:41:04 6:42:34 38 20070221 9001 N 211 300 6:43:20 6:44:50 38 20070221 7038 N 301 390 6:45:26 6:46:56 38 20070221 9003 N 391 461 6:47:13 6:48:24 38 20070221 1071 S 462 1084 7:03:19 7:13:42 38 20070221 1068 N 1085 1817 7:16:53 7:29:06 38 20070221 1067 S 1818 2454 7:30:59 7:41:36 38 20070221 1066 N 2455 3181 7:43:36 7:55:43 38 20070221 1065 S 3182 3808 7:57:28 8:07:55

Page 76: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 76

38 20070221 1064 N 3809 4525 8:09:42 8:21:39 38 20070221 1063 S 4526 5141 8:23:29 8:33:45 38 20070221 1062 N 1 799 8:48:13 9:01:32 38 20070221 1061 S 800 1375 9:03:14 9:12:50 38 20070221 1060 N 1376 2145 9:14:24 9:27:14 38 20070221 9004 N 2146 2235 9:34:56 9:36:26 38 20070221 7138 N 2236 2325 9:36:48 9:38:18 38 20070221 9006 N 2326 2415 9:38:40 9:40:10 38 20070221 6138 N 1 120 10:00:29 10:02:29 39 20070222 6039 N 1 120 6:16:05 6:18:05 39 20070222 9000 S 211 300 6:49:31 6:51:01 39 20070222 9001 S 301 390 6:51:31 6:53:01 39 20070222 7039 S 391 480 6:53:27 6:54:57 39 20070222 9003 S 481 555 6:55:19 6:56:34 39 20070222 1059 S 556 1227 7:16:51 7:28:03 39 20070222 1058 N 1228 1980 7:30:04 7:42:37 39 20070222 1057 S 1981 2614 7:44:28 7:55:02 39 20070222 1056 N 2615 3334 7:56:32 8:08:32 39 20070222 1055 S 3335 3959 8:10:16 8:20:41 39 20070222 1054 N 3960 4702 8:22:13 8:34:36 39 20070222 1053 S 4703 5316 8:36:09 8:46:23 39 20070222 1052 N 5317 6026 8:47:58 8:59:48 39 20070222 1051 S 6027 6680 9:01:24 9:12:18 39 20070222 1050 N 6681 7401 9:14:03 9:26:04 39 20070222 1049 S 7402 8009 9:27:38 9:37:46 39 20070222 1048 N 8010 8739 9:39:31 9:51:41 39 20070222 9004 N 8740 8829 9:58:16 9:59:46 39 20070222 7139 N 8830 8919 10:00:09 10:01:39 39 20070222 9006 N 8920 9009 10:02:06 10:03:36 39 20070222 6139 N 1 120 10:27:51 10:29:51 40 20070224 6040 N 1 120 6:09:37 6:11:37 40 20070224 9000 N 121 210 6:51:38 6:53:08 40 20070224 9001 N 211 300 6:54:10 6:55:40 40 20070224 7040 N 301 390 6:56:34 6:58:04 40 20070224 9003 N 391 456 6:58:40 6:59:46 40 20070224 8640 S 457 559 7:07:17 7:09:00 40 20070224 1047 S 560 1189 7:28:46 7:39:16 40 20070224 1046 N 1190 1983 7:41:05 7:54:19 40 20070224 1045 S 1984 2568 7:55:50 8:05:35 40 20070224 1044 N 2569 3357 8:07:18 8:20:27 40 20070224 1043 S 3358 3946 8:21:53 8:31:42 40 20070224 1042 N 3947 4714 8:33:29 8:46:17 40 20070224 1041 S 4715 5306 8:47:45 8:57:37 40 20070224 1040 N 5307 6102 9:00:15 9:13:31 40 20070224 1039 S 6103 6696 9:15:06 9:25:00 40 20070224 1038 N 6697 7467 9:26:36 9:39:27 40 20070224 1037 S 7468 8056 9:40:52 9:50:41 40 20070224 1036 N 8057 8810 9:52:18 10:04:52 40 20070224 9004 N 8811 8900 10:12:01 10:13:31 40 20070224 7140 N 8901 8990 10:14:02 10:15:32 40 20070224 9006 N 8991 9080 10:15:56 10:17:26 40 20070224 6140 N 1 120 10:37:34 10:39:34 41 20070225 6041 N 1 120 6:17:04 6:19:04 41 20070225 9000 N 121 210 7:10:57 7:12:27 41 20070225 9001 N 211 300 7:13:02 7:14:32 41 20070225 7041 N 301 390 7:15:00 7:16:30 41 20070225 9003 S 391 460 7:18:25 7:19:35 41 20070225 8641 S 461 582 7:26:25 7:28:27

Page 77: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 77

41 20070225 1035 S 583 1413 7:47:21 8:01:12 41 20070225 1034 N 1414 2219 8:03:42 8:17:08 41 20070225 1033 S 2220 3034 8:21:21 8:34:56 41 20070225 1032 N 3035 3686 8:37:01 8:47:53 41 20070225 1031 S 3687 4405 8:49:46 9:01:45 41 20070225 1030 N 4406 5061 9:04:32 9:15:28 41 20070225 1029 S 5062 5790 9:17:25 9:29:34 41 20070225 1028 N 5791 6446 9:30:58 9:41:54 41 20070225 1027 S 6447 7157 9:43:20 9:55:11 41 20070225 9004 N 7158 7247 10:02:31 10:04:01 41 20070225 7141 N 7248 7337 10:04:36 10:06:06 41 20070225 9006 N 7338 7427 10:06:38 10:08:08 41 20070225 6141 N 1 120 10:29:18 10:31:18 42 20070226 6042.1 N 1 120 6:04:22 6:06:22 42 20070226 9000 S 1 90 6:57:05 6:58:35 42 20070226 9001 S 91 180 6:59:03 7:00:33 42 20070226 7042 S 181 270 7:00:59 7:02:29 42 20070226 9003 S 271 355 7:02:50 7:04:15 42 20070226 1026 N 356 1004 7:18:14 7:29:03 42 20070226 1025 S 1005 1680 7:31:22 7:42:38 42 20070226 1024 N 1681 2383 7:44:16 7:55:59 42 20070226 1023 S 2384 3103 7:58:02 8:10:02 42 20070226 1022 N 3104 3773 8:12:00 8:23:10 42 20070226 9004 N 3774 3864 8:30:32 8:32:03 42 20070226 7142 N 3865 3954 8:32:28 8:33:58 42 20070226 9006 N 3955 4044 8:34:28 8:35:58 42 20070226 9142 N 1 120 9:03:22 9:05:22 43 20070227 6043.1 N 121 240 6:09:57 6:11:57 43 20070227 9000 N 241 330 7:03:20 7:04:50 43 20070227 9001 N 331 420 7:05:41 7:07:11 43 20070227 7043 N 421 510 7:07:31 7:09:01 43 20070227 9003 N 511 567 7:09:43 7:10:40 43 20070227 1021 S 568 1288 7:29:29 7:41:30 43 20070227 1020 N 1289 1991 7:43:47 7:55:30 43 20070227 1019 S 2002 2691 8:00:56 8:12:26 43 20070227 1018 N 2692 3381 8:14:07 8:25:37 43 20070227 1017 S 3382 4041 8:27:45 8:38:45 43 20070227 1016 N 4042 4753 8:40:50 8:52:42 43 20070227 1015 S 4754 5408 8:54:43 9:05:38 43 20070227 1014 N 5409 6073 9:07:47 9:18:52 43 20070227 1013 S 6074 6722 9:20:51 9:31:40 43 20070227 1012 N 6723 7381 9:33:42 9:44:41 43 20070227 9004 N 7382 7471 9:48:56 9:50:26 43 20070227 7143 N 7472 7561 9:50:49 9:52:19 43 20070227 9006 N 7562 7651 9:52:52 9:54:22 43 20070227 6143 N 1 120 10:30:15 10:32:15 46 20070302 6046 N 1 120 6:47:44 6:49:44 46 20070302 9000 W 121 210 7:37:20 7:38:50 46 20070302 9001 W 211 300 7:39:23 7:40:53 46 20070302 7046 W 301 390 7:41:14 7:42:44 46 20070302 9003 W 391 450 7:43:05 7:44:05 46 20070302 2621.1 W 451 2357 7:56:17 8:28:04 46 20070302 2612 E 2358 4426 8:30:55 9:05:24 46 20070302 2613 W 4504 5596 9:15:54 9:34:07 46 20070302 2614 E 5597 6735 9:42:02 10:01:01 46 20070302 9004 E 6736 6825 10:07:08 10:08:38 46 20070302 7146 E 6826 6915 10:09:14 10:10:44 46 20070302 9006 E 6916 7005 10:11:10 10:12:40

Page 78: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 78

46 20070302 6146.1 N 1 120 10:38:44 10:40:44 47 20070304 6047 N 1 120 6:13:46 6:15:46 47 20070304 9000 W 121 210 7:02:21 7:03:51 47 20070304 9001 W 211 300 7:04:52 7:06:22 47 20070304 7047 W 301 390 7:06:48 7:08:18 47 20070304 9003 W 391 489 7:08:41 7:10:20 47 20070304 2617 W 490 1613 7:22:04 7:40:48 47 20070304 2616 E 1614 2691 7:44:34 8:02:32 47 20070304 2615 W 2692 4625 8:06:21 8:38:35 47 20070304 2606 E 4631 6732 8:43:14 9:18:16 47 20070304 2611 W 6733 7767 9:20:42 9:37:57 47 20070304 9004 E 7768 7857 9:45:55 9:47:25 47 20070304 7147 E 7858 7942 9:47:48 9:49:18 47 20070304 9006 E 7948 8039 9:49:41 9:51:13 47 20070304 6147 N 1 120 10:15:51 10:17:51 48 20070309 6048 N 1 120 9:10:17 9:12:17 48 20070309 9000 W 121 210 10:08:12 10:09:42 48 20070309 9001 W 211 300 10:10:17 10:11:47 48 20070309 7048 W 301 390 10:12:07 10:13:37 48 20070309 9003 W 391 430 10:14:06 10:14:46 48 20070309 8648 S 431 553 10:23:14 10:25:17 48 20070309 1021.1 S 554 1251 10:50:34 11:02:12 48 20070309 2620.1 E 1252 2352 11:24:09 11:42:30 48 20070309 2619.1 W 2353 3401 11:44:09 12:01:38 48 20070309 2610 E 3402 4484 12:03:45 12:21:48 48 20070309 2607 W 4485 5536 12:23:28 12:41:00 48 20070309 2608 E 5537 6593 12:44:23 13:02:00 48 20070309 9004 E 6594 6683 13:09:22 13:10:52 48 20070309 7148 E 6684 6773 13:11:14 13:12:44 48 20070309 9006 E 6774 6863 13:13:11 13:14:41 48 20070309 6148 N 1 120 13:29:19 13:31:19 49 20070310 6049.1 N 21 140 6:25:53 6:27:53 49 20070310 9000 W 141 230 7:09:08 7:10:38 49 20070310 9001 W 231 320 7:11:12 7:12:42 49 20070310 7049 W 321 410 7:13:01 7:14:31 49 20070310 9003 W 411 460 7:14:49 7:15:39 49 20070310 2609 W 461 2254 7:27:28 7:57:22 49 20070310 2618.1 E 2255 4444 8:00:01 8:36:31 49 20070310 2605 E 4445 5419 8:41:17 8:57:32 49 20070310 2604 E 5420 6575 9:01:39 9:20:55 49 20070310 2601 W 6576 7549 9:22:48 9:39:02 49 20070310 2602 E 7550 8689 9:40:55 9:59:55 49 20070310 2599 W 8690 9717 10:01:11 10:18:19 49 20070310 9004 E 9718 9807 10:23:15 10:24:45 49 20070310 7149 E 9808 9897 10:25:07 10:26:37 49 20070310 9006 E 9898 9987 10:27:00 10:28:30 49 20070310 6149 N 1 120 10:50:25 10:52:25 50 20070311 6050 N 1 120 6:19:30 6:21:30 50 20070311 9000 W 121 210 7:07:04 7:08:34 50 20070311 9001 W 211 300 7:09:09 7:10:39 50 20070311 7050 W 301 390 7:11:02 7:12:32 50 20070311 9003 W 391 434 7:12:55 7:13:39 50 20070311 2598 E 435 1510 7:30:18 7:48:14 50 20070311 2603 W 1511 3457 7:49:57 8:22:24 50 20070311 2600 E 3458 5374 8:25:35 8:57:32 50 20070311 2595 W 5375 6395 8:59:14 9:16:15 50 20070311 2596 E 6396 7465 9:17:51 9:35:41 50 20070311 2593 W 7466 8518 9:36:36 9:54:09

Page 79: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 79

50 20070311 2592 E 8519 9579 9:55:26 10:13:07 50 20070311 9004 E 9580 9669 10:20:20 10:21:50 50 20070311 7150 E 9670 9759 10:22:12 10:23:42 50 20070311 9006 E 9760 9849 10:24:06 10:25:36 50 20070311 6150 N 1 120 10:47:58 10:49:58 51 20070312 6051.1 N 88 208 6:28:40 6:30:41 51 20070312 9000 W 209 298 7:08:54 7:10:24 51 20070312 9001 W 299 388 7:11:02 7:12:32 51 20070312 7051 W 389 478 7:12:58 7:14:28 51 20070312 9003 W 479 523 7:14:53 7:15:38 51 20070312 8651.1 S 533 640 7:25:06 7:26:54 51 20070312 2597 W 641 2697 7:33:17 8:07:34 51 20070312 2594 E 2698 4591 8:09:30 8:41:04 51 20070312 2591 W 4592 6598 8:45:31 9:18:58 51 20070312 2588 E 6599 8479 9:20:55 9:52:16 51 20070312 2589 W 8480 9546 9:56:07 10:13:54 51 20070312 9004 E 9547 9636 10:22:37 10:24:07 51 20070312 7151 E 9637 9726 10:24:54 10:26:24 51 20070312 9006 E 9727 9816 10:27:06 10:28:36 51 20070312 6151 N 1 120 10:47:18 10:49:18 52 20070313 6052 N 1 120 8:58:30 9:00:30 52 20070313 9000 W 121 210 9:23:45 9:25:15 52 20070313 9001 W 211 300 9:25:53 9:27:23 52 20070313 7052 W 301 390 9:27:58 9:29:28 52 20070313 9003 W 391 450 9:29:51 9:30:51 52 20070313 2590 E 451 1764 9:39:10 10:01:04 52 20070313 2587 W 1765 2689 10:03:20 10:18:45 52 20070313 9004 E 2690 2779 10:27:54 10:29:24 52 20070313 7152 E 2780 2869 10:29:50 10:31:20 52 20070313 9006 E 2870 2959 10:31:47 10:33:17 52 20070313 6152 N 1 120 10:54:27 10:56:27 53 20070314 6053.1 N 43 162 7:33:25 7:35:25 53 20070314 9000.1 E 472 561 7:59:23 8:00:53 53 20070314 9001.1 E 562 651 8:01:23 8:02:53 53 20070314 7053.1 E 652 741 8:03:14 8:04:44 53 20070314 9003.1 E 742 781 8:05:03 8:05:43 53 20070314 2585 W 782 2557 8:12:22 8:41:58 53 20070314 2586 E 2558 3791 9:00:42 9:21:16 53 20070314 2583 W 3792 5032 9:24:07 9:44:48 53 20070314 2584 E 5033 6239 9:50:30 10:10:37 53 20070314 2581.1 W 6279 7271 10:14:58 10:31:31 53 20070314 2582 E 7272 8435 10:34:17 10:53:41 53 20070314 9004 E 8436 8525 11:01:07 11:02:37 53 20070314 7153 E 8526 8615 11:03:13 11:04:43 53 20070314 9006 E 8616 8705 11:05:37 11:07:07 53 20070314 6153 N 1 120 11:28:40 11:30:40 54 20070315 6054.1 N 7 126 6:49:35 6:51:35 54 20070315 9000 W 127 216 7:07:45 7:09:15 54 20070315 9001 W 217 306 7:09:55 7:11:25 54 20070315 7054 W 307 396 7:11:55 7:13:25 54 20070315 9003 W 397 439 7:14:10 7:14:53 54 20070315 2580 E 440 1658 7:28:53 7:49:12 54 20070315 2579 W 1659 2610 7:50:39 8:06:31 54 20070315 2578 E 2611 3787 8:08:01 8:27:38 54 20070315 2577 W 3788 4794 8:29:11 8:45:58 54 20070315 2576 E 4795 5963 8:47:50 9:07:19 54 20070315 2575 W 5964 6994 9:09:07 9:26:18 54 20070315 9004 E 6995 7084 9:34:20 9:35:50

Page 80: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 80

54 20070315 7154.1 E 7175 7264 9:38:36 9:40:06 54 20070315 9006 E 7265 7354 9:40:37 9:42:07 54 20070315 6154 N 1 120 10:02:15 10:04:15 55 20070317 6055 N 1 120 6:25:39 6:27:39 55 20070317 9000 W 121 210 7:08:47 7:10:17 55 20070317 9001 W 211 300 7:10:54 7:12:24 55 20070317 7055 W 301 390 7:12:51 7:14:21 55 20070317 9003 W 391 430 7:14:46 7:15:26 55 20070317 8655 S 431 523 7:23:08 7:24:41 55 20070317 2573 W 524 1656 7:34:13 7:53:06 55 20070317 2572 E 1657 2689 7:55:36 8:12:49 55 20070317 2571 W 2690 3825 8:15:18 8:34:14 55 20070317 2570 E 3826 4847 8:35:56 8:52:58 55 20070317 2569 W 4848 5948 8:56:53 9:15:14 55 20070317 2568 E 5949 6958 9:17:56 9:34:46 55 20070317 2567 W 6959 8051 9:36:46 9:54:59 55 20070317 2574 E 8052 9077 9:57:28 10:14:34 55 20070317 9004 E 9078 9167 10:19:43 10:21:13 55 20070317 7155.1 E 9213 9302 10:23:02 10:24:32 55 20070317 9006 E 9303 9392 10:25:07 10:26:37 55 20070317 6155 N 1 120 10:47:37 10:49:37 56 20070318 6056 N 1 120 7:42:14 7:44:14 56 20070318 9000 W 121 210 8:21:34 8:23:04 56 20070318 9001 W 211 300 8:23:40 8:25:10 56 20070318 7056 W 301 390 8:25:36 8:27:06 56 20070318 9003 W 391 430 8:27:37 8:28:17 56 20070318 2566 E 431 1707 8:46:22 9:07:39 56 20070318 2565 W 1708 2656 9:09:33 9:25:22 56 20070318 2564 E 2657 3952 9:26:51 9:48:27 56 20070318 2563 W 3953 4908 9:50:18 10:06:14 56 20070318 2562 E 4909 6171 10:08:03 10:29:06 56 20070318 9004 E 6172 6261 10:35:02 10:36:32 56 20070318 7156 E 6262 6351 10:37:05 10:38:35 56 20070318 9006 E 6352 6441 10:39:15 10:40:45 56 20070318 6156 N 1 120 11:03:12 11:05:12 57 20070327 6057.1 N 12 131 8:34:45 8:36:45 57 20070327 9000 W 132 221 9:24:48 9:26:18 57 20070327 9001 W 222 311 9:27:41 9:29:11 57 20070327 7057 W 312 401 9:29:45 9:31:15 57 20070327 9003 W 402 468 9:31:49 9:32:56 57 20070327 8657 S 469 590 9:50:14 9:52:16 57 20070327 2561 W 591 1583 10:04:32 10:21:05 57 20070327 2560 E 1584 2736 10:23:48 10:43:01 57 20070327 2559 W 2737 3730 10:45:13 11:01:47 57 20070327 9004 E 3731 3820 11:08:36 11:10:06 57 20070327 7157 E 3821 3910 11:10:30 11:12:00 57 20070327 9006 E 3911 4000 11:12:24 11:13:54 57 20070327 6157 N 1 120 11:39:27 11:41:27 58 20070328 6058.1 N 1 120 8:08:14 8:10:14 58 20070328 9000 W 121 210 8:35:37 8:37:07 58 20070328 9001 W 211 300 8:39:20 8:40:50 58 20070328 7058 W 301 390 8:42:08 8:43:38 58 20070328 9003 W 391 448 8:44:35 8:45:33 58 20070328 2557 W 1577 2627 9:20:49 9:38:20 58 20070328 2556 E 2628 3744 9:41:14 9:59:51 58 20070328 9004 E 3745 3834 10:08:02 10:09:32 58 20070328 7158 E 3835 3924 10:10:03 10:11:33 58 20070328 9006 E 3925 4014 10:11:54 10:13:24

Page 81: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 81

58 20070328 6158 N 1 120 10:34:22 10:36:22 59 20070328 1810 N 14 551 17:12:19 17:21:17 59 20070328 1811 E 552 1069 17:22:51 17:31:29 59 20070328 1812 S 1070 1716 17:35:57 17:46:44 59 20070328 1813 W 1717 2195 17:49:29 17:57:28 60 20070329 6060 N 1 120 6:59:15 7:01:15 60 20070329 9000 W 121 210 7:22:12 7:23:42 60 20070329 9001 W 211 300 7:26:49 7:28:19 60 20070329 7060 W 301 390 7:29:24 7:30:54 60 20070329 9003 W 391 420 7:32:07 7:32:37 60 20070329 2558.1 E 421 1492 7:49:55 8:07:47 60 20070329 2555 W 1493 2605 8:09:55 8:28:28 60 20070329 2554 E 2606 3706 8:30:56 8:49:17 60 20070329 2553 W 3707 4817 8:51:28 9:09:59 60 20070329 2552 E 4818 5882 9:12:02 9:29:47 60 20070329 9004 E 5883 5972 9:36:55 9:38:25 60 20070329 7160 E 5973 6062 9:39:51 9:41:21 60 20070329 9006 E 6063 6152 9:42:46 9:44:16 60 20070329 6160 N 1 120 10:10:36 10:12:36 61 20070330 6061 N 1 120 7:04:02 7:06:02 61 20070330 9000 W 121 210 7:26:29 7:27:59 61 20070330 9001.1 W 213 302 7:31:10 7:32:40 61 20070330 7061.1 W 393 482 7:37:11 7:38:41 61 20070330 9003 W 483 552 7:40:37 7:41:47 61 20070330 8661 S 553 712 7:59:14 8:01:54 61 20070330 2551 W 713 1861 8:11:45 8:30:54 61 20070330 2550 E 1862 2892 8:33:27 8:50:38 61 20070330 2549 W 2893 4057 8:53:25 9:12:50 61 20070330 2548 E 4058 5088 9:15:15 9:32:26 61 20070330 9004.1 E 1 90 9:47:55 9:49:25 61 20070330 7161 E 91 180 9:50:05 9:51:35 61 20070330 9006 E 181 270 9:53:09 9:54:39 61 20070330 6161 N 271 450 10:21:11 10:24:11 62 20070331 6062 N 1 120 6:52:46 6:54:46 62 20070331 9000.1 W 124 213 7:21:45 7:23:15 62 20070331 9001 W 214 303 7:24:52 7:26:22 62 20070331 7062 W 304 393 7:27:05 7:28:35 62 20070331 9003 W 394 447 7:30:15 7:31:09 62 20070331 2547 E 448 1567 7:49:11 8:07:51 62 20070331 2546 W 1568 2690 8:09:58 8:28:41 62 20070331 2545 E 2691 3814 8:30:28 8:49:12 62 20070331 2544 W 3815 4946 8:51:30 9:10:22 62 20070331 2543 E 4947 6077 9:12:20 9:31:11 62 20070331 9004.1 E 6083 6172 9:39:03 9:40:33 62 20070331 7162 E 6173 6262 9:41:21 9:42:51 62 20070331 9006 E 6263 6352 9:43:38 9:45:08 62 20070331 6162 N 1 120 10:05:21 10:07:21 63 20070331 6063.2 N 13 132 11:15:58 11:17:58 63 20070331 9000 W 133 222 11:35:42 11:37:12 63 20070331 9001 W 223 312 11:38:32 11:40:02 63 20070331 7063 W 313 402 11:40:44 11:42:14 63 20070331 9003 W 403 450 11:44:06 11:44:54 63 20070331 2547.1 W 451 1576 11:57:27 12:16:13 63 20070331 2546.2 E 1640 2752 12:21:54 12:40:27 63 20070331 9004 E 2753 2842 12:46:33 12:48:03 63 20070331 7163.1 E 2893 2982 12:49:57 12:51:27 63 20070331 9006 E 2983 3072 12:51:50 12:53:20

Page 82: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 82

63 20070331 6163 N 1 120 13:14:46 13:16:46 64 20070401 6064 N 1 120 5:57:05 5:59:05 64 20070401 9000 W 121 210 6:32:10 6:33:40 64 20070401 9001 W 211 300 6:35:29 6:36:59 64 20070401 7064 W 301 390 6:37:49 6:39:19 64 20070401 9003 W 391 438 6:39:56 6:40:44 64 20070401 2545.1 W 439 1368 7:03:28 7:18:58 64 20070401 2544.1 E 1369 2663 7:22:57 7:44:32 64 20070401 2543.1 W 2664 3620 7:47:45 8:03:42 64 20070401 2542 E 3621 4902 8:05:14 8:26:36 64 20070401 9004 E 4903 4992 8:32:26 8:33:56 64 20070401 9006.2 E 12 101 8:52:48 8:54:18 64 20070401 6164 N 1 120 9:20:32 9:22:32 65 20070402 6065 N 1 120 5:37:13 5:39:13 65 20070402 9000.1 E 1 90 6:37:28 6:38:58 65 20070402 9001 E 91 180 6:40:09 6:41:39 65 20070402 7065.1 E 190 279 6:42:46 6:44:16 65 20070402 9003 E 280 330 6:45:03 6:45:54 65 20070402 8665 S 331 531 7:06:52 7:10:13 65 20070402 2541 W 532 1497 7:25:11 7:41:17 65 20070402 2540 E 1498 2676 7:44:31 8:04:10 65 20070402 2539 W 2677 3674 8:06:05 8:22:43 65 20070402 9004.1 E 3765 3854 8:34:00 8:35:30 65 20070402 7165.1 E 3885 3974 8:37:25 8:38:55 65 20070402 9006 E 3975 4064 8:39:45 8:41:15 65 20070402 6165 N 1 120 9:03:37 9:05:37 66 20070402 6066 N 1 120 9:34:07 9:36:07 66 20070402 9000 W 121 210 10:00:56 10:02:26 66 20070402 9001 W 211 300 10:03:23 10:04:53 66 20070402 7066 W 301 390 10:05:15 10:06:45 66 20070402 9003 W 391 430 10:07:19 10:07:59 66 20070402 2538 E 431 1493 10:26:35 10:44:18 66 20070402 2537 W 1494 2616 10:46:35 11:05:18 66 20070402 2536 E 2617 3658 11:07:47 11:25:09 66 20070402 2535 W 3659 4736 11:27:33 11:45:31 66 20070402 2534 E 4737 5760 11:47:51 12:04:55 66 20070402 9004 E 5761 5850 12:11:57 12:13:27 66 20070402 7166 E 5851 5940 12:13:54 12:15:24 66 20070402 9006.1 E 5962 6051 12:16:32 12:18:02 66 20070402 6166 N 1 120 12:38:10 12:40:10 67 20070404 6067.1 N 1 120 5:45:09 5:47:09 67 20070404 9000 W 121 210 6:37:44 6:39:14 67 20070404 9001.1 W 1 90 6:45:39 6:47:09 67 20070404 7067 W 91 180 6:47:45 6:49:15 67 20070404 9003 W 181 231 6:50:06 6:50:57 67 20070404 2532 E 1183 2406 7:18:15 7:38:39 67 20070404 2531 W 2407 3382 7:40:49 7:57:05 67 20070404 2530 E 3383 4554 7:59:48 8:19:20 67 20070404 2529 W 4555 5552 8:21:28 8:38:06 67 20070404 2528 E 5553 6682 8:40:22 8:59:12 67 20070404 9004 E 6683 6772 9:04:31 9:06:01 67 20070404 7167 E 6773 6862 9:06:38 9:08:08 67 20070404 9006 E 6863 6952 9:08:56 9:10:26 67 20070404 6167 N 1 120 9:30:50 9:32:50 68 20070404 6068 N 1 120 10:12:33 10:14:33 68 20070404 9000 E 121 210 10:41:08 10:42:38 68 20070404 9001 E 211 300 10:43:43 10:45:13 68 20070404 7068 E 301 390 10:46:07 10:47:37

Page 83: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 83

68 20070404 9003 E 391 439 10:48:15 10:49:04 68 20070404 2527 W 440 1466 11:04:00 11:21:07 68 20070404 2526 E 1467 2516 11:23:26 11:40:56 68 20070404 9004 E 2517 2606 11:47:01 11:48:31 68 20070404 7168 E 2607 2696 11:49:01 11:50:31 68 20070404 9006 E 2697 2786 11:51:22 11:52:52 68 20070404 6168 N 1 120 12:17:47 12:19:47 69 20070405 6069 N 1 120 5:33:22 5:35:22 69 20070405 9000 W 121 210 6:23:56 6:25:26 69 20070405 9001 W 211 300 6:26:42 6:28:12 69 20070405 7069 W 1 90 6:30:14 6:31:44 69 20070405 9003 W 91 139 6:32:32 6:33:21 69 20070405 2533 W 140 1243 6:45:35 7:03:59 69 20070405 2524 E 1244 2266 7:07:30 7:24:33 69 20070405 2525 W 2267 3383 7:27:01 7:45:38 69 20070405 2522 E 3384 4393 7:52:05 8:08:55 69 20070405 2523 W 4394 5434 8:10:42 8:28:03 69 20070405 9004 E 5435 5524 8:36:24 8:37:54 69 20070405 7169 E 5525 5614 8:38:21 8:39:51 69 20070405 9006 E 5615 5704 8:40:42 8:42:12 69 20070405 6169 N 1 120 9:00:12 9:02:12 70 20070405 6070 N 1 120 9:47:32 9:49:32 70 20070405 9000 W 121 210 10:13:41 10:15:11 70 20070405 9001 W 211 300 10:16:32 10:18:02 70 20070405 7070 W 301 390 10:18:34 10:20:04 70 20070405 9003 W 391 435 10:20:27 10:21:12 70 20070405 2521 W 436 1469 10:33:20 10:50:34 70 20070405 2520 E 1470 2451 10:53:41 11:10:03 70 20070405 2519 W 2452 3504 11:11:46 11:29:19 70 20070405 2518 E 3505 4470 11:31:16 11:47:22 70 20070405 9004 E 4471 4561 11:52:45 11:54:16 70 20070405 7170 E 4562 4651 11:54:50 11:56:20 70 20070405 9006 E 4652 4741 11:57:01 11:58:31 70 20070405 6170 N 1 120 12:17:36 12:19:36 71 20070406 6071 N 1 120 5:33:10 5:35:10 71 20070406 9000 W 121 211 6:23:16 6:24:47 71 20070406 9001.1 W 1 90 6:27:03 6:28:33 71 20070406 7071 W 91 180 6:29:02 6:30:32 71 20070406 9003 W 181 220 6:30:54 6:31:34 71 20070406 8671 S 221 325 6:43:31 6:45:16 71 20070406 2517 W 326 1249 7:00:43 7:16:07 71 20070406 2516 E 1250 2387 7:18:34 7:37:32 71 20070406 2515 W 2388 3303 7:40:01 7:55:17 71 20070406 2514 E 3304 4423 7:57:03 8:15:43 71 20070406 9004 E 5328 5417 8:41:18 8:42:48 71 20070406 7171 E 5418 5507 8:43:20 8:44:50 71 20070406 9006 E 5508 5597 8:45:42 8:47:12 71 20070406 6171 N 1 120 9:14:16 9:16:16 72 20070408 6072 N 1 120 5:30:09 5:32:09 72 20070408 9000 W 1 90 6:15:40 6:17:10 72 20070408 9001.1 W 112 201 6:18:24 6:19:54 72 20070408 7072.1 W 233 322 6:21:16 6:22:46 72 20070408 9003 W 323 376 6:23:18 6:24:12 72 20070408 2512 E 1242 2409 6:49:22 7:08:50 72 20070408 2511 W 2410 3275 7:11:14 7:25:40 72 20070408 2510 E 3276 4382 7:28:10 7:46:37 72 20070408 9004.1 E 4483 4572 8:00:16 8:01:46 72 20070408 7172 E 4573 4662 8:02:25 8:03:55

Page 84: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 84

72 20070408 9006 E 4663 4752 8:04:26 8:05:56 72 20070408 6172 N 1 120 8:27:35 8:29:35 73 20070408 6073 N 1 120 8:57:47 8:59:47 73 20070408 9000 W 121 210 9:26:10 9:27:40 73 20070408 9001 W 211 300 9:28:21 9:29:51 73 20070408 7073 W 301 390 9:30:34 9:32:04 73 20070408 9003 W 391 435 9:32:30 9:33:15 73 20070408 2508 E 1281 2447 10:01:24 10:20:51 73 20070408 9004.1 E 2472 2561 10:26:45 10:28:15 73 20070408 7173 E 2562 2651 10:28:50 10:30:20 73 20070408 9006 E 2652 2741 10:30:51 10:32:21 73 20070408 6173 N 1 120 10:51:47 10:53:47 74 20070409 6074 N 1 120 5:29:06 5:31:06 74 20070409 9000 W 121 210 6:19:47 6:21:17 74 20070409 9001 W 211 300 6:22:03 6:23:33 74 20070409 7074 W 301 390 6:24:07 6:25:37 74 20070409 9003 W 391 435 6:26:05 6:26:50 74 20070409 2513 W 436 1321 6:38:42 6:53:28 74 20070409 2506 E 1322 2399 6:57:57 7:15:55 74 20070409 2509.1 W 2412 3295 7:20:20 7:35:04 74 20070409 2504 E 3296 4331 7:37:17 7:54:33 74 20070409 9004 E 4332 4421 8:00:06 8:01:36 74 20070409 7174 E 4422 4511 8:02:13 8:03:43 74 20070409 9006 E 4512 4601 8:04:16 8:05:46 74 20070409 6174 N 1 120 8:27:39 8:29:39 75 20070409 6075 N 1 120 9:04:10 9:06:10 75 20070409 9000 W 121 210 9:30:53 9:32:23 75 20070409 9001 W 211 300 9:33:09 9:34:39 75 20070409 7075 W 301 390 9:35:11 9:36:41 75 20070409 9003 W 391 435 9:37:11 9:37:56 75 20070409 2507 W 436 1315 9:48:09 10:02:49 75 20070409 2502 E 1316 2324 10:04:54 10:21:43 75 20070409 2505.1 W 2339 3217 10:25:43 10:40:22 75 20070409 2500 E 3218 4185 10:43:20 10:59:28 75 20070409 2503 W 4186 5064 11:00:50 11:15:29 75 20070409 2498 E 5065 6000 11:17:02 11:32:38 75 20070409 9004.1 E 6001 6090 11:38:36 11:40:06 75 20070409 7175 E 6091 6180 11:40:31 11:42:01 75 20070409 9006 E 6181 6270 11:42:40 11:44:10 75 20070409 6175 N 1 120 12:06:21 12:08:21 76 20070410 6076 N 1 120 5:31:09 5:33:09 76 20070410 9000 W 121 210 6:18:30 6:20:00 76 20070410 9001 W 211 300 6:20:51 6:22:21 76 20070410 7076.1 W 376 465 6:24:18 6:25:48 76 20070410 9003 W 466 510 6:26:09 6:26:54 76 20070410 8676 S 511 618 6:35:50 6:37:38 76 20070410 2501 W 619 1457 6:54:36 7:08:35 76 20070410 2496 E 1458 2478 7:11:26 7:28:27 76 20070410 2499 W 2479 3306 7:29:24 7:43:12 76 20070410 2494 E 3307 4299 7:45:24 8:01:57 76 20070410 2497 W 4300 5138 8:03:15 8:17:14 76 20070410 9004 E 5139 5228 8:24:38 8:26:08 76 20070410 7176 E 5229 5318 8:26:34 8:28:04 76 20070410 9006 E 5319 5408 8:28:33 8:30:03 76 20070410 6176 N 1 120 8:54:48 8:56:48 77 20070410 6077 N 1 120 9:37:53 9:39:53 77 20070410 9000 W 121 210 10:04:50 10:06:20 77 20070410 9001 W 211 300 10:06:54 10:08:24

Page 85: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 85

77 20070410 7077 W 301 390 10:08:50 10:10:20 77 20070410 9003 W 391 440 10:10:40 10:11:30 77 20070410 2495 W 441 2198 10:18:22 10:47:40 77 20070410 2492 E 2199 4002 10:49:46 11:19:50 77 20070410 2493 W 4003 4887 11:21:51 11:36:36 77 20070410 9004 E 4888 4977 11:44:24 11:45:54 77 20070410 7177 E 4978 5067 11:46:15 11:47:45 77 20070410 9006 E 5068 5157 11:48:29 11:49:59 77 20070410 6177 N 1 120 12:13:04 12:15:04 78 20070411 6078 N 1 120 5:36:15 5:38:15 78 20070411 9000 W 121 210 6:14:59 6:16:29 78 20070411 9001 W 211 300 6:17:03 6:18:33 78 20070411 7078 W 301 390 6:18:54 6:20:24 78 20070411 9003 W 391 435 6:20:45 6:21:30 78 20070411 2491 W 436 1274 6:33:36 6:47:35 78 20070411 2490.1 E 1283 2228 6:49:45 7:05:31 78 20070411 2489 W 2229 3875 7:07:38 7:35:05 78 20070411 2488 E 3876 4804 7:53:18 8:08:47 78 20070411 2487 W 4805 5625 8:12:23 8:26:04 78 20070411 2484 E 5626 6529 8:27:38 8:42:42 78 20070411 9004 E 6530 6619 8:49:14 8:50:44 78 20070411 7178 E 6620 6709 8:51:07 8:52:37 78 20070411 9006 E 6710 6799 8:53:06 8:54:36 78 20070411 6178 N 1 120 9:15:39 9:17:39 79 20070411 6079 N 1 120 9:41:21 9:43:21 79 20070411 9000 W 121 210 10:07:31 10:09:01 79 20070411 9001 W 1 90 10:10:29 10:11:59 79 20070411 7079 W 91 180 10:12:24 10:13:54 79 20070411 9003 W 181 226 10:14:20 10:15:06 79 20070411 2483 W 1 1674 10:26:29 10:54:23 79 20070411 2486 E 1675 3534 10:56:17 11:27:17 79 20070411 9004 E 3545 3634 11:34:25 11:35:55 79 20070411 7179 E 3635 3725 11:36:17 11:37:48 79 20070411 9006 E 3726 3815 11:38:49 11:40:19 79 20070411 6179 N 1 120 11:59:16 12:01:16 80 20070412 6080 N 1 120 5:39:37 5:41:37 80 20070412 9000.1 E 732 821 6:51:02 6:52:32 80 20070412 9001.2 E 822 911 6:53:31 6:55:01 80 20070412 7080.1 E 912 1001 6:55:20 6:56:50 80 20070412 9003.1 E 1002 1041 6:57:10 6:57:50 80 20070412 2485.1 W 1042 1795 7:08:10 7:20:44 80 20070412 2482 E 1796 2774 7:22:31 7:38:50 80 20070412 2477 W 2775 4271 7:40:30 8:05:27 80 20070412 2480 E 4272 6267 8:06:52 8:40:09 80 20070412 9004 E 6269 6358 8:45:39 8:47:09 80 20070412 7180 E 6359 6448 8:47:32 8:49:02 80 20070412 9006 E 6449 6538 8:49:27 8:50:57 80 20070412 6180 N 1 120 9:15:12 9:17:12

Casa 212-200 – VH-TEM

Flight Date (yyyymmdd)

Line Direction Start Fid End Fid Start Time End Time

1 20070301 6001 N 1 120 0.273484 6:35:49 1 20070301 9000 E 121 210 0.295 7:06:18 1 20070301 9001 E 211 300 0.296852 7:08:58 1 20070301 7001 E 301 390 0.298368 7:11:09 1 20070301 9003 E 391 428 0.299873 7:12:27

Page 86: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 86

1 20070301 1811 N 509 726 0.316262 7:39:03 1 20070301 1812 W 727 942 0.319734 7:44:01 1 20070301 1813 S 1080 1292 0.325162 7:51:47 1 20070301 1814 E 1293 1504 0.328125 7:56:02 1 20070301 8601 S 1 111 0.346748 8:21:10 1 20070301 8401 N 112 579 0.352535 8:35:27 1 20070301 8501 S 580 935 0.372488 9:02:19 1 20070301 7101 E 936 1025 0.380208 9:09:00 1 20070301 9004 E 1026 1115 0.381829 9:11:20 1 20070301 9006 E 1116 1205 0.383472 9:13:42 1 20070301 6101 N 1 120 0.433287 10:25:56 2 20070302 6002 N 1 120 0.297407 7:10:16 2 20070302 9000 W 121 210 0.309236 7:26:48 2 20070302 9001 W 211 300 0.310961 7:29:17 2 20070302 7002 W 301 390 0.312581 7:31:37 2 20070302 9003 W 391 440 0.314144 7:33:12 2 20070302 2425 W 441 1014 0.323322 7:55:09 2 20070302 2424 E 1015 1652 0.331829 8:08:28 2 20070302 2423 W 1653 2219 0.340405 8:19:38 2 20070302 2422 E 2220 2877 0.348889 8:33:22 2 20070302 8702 W 2878 2982 0.360428 8:40:46 2 20070302 7102 E 2983 3072 0.36588 8:48:22 2 20070302 9004 E 3073 3162 0.367662 8:50:56 2 20070302 9006 E 3163 3252 0.369201 8:53:09 2 20070302 6102 N 3253 3372 0.383009 9:13:32 3 20070303 6003 N 1 120 0.261759 6:18:56 3 20070303 9000 W 121 210 0.27316 6:34:51 3 20070303 9001 W 211 300 0.275081 6:37:37 3 20070303 7003 W 301 390 0.276655 6:39:53 3 20070303 9003 W 391 437 0.278113 6:41:16 3 20070303 2421 W 438 1032 0.290567 7:08:20 3 20070303 2420 E 1033 1694 0.300521 7:23:47 3 20070303 2419 W 1695 2238 0.309375 7:34:35 3 20070303 2418 E 2240 2884 0.31684 7:47:00 3 20070303 2417 W 2885 3419 0.325694 7:57:55 3 20070303 2416 E 3420 4067 0.333715 8:11:21 3 20070303 2415 W 4068 4634 0.342361 8:22:27 3 20070303 7103 E 4635 4724 0.352639 8:29:18 3 20070303 9004 E 4725 4814 0.354421 8:31:52 3 20070303 9006 E 4815 4904 0.356435 8:34:46 3 20070303 8703 W 4905 4999 0.362731 8:43:55 3 20070303 6103 N 5000 5119 0.383553 9:14:19 4 20070304 6004.1 N 125 244 0.284271 6:51:21 4 20070304 9000 W 245 334 0.295718 7:07:20 4 20070304 9001 W 335 424 0.297616 7:10:04 4 20070304 7004 W 425 514 0.299398 7:12:38 4 20070304 9003 W 515 577 0.300903 7:14:21 4 20070304 2414 E 578 1176 0.315683 7:44:34 4 20070304 2413 W 1177 1796 0.324919 7:58:13 4 20070304 2412 E 1797 2388 0.333183 8:09:39 4 20070304 2411 W 2389 2973 0.341088 8:20:55 4 20070304 2410 E 2974 3573 0.349063 8:32:39 4 20070304 2409 W 1 583 0.358657 8:46:11 4 20070304 2408 E 584 1212 0.366539 8:58:18 4 20070304 2407 W 1213 1787 0.37485 9:09:22 4 20070304 2406 E 1788 2410 0.382778 9:21:35 4 20070304 2405 W 2411 2986 0.391516 9:33:23 4 20070304 2404 E 2987 3620 0.399294 9:45:33

Page 87: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 87

4 20070304 2403 W 3621 4210 0.407512 9:56:39 4 20070304 2402 E 4211 4844 0.415938 10:09:31 4 20070304 8704 W 4845 4913 0.426817 10:15:46 4 20070304 7104 E 4914 5003 0.431713 10:23:10 4 20070304 9004 E 5004 5093 0.433356 10:25:32 4 20070304 9006.1 E 5100 5189 0.435521 10:28:39 4 20070304 6104 N 5190 5309 0.451076 10:51:33 7 20070310 6007 N 1 120 0.274838 6:37:46 7 20070310 9000 W 121 210 0.285301 6:52:20 7 20070310 9001 W 211 300 0.287014 6:54:48 7 20070310 7007 W 301 390 0.288681 6:57:12 7 20070310 9003 W 391 450 0.290023 6:58:38 7 20070310 2371 W 451 985 0.301944 7:23:43 7 20070310 2370 E 986 1661 0.309907 7:37:32 7 20070310 2369 W 1662 2216 0.319259 7:48:59 7 20070310 2368 E 2217 2888 0.327292 8:02:30 7 20070310 2367 W 2889 3451 0.336308 8:13:40 7 20070310 2366 E 3452 4113 0.343993 8:26:23 7 20070310 2365 W 4114 4699 0.353044 8:38:09 7 20070310 2364 E 4700 5342 0.361609 8:51:26 7 20070310 2363 W 5343 5909 0.370185 9:02:31 7 20070310 2362 E 5910 6534 0.378021 9:14:46 7 20070310 2361 W 6535 7113 0.386921 9:26:49 7 20070310 2360 E 7114 7752 0.395162 9:39:41 7 20070310 2359 W 7753 8321 0.403507 9:50:32 7 20070310 2358 E 8322 8963 0.411262 10:02:55 7 20070310 2357.1 W 9028 9597 0.422743 10:18:15 7 20070310 2356 E 9598 10233 0.431134 10:31:26 7 20070310 8707 E 10234 10361 0.443368 10:40:35 7 20070310 7107 E 10362 10451 0.448079 10:46:44 7 20070310 9004 E 10452 10541 0.449572 10:48:53 7 20070310 9006 E 10542 10631 0.451319 10:51:24 7 20070310 6107 N 10632 10751 0.467292 11:14:54 8 20070311 6008 N 1 120 0.286551 6:54:38 8 20070311 9000 W 121 210 0.296447 7:08:23 8 20070311 9001 W 211 300 0.298206 7:10:55 8 20070311 7008 W 301 390 0.299769 7:13:10 8 20070311 9003 W 391 438 0.301215 7:14:33 8 20070311 2401 W 439 1804 0.312095 7:52:11 8 20070311 2398 E 1805 3129 0.329931 8:17:11 8 20070311 2399 W 3130 3737 0.346887 8:29:39 8 20070311 2400 E 3738 4310 0.355324 8:41:13 8 20070311 2395 W 4311 5752 0.364653 9:09:08 8 20070311 2392 E 5753 7138 0.382546 9:33:58 8 20070311 2397 W 7139 7750 0.400081 9:46:19 8 20070311 2396 E 7751 8335 0.408958 9:58:39 8 20070311 7108 E 1 90 0.434456 10:27:07 8 20070311 9004 E 91 180 0.435856 10:29:08 8 20070311 9006 E 181 270 0.437535 10:31:33 8 20070311 6108 N 271 390 0.457257 11:00:27 9 20070312 6009 N 1 120 0.280984 6:46:37 9 20070312 9000 W 121 210 0.296215 7:08:03 9 20070312 9001 W 211 300 0.298067 7:10:43 9 20070312 7009 W 301 390 0.299815 7:13:14 9 20070312 9003 W 391 450 0.301366 7:14:58 9 20070312 2423.1 W 451 1070 0.31184 7:39:23 9 20070312 2422.1 E 1071 1623 0.320833 7:51:13 9 20070312 2394.1 E 2235 2837 0.34169 8:22:05

Page 88: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 88

9 20070312 7109 E 1 95 0.353287 8:30:19 9 20070312 9004 E 96 185 0.354942 8:32:37 9 20070312 9006 E 186 275 0.356655 8:35:05 9 20070312 6109 N 276 395 0.371863 8:57:29

10 20070314 6010 N 1 120 0.273611 6:36:00 10 20070314 9000 W 121 210 0.286979 6:54:45 10 20070314 9001 W 211 300 0.290787 7:00:14 10 20070314 7010 W 301 390 0.29272 7:03:01 10 20070314 9003 W 391 444 0.294259 7:04:38 10 20070314 2393.1 W 1761 2319 0.329919 8:04:24 10 20070314 2388 E 2320 2990 0.337789 8:17:36 10 20070314 2389 W 2991 4323 0.347153 8:42:07 10 20070314 2386 E 4324 5894 0.363738 9:09:58 10 20070314 2387 W 5895 6494 0.383542 9:22:18 10 20070314 2384 E 6495 7192 0.392326 9:36:35 10 20070314 2383 W 7193 8428 0.401863 9:59:17 10 20070314 2380 E 8429 9919 0.418044 10:26:50 10 20070314 8710 W 9920 10026 0.438252 10:32:52 10 20070314 7110 E 10027 10116 0.44316 10:39:39 10 20070314 9004 E 10117 10206 0.444664 10:41:49 10 20070314 9006 E 10207 10296 0.446285 10:44:09 10 20070314 6110 N 10297 10416 0.462569 11:08:06 11 20070315 6011 S 121 128 0.296713 7:07:24 11 20070315 9000 W 129 248 0.297535 7:10:27 11 20070315 9001 E 339 428 0.303229 7:18:09 11 20070315 7011 W 429 518 0.30515 7:20:55 11 20070315 9003 W 519 573 0.307188 7:23:16 11 20070315 2385 W 574 1140 0.320938 7:51:36 11 20070315 2382 E 1141 1811 0.331273 8:08:13 11 20070315 2381 W 1812 2391 0.340799 8:20:25 11 20070315 7111 W 1 90 0.351169 8:27:11 11 20070315 9004 W 91 180 0.353495 8:30:32 11 20070315 9006 W 181 270 0.355498 8:33:25 11 20070315 6111 N 271 390 0.395069 9:30:54 12 20070317 6012 S 1 120 0.277986 6:42:18 12 20070317 9000 W 121 210 0.289468 6:58:20 12 20070317 9001 W 211 300 0.291331 7:01:01 12 20070317 7012 W 301 390 0.293125 7:03:36 12 20070317 9003 W 391 448 0.294421 7:04:56 12 20070317 2379 W 449 1100 0.304433 7:29:15 12 20070317 2378 E 1101 1702 0.313542 7:41:32 12 20070317 2377 W 1703 2336 0.321586 7:53:39 12 20070317 2376 E 2337 2927 0.330139 8:05:15 12 20070317 2375 W 2928 3527 0.338947 8:18:05 12 20070317 2374 E 3528 4100 0.346956 8:29:10 12 20070317 2373 W 4101 4736 0.355162 8:42:02 12 20070317 2372 E 4737 5310 0.364132 8:53:55 12 20070317 2355 W 5311 5916 0.372419 9:06:23 12 20070317 2354 E 5917 6500 0.380775 9:18:03 12 20070317 2353 W 6501 7096 0.389178 9:30:21 12 20070317 2352 E 7097 7674 0.397581 9:42:09 12 20070317 2351 W 7675 8300 0.405938 9:54:59 12 20070317 2350 E 8301 8887 0.414514 10:06:41 12 20070317 2349 W 8888 9500 0.422593 10:18:45 12 20070317 2348 E 9501 10082 0.430637 10:29:49 12 20070317 2347 W 10083 10664 0.438542 10:41:12 12 20070317 2346 E 10665 11244 0.446169 10:52:09 12 20070317 2345 W 11245 11837 0.45412 11:03:49

Page 89: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 89

12 20070317 2344 E 11838 12440 0.462234 11:15:40 12 20070317 2343 W 12441 13035 0.470255 11:27:05 12 20070317 2342 E 13036 13625 0.478241 11:38:30 12 20070317 7112 E 13626 13715 0.488611 11:45:06 12 20070317 9004 E 13716 13805 0.490081 11:47:13 12 20070317 9006 E 13806 13896 0.491609 11:49:26 12 20070317 6112 S 13897 14016 0.503275 12:06:43 13 20070318 6013 S 1 120 0.278403 6:42:54 13 20070318 9000.1 W 126 215 0.28735 6:55:17 13 20070318 9001 W 216 305 0.289282 6:58:04 13 20070318 7013 W 306 395 0.290891 7:00:23 13 20070318 9003 W 396 439 0.29235 7:01:43 13 20070318 2341 W 440 1018 0.300625 7:22:33 13 20070318 2340 E 1019 1726 0.308519 7:36:04 13 20070318 2339 W 1727 2312 0.317998 7:47:41 13 20070318 2338 E 2313 3031 0.325961 8:01:22 13 20070318 2337 W 3032 3611 0.335694 8:13:04 13 20070318 2336 E 3612 4280 0.343727 8:26:07 13 20070318 2335 W 4281 4844 0.352407 8:36:52 13 20070318 2334 E 4845 5528 0.359826 8:49:33 13 20070318 2333 W 5529 6100 0.3689 9:00:45 13 20070318 2332 E 6101 6765 0.376331 9:13:00 13 20070318 2331 W 6766 7333 0.385451 9:24:31 13 20070318 2330 E 7334 7999 0.393148 9:37:14 13 20070318 2329 W 8000 8571 0.402546 9:49:12 13 20070318 2328 E 8572 9222 0.410451 10:01:54 13 20070318 2327 W 9223 9794 0.419317 10:13:21 13 20070318 2326 E 9795 10456 0.427257 10:26:17 13 20070318 2325 W 10457 11015 0.435984 10:37:08 13 20070318 2324 E 11016 11670 0.44353 10:49:36 13 20070318 8713 E 11792 11936 0.460938 11:06:16 13 20070318 7113 E 11937 12026 0.466169 11:12:47 13 20070318 9004 E 12027 12116 0.467928 11:15:19 13 20070318 9006 E 12117 12206 0.469456 11:17:31 13 20070318 6113 S 12207 12327 0.482407 11:36:41 15 20070321 6015 S 1 120 0.278171 6:42:34 15 20070321 9000 W 121 210 0.290208 6:59:24 15 20070321 9001 W 211 300 0.29235 7:02:29 15 20070321 7015 W 301 390 0.29419 7:05:08 15 20070321 9003 W 391 447 0.295602 7:06:37 15 20070321 2323 W 448 1102 0.302894 7:27:05 15 20070321 2322 E 1103 1703 0.311644 7:38:47 15 20070321 2321 W 1704 2351 0.320093 7:51:44 15 20070321 2320 E 2352 2956 0.328669 8:03:22 15 20070321 2319 W 2957 3605 0.337338 8:16:35 15 20070321 2318 E 3606 4200 0.346192 8:28:26 15 20070321 2317 W 4201 4821 0.35441 8:40:42 15 20070321 2316 E 4822 5428 0.363044 8:52:54 15 20070321 2315 W 5429 6043 0.371192 9:04:46 15 20070321 2314 E 6044 6660 0.379549 9:16:50 15 20070321 2313 W 6661 7270 0.388148 9:29:06 15 20070321 2312 E 7271 7886 0.39625 9:40:52 15 20070321 2311 W 7887 8497 0.404792 9:53:05 15 20070321 2310 E 8498 9104 0.412859 10:04:38 15 20070321 2309 W 9105 9706 0.420926 10:16:10 15 20070321 2308 E 9707 10331 0.429225 10:28:30 15 20070321 2307 W 10332 10924 0.438009 10:40:37 15 20070321 2306 E 10925 11525 0.44603 10:52:18

Page 90: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 90

15 20070321 2305 W 11526 12114 0.454433 11:04:12 15 20070321 2304 E 12115 12721 0.462141 11:15:36 15 20070321 7115 E 12722 12811 0.473032 11:22:40 15 20070321 9004 E 12812 12901 0.474537 11:24:50 15 20070321 9006 E 12902 12991 0.476389 11:27:30 15 20070321 6115 S 12992 13111 0.488009 11:44:44 16 20070322 6016 S 1 120 0.281516 6:47:23 16 20070322 9001 W 1 90 0.294352 7:05:22 16 20070322 7016 W 91 180 0.296204 7:08:02 16 20070322 9003 W 181 226 0.297824 7:09:38 16 20070322 2303 W 227 806 0.302928 7:25:53 16 20070322 2302 E 807 1507 0.310706 7:39:06 16 20070322 2301 W 1508 2078 0.319919 7:50:12 16 20070322 2300 E 2079 2730 0.327454 8:02:24 16 20070322 2298 E 3301 3967 0.346921 8:30:41 16 20070322 2297 W 3968 4561 0.356111 8:42:42 16 20070322 7116 E 5206 5295 0.375463 9:02:10 16 20070322 9004 E 5296 5385 0.37728 9:04:47 16 20070322 9006 E 5386 5475 0.379178 9:07:31 16 20070322 6116 S 5476 5595 0.391424 9:25:39 17 20070323 6017.1 S 8 127 0.278542 6:43:06 17 20070323 9000 W 128 217 0.2886 6:57:05 17 20070323 9001 W 218 307 0.290405 6:59:41 17 20070323 7017 W 308 397 0.292257 7:02:21 17 20070323 9003 W 398 439 0.293947 7:03:59 17 20070323 2299.1 W 471 1054 0.300058 7:21:49 17 20070323 2296.1 E 1055 1717 0.307894 7:34:25 17 20070323 2285 W 1718 2305 0.318148 7:47:56 17 20070323 2283 W 2978 3563 0.335417 8:12:46 17 20070323 2282 E 3564 4208 0.343715 8:25:42 17 20070323 7117 E 4209 4298 0.355405 8:33:17 17 20070323 9004 E 4299 4388 0.357025 8:35:37 17 20070323 9006 E 4389 4478 0.358958 8:38:24 17 20070323 6117 S 4479 4598 0.370463 8:55:28 18 20070324 6018 S 1 120 0.276273 6:39:50 18 20070324 9000 W 121 211 0.287188 6:55:04 18 20070324 9001 W 212 301 0.289352 6:58:10 18 20070324 7018 W 302 391 0.2911 7:00:41 18 20070324 9003 W 392 449 0.292639 7:02:22 18 20070324 8718 W 450 555 0.299641 7:13:15 18 20070324 2295 W 556 1153 0.308137 7:33:41 18 20070324 2294 E 1154 1835 0.316412 7:47:00 18 20070324 2293 W 1836 2436 0.325532 7:58:47 18 20070324 2292 E 2437 3079 0.333588 8:11:05 18 20070324 2291 W 3080 3678 0.342083 8:22:35 18 20070324 2290 E 3679 4324 0.350139 8:34:58 18 20070324 2288 E 4923 5562 0.366991 8:59:08 18 20070324 2287 W 5563 6159 0.375359 9:10:28 18 20070324 2286 E 6160 6784 0.382975 9:21:54 18 20070324 2281 W 6785 7390 0.391123 9:33:19 18 20070324 2279 W 8009 8628 0.407141 9:56:37 18 20070324 2280 E 8629 9240 0.415567 10:08:37 18 20070324 2277 W 9241 9872 0.42441 10:21:41 18 20070324 2278 E 9873 10472 0.433102 10:33:40 18 20070324 2275 W 10473 11122 0.441782 10:47:00 18 20070324 2276 E 11123 11681 0.450579 10:58:09 18 20070324 2273 W 11682 12350 0.458345 11:11:10 18 20070324 7118 E 12351 12440 0.470544 11:19:05

Page 91: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 91

18 20070324 9004 E 12441 12530 0.472222 11:21:30 18 20070324 9006 E 12531 12620 0.47419 11:24:20 18 20070324 6118 S 12621 12740 0.486007 11:41:51 19 20070325 6019 S 1 129 0.274583 6:37:33 19 20070325 9000 W 130 219 0.284873 6:51:43 19 20070325 9001 W 220 309 0.286863 6:54:35 19 20070325 7019 W 310 399 0.288657 6:57:10 19 20070325 9003 W 400 450 0.290266 6:58:50 19 20070325 2289.1 W 451 1103 0.297373 7:19:06 19 20070325 2284.3 E 1104 1701 0.30765 7:32:59 19 20070325 2271 W 1702 2362 0.316053 7:46:08 19 20070325 2274 E 2363 2989 0.324896 7:58:18 19 20070325 2269 W 2990 3673 0.333993 8:12:21 19 20070325 2272 E 3674 4299 0.343345 8:24:51 19 20070325 2267 W 4300 4974 0.352488 8:38:50 19 20070325 2270 E 4975 5620 0.361574 8:51:26 19 20070325 2268 E 5665 6289 0.380729 9:18:40 19 20070325 2266 E 6290 6895 0.399676 9:45:38 19 20070325 7119 E 6896 6985 0.410139 9:52:06 19 20070325 9004 E 6986 7075 0.411782 9:54:28 19 20070325 9006 E 7076 7165 0.413565 9:57:02 19 20070325 6119 S 7166 7285 0.425613 10:14:53 20 20070326 6020 S 1 120 0.277593 6:41:44 20 20070326 9000 W 121 210 0.288032 6:56:16 20 20070326 9001 W 211 300 0.290035 6:59:09 20 20070326 7020 W 301 390 0.29162 7:01:26 20 20070326 9003 W 391 440 0.292998 7:02:45 20 20070326 2263 E 1029 1727 0.305486 7:31:34 20 20070326 2265.1 W 1729 2314 0.315185 7:43:38 20 20070326 2259 E 2315 2995 0.323044 7:56:32 20 20070326 2261 W 2996 3580 0.332199 8:08:07 20 20070326 2255 E 3581 4289 0.34044 8:22:03 20 20070326 2257 W 4290 4887 0.349618 8:33:25 20 20070326 2251 E 4888 5582 0.357801 8:46:49 20 20070326 2253 W 5583 6185 0.366944 8:58:27 20 20070326 2247 E 6186 6864 0.375231 9:11:39 20 20070326 2249 W 6865 7466 0.384236 9:23:20 20 20070326 2243 E 7467 8110 0.392766 9:36:19 20 20070326 2241 W 8111 9246 0.402002 9:57:49 20 20070326 2239 E 9247 10546 0.416273 10:21:06 20 20070326 2237 W 10547 11610 0.432604 10:40:41 20 20070326 2235 E 11611 12883 0.446088 11:03:35 20 20070326 2221 W 12884 13415 0.462523 11:14:54 20 20070326 2223 E 13416 14080 0.469965 11:27:50 20 20070326 8820 W 14081 14183 0.480116 11:33:05 20 20070326 7120 E 14184 14273 0.484225 11:38:47 20 20070326 9004 E 14274 14363 0.485718 11:40:56 20 20070326 9006 E 14364 14453 0.487407 11:43:22 20 20070326 6120 S 14454 14579 0.4989 12:00:31 21 20070329 6021 S 1 120 0.246076 5:56:21 21 20070329 9000 W 121 210 0.256979 6:11:33 21 20070329 9001 W 211 300 0.259699 6:15:28 21 20070329 7021 W 301 390 0.261551 6:18:08 21 20070329 9003 W 391 445 0.262975 6:19:36 21 20070329 2245 W 446 1052 0.268148 6:36:15 21 20070329 2219 E 1053 1637 0.277072 6:48:44 21 20070329 2233 W 1638 2760 0.285266 7:09:30 21 20070329 2231 E 2761 3960 0.299363 7:31:05

Page 92: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 92

21 20070329 2229 W 3961 5124 0.314641 7:52:29 21 20070329 2227 E 5125 6305 0.329433 8:14:04 21 20070329 2225 W 6306 7442 0.345255 8:36:07 21 20070329 2215 E 7443 8050 0.365532 8:56:30 21 20070329 2217 W 8051 8629 0.374572 9:09:02 21 20070329 2211 E 8630 9217 0.382396 9:20:27 21 20070329 2213 W 9218 9807 0.390984 9:32:51 21 20070329 2207 E 9808 10378 0.398993 9:44:04 21 20070329 2209 W 10379 10973 0.406817 9:55:44 21 20070329 2203 E 10974 11583 0.414606 10:07:12 21 20070329 2205 W 11584 12185 0.423356 10:19:40 21 20070329 2199 E 12186 12752 0.431192 10:30:22 21 20070329 7121 E 12753 12842 0.440799 10:36:15 21 20070329 9004 E 12843 12932 0.4425 10:38:42 21 20070329 9006 E 12933 13022 0.444583 10:41:42 21 20070329 6121 S 13023 13142 0.453715 10:55:21 22 20070330 6022 S 1 120 0.282627 6:48:59 22 20070330 9000.1 W 209 298 0.292928 7:03:19 22 20070330 9001 W 299 388 0.296343 7:08:14 22 20070330 7022 W 389 478 0.298299 7:11:03 22 20070330 9003 W 479 518 0.299861 7:12:28 22 20070330 2201 W 519 1179 0.306088 7:31:47 22 20070330 2195 E 1180 1765 0.314838 7:43:08 22 20070330 2197 W 1766 2405 0.322905 7:55:39 22 20070330 2191 E 2406 2999 0.331285 8:06:57 22 20070330 2193 W 3000 3641 0.339769 8:19:58 22 20070330 2187 E 3642 4214 0.348287 8:31:05 22 20070330 2189 W 4215 4834 0.355972 8:42:56 22 20070330 2183 E 4835 5412 0.364259 8:54:10 22 20070330 2185 W 5413 6024 0.372199 9:06:10 22 20070330 2179 E 6025 6619 0.38015 9:17:20 22 20070330 8822 W 6620 6736 0.390995 9:24:59 22 20070330 7122 E 6737 6826 0.395613 9:31:11 22 20070330 9004 E 6827 6916 0.397315 9:33:38 22 20070330 9006 E 6917 7006 0.399282 9:36:28 22 20070330 6122 S 7007 7126 0.412847 9:56:30 23 20070331 6023 S 1 120 0.350856 8:27:14 23 20070331 9000 W 1 90 0.366181 8:48:48 23 20070331 9001 W 91 180 0.368796 8:52:34 23 20070331 7023.1 W 253 342 0.371875 8:57:00 23 20070331 9003 W 343 397 0.373438 8:58:40 23 20070331 2181 W 398 993 0.381528 9:19:20 23 20070331 2175 E 994 1611 0.389676 9:31:26 23 20070331 2177 W 1612 2226 0.39772 9:42:58 23 20070331 2171 E 2227 2832 0.405903 9:54:36 23 20070331 2173 W 2833 3452 0.4139 10:06:21 23 20070331 2167 E 3453 4062 0.422211 10:18:09 23 20070331 2169 W 4063 4695 0.430567 10:30:34 23 20070331 2163 E 4696 5309 0.439074 10:42:30 23 20070331 2165 W 5310 5935 0.447998 10:55:33 23 20070331 2159 E 5936 6543 0.456597 11:07:38 23 20070331 2155 E 7165 7775 0.473333 11:31:47 23 20070331 2157 W 7776 8395 0.481644 11:43:54 23 20070331 2151 E 8396 9023 0.490197 11:56:21 23 20070331 2153 W 9024 9638 0.499039 12:08:52 23 20070331 2147 E 9639 10253 0.507245 12:20:41 23 20070331 7123 E 10254 10343 0.51765 12:26:55 23 20070331 9004 E 10344 10433 0.519444 12:29:30

Page 93: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 93

23 20070331 9006 E 10434 10523 0.521192 12:32:01 23 20070331 6123 S 10524 10644 0.536875 12:55:07 24 20070401 6024.1 S 55 174 0.251644 6:04:22 24 20070401 9000 W 175 264 0.263345 6:20:43 24 20070401 9001 W 265 354 0.267569 6:26:48 24 20070401 7024 W 355 444 0.269352 6:29:22 24 20070401 9003 W 445 497 0.270972 6:31:05 24 20070401 2425.1 W 498 1065 0.288183 7:04:27 24 20070401 2420.1 E 1066 1731 0.295891 7:17:11 24 20070401 2421.1 W 1732 2283 0.305278 7:28:48 24 20070401 2416.1 E 2284 2946 0.312998 7:41:46 24 20070401 2417.1 W 2947 3502 0.322211 7:53:15 24 20070401 2414.1 E 3503 4176 0.33022 8:06:45 24 20070401 2415.1 W 4177 4730 0.33919 8:17:40 24 20070401 2410.1 E 4731 5400 0.347049 8:30:55 24 20070401 2409.1 W 5401 5968 0.355972 8:42:04 24 20070401 2390.1 E 5969 6651 0.365498 8:57:42 24 20070401 2405.1 W 6652 7210 0.375116 9:09:29 24 20070401 2161.1 W 7211 7760 0.398183 9:42:33 24 20070401 2143 E 7761 8434 0.407049 9:57:23 24 20070401 2149.1 W 8510 9053 0.419097 10:12:34 24 20070401 2139 E 9054 9713 0.426609 10:25:19 24 20070401 2145 W 9714 10257 0.43537 10:36:00 24 20070401 7124 E 10258 10347 0.446713 10:44:46 24 20070401 9004 E 10348 10437 0.448183 10:46:53 24 20070401 9006 E 10438 10527 0.449861 10:49:18 24 20070401 6124 S 10528 10647 0.465451 11:12:15 25 20070402 6025 S 1 120 0.252627 6:05:47 25 20070402 9000 W 121 210 0.263657 6:21:10 25 20070402 9001 W 211 300 0.265741 6:24:10 25 20070402 7025 W 301 390 0.267315 6:26:26 25 20070402 9003 W 391 446 0.268704 6:27:52 25 20070402 2135 E 906 1571 0.283519 6:59:22 25 20070402 2141.1 W 1572 2127 0.292176 7:10:00 25 20070402 2131 E 2128 2797 0.299861 7:22:58 25 20070402 2137 W 2798 3363 0.308646 7:33:53 25 20070402 2127 E 3364 4022 0.316563 7:46:50 25 20070402 2133 W 4023 4592 0.325069 7:57:36 25 20070402 2123 E 4593 5244 0.332963 8:10:20 25 20070402 2129 W 5245 5817 0.341678 8:21:34 25 20070402 2119 E 5818 6465 0.349826 8:34:33 25 20070402 2125 W 6466 7032 0.358461 8:45:38 25 20070402 2115 E 7033 7660 0.366204 8:57:48 25 20070402 2121 W 7661 8230 0.37419 9:08:20 25 20070402 2111 E 8231 8868 0.381968 9:20:40 25 20070402 2117 W 8869 9434 0.390127 9:31:13 25 20070402 2107 E 9435 10069 0.397894 9:43:33 25 20070402 2113 W 10070 10635 0.407963 9:56:54 25 20070402 2103 E 10636 11251 0.415648 10:08:48 25 20070402 2109 W 11252 11822 0.423576 10:19:28 25 20070402 7125 E 11823 11912 0.433449 10:25:40 25 20070402 9004 E 11913 12002 0.434896 10:27:45 25 20070402 9006 E 12003 12092 0.436586 10:30:11 25 20070402 6125 S 12093 12212 0.452465 10:53:33 27 20070405 6027 S 1 120 0.296875 7:09:30 27 20070405 9000 W 121 210 0.306516 7:22:53 27 20070405 9001 W 211 300 0.308449 7:25:40 27 20070405 7027 W 301 390 0.310243 7:28:15

Page 94: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 94

27 20070405 9003 W 391 447 0.31162 7:29:41 27 20070405 8927 W 448 586 0.316655 7:38:18 27 20070405 2105 W 587 1212 0.321887 7:53:57 27 20070405 2099 E 1213 1852 0.330868 8:07:07 27 20070405 2101 W 1853 2484 0.339769 8:19:48 27 20070405 2095 E 2485 3114 0.348507 8:32:21 27 20070405 2089 W 3115 4327 0.357778 8:55:25 27 20070405 2087 E 4328 5537 0.373449 9:17:56 27 20070405 2085 W 5538 6717 0.389306 9:40:16 27 20070405 2083.1 E 7020 8162 0.412442 10:12:58 27 20070405 2081 W 8163 9383 0.426898 10:35:05 27 20070405 2079 E 9384 10516 0.44184 10:55:08 27 20070405 2077 W 10517 11727 0.455914 11:16:42 27 20070405 2075 E 11728 12864 0.471065 11:37:17 27 20070405 7127 E 12865 12954 0.487257 11:43:09 27 20070405 9004 E 12955 13044 0.488831 11:45:25 27 20070405 9006 E 13045 13134 0.490521 11:47:51 27 20070405 6127 S 13135 13254 0.505231 12:09:32 28 20070406 6028 S 1 120 0.246343 5:56:44 28 20070406 9000 W 121 210 0.256123 6:10:19 28 20070406 9001 W 211 300 0.257963 6:12:58 28 20070406 7028 W 301 390 0.259606 6:15:20 28 20070406 9003 W 391 450 0.2611 6:16:59 28 20070406 2073 W 451 1641 0.267072 6:44:26 28 20070406 2071 E 1642 2799 0.282188 7:05:39 28 20070406 2069 W 2800 3965 0.29662 7:26:34 28 20070406 2091 E 3966 5131 0.312164 7:48:57 28 20070406 2097 W 5132 5755 0.327014 8:01:18 28 20070406 2067 E 5756 6392 0.3364 8:15:02 28 20070406 2065 W 6393 7011 0.344907 8:26:59 28 20070406 2063 E 7012 7651 0.353877 8:40:16 28 20070406 2061 W 7653 8271 0.362095 8:51:44 28 20070406 2059 E 8272 8908 0.37037 9:03:57 28 20070406 2057 W 8909 9520 0.378634 9:15:26 28 20070406 2055 E 9521 10156 0.387118 9:28:03 28 20070406 2053 W 10157 10767 0.395382 9:39:32 28 20070406 2051 E 10768 11403 0.403461 9:51:35 28 20070406 2049 W 11404 11982 0.412095 10:03:04 28 20070406 2047 E 11983 12606 0.419931 10:15:06 28 20070406 2045 W 12607 13178 0.42831 10:26:18 28 20070406 2043 E 13179 13803 0.436169 10:38:30 28 20070406 2041 W 13804 14376 0.444988 10:50:20 28 20070406 2039 E 14377 15002 0.452604 11:02:11 28 20070406 2093 W 1 598 0.464757 11:19:13 28 20070406 7128 E 599 688 0.474306 11:24:30 28 20070406 9004 E 689 778 0.475822 11:26:41 28 20070406 9006 E 779 868 0.477581 11:29:13 28 20070406 6128.1 S 897 1016 0.49794 11:59:02 29 20070407 6029 S 1 120 0.25 6:02:00 29 20070407 9000 W 121 210 0.260683 6:16:53 29 20070407 9001 W 211 300 0.26456 6:22:28 29 20070407 7029 W 301 390 0.266262 6:24:55 29 20070407 9003 W 391 453 0.267685 6:26:31 29 20070407 2034.2 E 29 1385 0.298611 7:32:37 29 20070407 2031.1 W 1812 2987 0.330613 8:15:41 29 20070407 2028 E 2988 4352 0.345556 8:40:21 29 20070407 2025 W 4353 5474 0.362581 9:00:49 29 20070407 2022 E 5475 6950 0.376863 9:27:17

Page 95: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 95

29 20070407 2019 W 6951 8084 0.395185 9:47:58 29 20070407 2016 E 8085 9524 0.409491 10:13:41 29 20070407 2010 E 10673 12064 0.441644 10:59:10 29 20070407 7129 E 12065 12154 0.460648 11:04:50 29 20070407 9004 E 12155 12244 0.462188 11:07:03 29 20070407 9006 E 12245 12334 0.463889 11:09:30 29 20070407 6129 S 12335 12454 0.478912 11:31:38 30 20070408 6030 S 1 120 0.251412 6:04:02 30 20070408 9000 W 121 210 0.262685 6:19:46 30 20070408 9001 W 211 300 0.265428 6:23:43 30 20070408 7030 W 301 390 0.267269 6:26:22 30 20070408 9003 W 391 445 0.268669 6:27:48 30 20070408 8930 W 446 555 0.274421 6:37:00 30 20070408 2035.1 W 675 1236 0.286921 7:02:32 30 20070408 2036 E 1237 1926 0.294525 7:15:37 30 20070408 2033 W 1927 2486 0.303854 7:26:53 30 20070408 2032 E 2487 3183 0.311609 7:40:20 30 20070408 2029 W 3184 3758 0.321146 7:52:02 30 20070408 2030 E 3759 4450 0.329167 8:05:32 30 20070408 7130 E 4451 4540 0.340162 8:11:20 30 20070408 9004 E 4541 4630 0.341782 8:13:40 30 20070408 9006 E 4631 4720 0.343866 8:16:40 30 20070408 6130 S 4721 4840 0.357616 8:36:58 31 20070411 6031 N 1 120 0.237431 5:43:54 31 20070411 9000 W 121 210 0.262373 6:19:19 31 20070411 9001 W 211 300 0.265405 6:23:41 31 20070411 7031 W 301 390 0.266956 6:25:55 31 20070411 9003 W 391 446 0.268461 6:27:31 31 20070411 2037.1 W 447 1645 0.278102 7:00:27 31 20070411 2026 E 1646 2288 0.300532 7:23:29 31 20070411 2013.1 W 2289 3471 0.309201 7:44:58 31 20070411 2012 E 3472 4136 0.330891 8:07:34 31 20070411 2027 W 4137 4680 0.34066 8:19:37 31 20070411 2024 E 4681 5322 0.348438 8:32:27 31 20070411 2023 W 5323 5882 0.356678 8:42:57 31 20070411 2020 E 5883 6512 0.364201 8:54:57 31 20070411 2021 W 6513 7078 0.372512 9:05:51 31 20070411 2018 E 7079 7697 0.38037 9:18:03 31 20070411 2007 W 7698 8932 0.388796 9:40:27 31 20070411 2004.1 E 8933 10276 0.405648 10:06:32 31 20070411 2003 W 10277 10861 0.422002 10:17:26 31 20070411 7131 E 10862 10951 0.431979 10:23:33 31 20070411 9004 E 10952 11041 0.433553 10:25:49 31 20070411 9006 E 11042 11131 0.435336 10:28:23 31 20070411 6131 N 11132 11251 0.476933 11:28:47 32 20070412 6032 N 1 120 0.239063 5:46:15 32 20070412 9000 W 121 210 0.264306 6:22:06 32 20070412 9001 W 211 300 0.266424 6:25:09 32 20070412 7032 W 301 390 0.267975 6:27:23 32 20070412 9003 W 391 451 0.26941 6:28:58 32 20070412 2001.1 W 452 1568 0.283553 7:06:56 32 20070412 2002 E 1569 2257 0.305428 7:31:18 32 20070412 2017 W 2258 2817 0.315359 7:43:27 32 20070412 2014 E 2818 3523 0.32294 7:56:48 32 20070412 2015 W 3524 4078 0.331875 8:07:09 32 20070412 2008 E 4079 4782 0.339514 8:20:39 32 20070412 2011 W 4784 5333 0.348438 8:30:55 32 20070412 2006 E 5334 6030 0.355544 8:43:36

Page 96: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 96

32 20070412 2009 W 6031 6574 0.364641 8:54:09 32 20070412 2005 W 6575 7135 0.380313 9:17:00 32 20070412 2073.1 W 7136 8200 0.396424 9:48:36 32 20070412 2073.1 W 7136 8200 0.396424 9:48:36 32 20070412 8732 W 8201 8310 0.431111 10:22:38 32 20070412 2391 W 8311 8876 0.436771 10:38:23 32 20070412 7132 E 8877 8966 0.446389 10:44:18 32 20070412 9004 E 8967 9056 0.448889 10:47:54 32 20070412 9006 E 9057 9146 0.45059 10:50:21 32 20070412 6132 N 9147 9266 0.472431 11:22:18 33 20070413 6033 N 1 120 0.280382 6:45:45 33 20070413 9000.1 W 347 436 0.304236 7:19:36 33 20070413 9001.1 W 437 526 0.306169 7:22:23 33 20070413 7033.1 W 527 616 0.307697 7:24:35 33 20070413 9003.1 W 617 670 0.309167 7:26:06 33 20070413 2426 E 671 1380 0.316042 7:46:56 33 20070413 2427 W 1381 1944 0.325556 7:58:12 33 20070413 2428 E 1945 2622 0.333507 8:11:33 33 20070413 2429 W 2623 3206 0.342222 8:22:32 33 20070413 2430 E 3207 3871 0.35066 8:36:02 33 20070413 2431 W 3872 4428 0.359306 8:46:41 33 20070413 2432 E 4429 5082 0.366863 8:59:11 33 20070413 2433 W 5083 5649 0.375625 9:10:21 33 20070413 2434 E 5650 6308 0.383356 9:23:01 33 20070413 2435 W 6309 6878 0.39191 9:33:51 33 20070413 2436 E 6879 7528 0.399688 9:46:23 33 20070413 2437 W 7529 8104 0.408252 9:57:29 33 20070413 2438 E 8105 8746 0.416123 10:09:55 33 20070413 2439 W 8747 9330 0.424942 10:21:39 33 20070413 2440 E 9331 9966 0.432801 10:33:50 33 20070413 2441 W 9967 10560 0.441157 10:45:10 33 20070413 2442 E 10561 11190 0.449236 10:57:24 33 20070413 7133 E 11674 11763 0.465718 11:12:08 33 20070413 9004 E 11764 11853 0.467442 11:14:37 33 20070413 9006 W 11854 11943 0.469178 11:17:07 33 20070413 6133 N 11944 12063 0.487662 11:44:14 34 20070414 6034 N 1 120 0.258831 6:14:43 34 20070414 9000 W 121 210 0.27338 6:35:10 34 20070414 9001 W 211 300 0.275289 6:37:55 34 20070414 7034 W 301 390 0.276771 6:40:03 34 20070414 9003 W 391 456 0.27809 6:41:33 34 20070414 2443 W 457 1031 0.287639 7:03:47 34 20070414 2444 E 1032 1714 0.295914 7:17:30 34 20070414 2445 W 1715 2298 0.305069 7:29:02 34 20070414 2446 E 2299 2988 0.313426 7:42:50 34 20070414 2447 W 2989 3598 0.322616 7:54:44 34 20070414 2448 E 3599 4312 0.331505 8:09:16 34 20070414 2449 W 4313 4913 0.341169 8:21:18 34 20070414 7134 E 4914 5003 0.350868 8:26:45 34 20070414 9004 E 5004 5093 0.352326 8:28:51 34 20070414 9006 E 5094 5183 0.354039 8:31:19 34 20070414 6134 N 5184 5303 0.372801 8:58:50 36 20070417 6036 N 1 120 0.242998 5:51:55 36 20070417 9000 W 121 210 0.256273 6:10:32 36 20070417 9001 W 211 300 0.257998 6:13:01 36 20070417 7036 W 301 390 0.259583 6:15:18 36 20070417 9003 W 391 460 0.261076 6:17:07 36 20070417 8736.1 W 1 103 0.277894 6:41:53

Page 97: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 97

36 20070417 2450 E 104 829 0.285775 7:03:37 36 20070417 2451 W 830 1411 0.29559 7:15:21 36 20070417 2452 E 1412 2179 0.303715 7:30:09 36 20070417 2453 W 2180 2771 0.313808 7:41:45 36 20070417 2454 E 2772 3524 0.321817 7:55:58 36 20070417 2455 W 3525 4138 0.331516 8:07:37 36 20070417 2458 E 4139 4874 0.340463 8:22:33 36 20070417 2459 W 4876 6312 0.349873 8:47:46 36 20070417 2456 E 6313 7860 0.368495 9:16:26 36 20070417 2457 W 7861 8517 0.387789 9:29:22 36 20070417 2460 E 8518 9227 0.398611 9:45:50 36 20070417 2461 W 9228 9897 0.407708 9:58:16 36 20070417 2464 E 9898 10620 0.416794 10:12:14 36 20070417 7136 E 10621 10710 0.427951 10:17:45 36 20070417 9004 E 10711 10800 0.429444 10:19:54 36 20070417 9006 E 10801 10890 0.43103 10:22:11 36 20070417 6136 N 10891 11010 0.445995 10:44:14 37 20070418 6037 N 1 120 0.237095 5:43:25 37 20070418 9000 W 121 210 0.249479 6:00:45 37 20070418 9001.1 W 91 183 0.261296 6:17:49 37 20070418 7037 W 184 273 0.262951 6:20:09 37 20070418 9003 W 274 339 0.264421 6:21:52 37 20070418 2465 W 340 1756 0.27191 6:55:10 37 20070418 2462 E 1757 3529 0.290012 7:27:10 37 20070418 2471 W 3530 4965 0.31235 7:53:43 37 20070418 2468 E 4966 6679 0.330174 8:24:01 37 20070418 2477 W 6680 8191 0.352164 8:52:19 37 20070418 2474 E 8192 9840 0.370718 9:21:19 37 20070418 2481 W 9841 10590 0.391146 9:35:45 37 20070418 2482 E 10591 11400 0.401644 9:51:52 37 20070418 2479 W 11401 12156 0.412292 10:06:18 37 20070418 2478 E 12157 12939 0.422303 10:21:10 37 20070418 7137 E 12940 13029 0.433935 10:26:22 37 20070418 9004 E 13030 13119 0.435347 10:28:24 37 20070418 9006 E 13120 13209 0.436933 10:30:41 37 20070418 6137 N 13210 13329 0.451528 10:52:12 38 20070419 6038 N 1 120 0.243831 5:53:07 38 20070419 9000 W 121 210 0.257095 6:11:43 38 20070419 9001 W 211 300 0.259387 6:15:01 38 20070419 7038 W 301 390 0.261076 6:17:27 38 20070419 9003 W 391 450 0.2625 6:19:00 38 20070419 2463 W 451 1131 0.270185 6:40:25 38 20070419 2466 E 1132 1881 0.279468 6:54:56 38 20070419 2467 W 1882 2575 0.289086 7:07:51 38 20070419 2470 E 2576 3338 0.302292 7:28:01 38 20070419 2473 W 4626 5361 0.333935 8:13:09 38 20070419 2472.1 E 5363 6118 0.343773 8:27:38 38 20070419 2475 W 6119 6864 0.354051 8:42:16 38 20070419 2476 E 6865 7642 0.364387 8:57:41 38 20070419 2483 W 7643 9235 0.374977 9:26:31 38 20070419 2480 E 9236 10861 0.394699 9:55:28 38 20070419 2469.1 W 10862 11585 0.415139 10:09:52 38 20070419 7138 E 11586 11675 0.426296 10:15:22 38 20070419 9004 E 11676 11765 0.42772 10:17:25 38 20070419 9006 E 11766 11855 0.429468 10:19:56 38 20070419 6138.2 N 1 120 0.453889 10:55:36

Page 98: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 98

APPENDIX IV – Pre- and Post-flight Zero Statistics

Figure 1 Plots of the mean and standard deviation of all high altitude lines for the survey flown by VH-TEM Plot provided courtesy of Geoscience Australia.

Page 99: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 99

Figure 1 Plots of the mean and standard deviation of all high altitude lines for the survey flown by VH-WGT Plot provided courtesy of Geoscience Australia.

Page 100: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 100

APPENDIX V – Located Data Format DUBBO S1 NON-GEOMETRY CORRECTED (LMRAEM_S1_NON-HPR.HDR) COMM JOB NUMBER: 1835 COMM AREA NUMBER: S1 COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April, 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: 300 m COMM TRAVERSE LINE DIRECTION: 000-180 deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 8661.0 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 10010 - 12680 COMM COMM AREA BOUNDARY (GDA94, MGA55) COMM COMM 558900 6451800 COMM 624900 6451800 COMM 624900 6444000 COMM 639000 6444000 COMM 639000 6431100 COMM 624900 6431100 COMM 624900 6426300 COMM 619500 6426300 COMM 619500 6435900 COMM 613800 6435900 COMM 613800 6426300 COMM 612600 6426300 COMM 612600 6411900 COMM 558900 6411900 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s

Page 101: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 101

COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER (AVERAGE): 114.0 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER (AVERAGE): 47.3 m COMM COMM RADAR ALTIMETER: Collins ALT55 COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Regal LD90-3300HR COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED 0.4 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz, COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107

Page 102: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 102

COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 68 COMM COMM Field Columns Type Format Channel Description COMM COMM 1 1 - 4 int (i 4) PROJECT [Project Number ] COMM 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] COMM 3 7 - 10 int (i 4) FLIGHT [Flight ] COMM 4 11 - 16 int (i 6) LINE [Line ] COMM 5 17 - 24 real (f 8.1) FID [Fiducial (s)] COMM 6 25 - 33 int (i 9) DATE [Date ddmmyyyy] COMM 7 34 - 41 real (f 8.1) TIME [Time (s)] COMM 8 42 - 45 int (i 4) BEARING [Bearing (deg)] COMM 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg)] COMM 10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg)] COMM 11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m)] COMM 12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m)] COMM 13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m)] COMM 14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m)] COMM 15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m)] COMM 16 117 - 124 real (f 8.2) DTM [DTM (m)] COMM 17 125 - 134 real (f10.3) MAG [Compensated TMI (nT)] COMM 18 135 - 144 real (f10.5) Roll_Raw [Raw Tx loop roll (deg)] COMM 19 145 - 154 real (f10.5) Pitch_Raw [Raw Tx loop pitch (deg)] COMM 20 155 - 160 real (f 6.1) TxLasalt [Tx ground clearance (m)] COMM 21 161 - 168 real (f 8.2) HSep_Raw [Raw Tx-Rx horizontal separation (m)] COMM 22 169 - 176 real (f 8.2) VSep_Raw [Raw Tx-Rx vertical separation (m)] COMM 23 177 - 186 real (f10.3) X_Geofact [X_Geometric factor ] COMM 24 187 - 196 real (f10.3) Z_Geofact [Z_Geometric factor ] COMM 25 197 - 208 real (f12.6) EMX_Raw[1] [Raw EMX01 Window (fT)] COMM 26 209 - 220 real (f12.6) EMX_Raw[2] [Raw EMX02 Window (fT)] COMM 27 221 - 232 real (f12.6) EMX_Raw[3] [Raw EMX03 Window (fT)] COMM 28 233 - 244 real (f12.6) EMX_Raw[4] [Raw EMX04 Window (fT)] COMM 29 245 - 256 real (f12.6) EMX_Raw[5] [Raw EMX05 Window (fT)] COMM 30 257 - 268 real (f12.6) EMX_Raw[6] [Raw EMX06 Window (fT)] COMM 31 269 - 280 real (f12.6) EMX_Raw[7] [Raw EMX07 Window (fT)] COMM 32 281 - 292 real (f12.6) EMX_Raw[8] [Raw EMX08 Window (fT)] COMM 33 293 - 304 real (f12.6) EMX_Raw[9] [Raw EMX09 Window (fT)] COMM 34 305 - 316 real (f12.6) EMX_Raw[10] [Raw EMX10 Window (fT)] COMM 35 317 - 328 real (f12.6) EMX_Raw[11] [Raw EMX11 Window (fT)] COMM 36 329 - 340 real (f12.6) EMX_Raw[12] [Raw EMX12 Window (fT)] COMM 37 341 - 352 real (f12.6) EMX_Raw[13] [Raw EMX13 Window (fT)] COMM 38 353 - 364 real (f12.6) EMX_Raw[14] [Raw EMX14 Window (fT)] COMM 39 365 - 376 real (f12.6) EMX_Raw[15] [Raw EMX15 Window (fT)]

Page 103: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 103

COMM 40 377 - 388 real (f12.6) EMZ_Raw[1] [Raw EMZ01 Window (fT)] COMM 41 389 - 400 real (f12.6) EMZ_Raw[2] [Raw EMZ02 Window (fT)] COMM 42 401 - 412 real (f12.6) EMZ_Raw[3] [Raw EMZ03 Window (fT)] COMM 43 413 - 424 real (f12.6) EMZ_Raw[4] [Raw EMZ04 Window (fT)] COMM 44 425 - 436 real (f12.6) EMZ_Raw[5] [Raw EMZ05 Window (fT)] COMM 45 437 - 448 real (f12.6) EMZ_Raw[6] [Raw EMZ06 Window (fT)] COMM 46 449 - 460 real (f12.6) EMZ_Raw[7] [Raw EMZ07 Window (fT)] COMM 47 461 - 472 real (f12.6) EMZ_Raw[8] [Raw EMZ08 Window (fT)] COMM 48 473 - 484 real (f12.6) EMZ_Raw[9] [Raw EMZ09 Window (fT)] COMM 49 485 - 496 real (f12.6) EMZ_Raw[10] [Raw EMZ10 Window (fT)] COMM 50 497 - 508 real (f12.6) EMZ_Raw[11] [Raw EMZ11 Window (fT)] COMM 51 509 - 520 real (f12.6) EMZ_Raw[12] [Raw EMZ12 Window (fT)] COMM 52 521 - 532 real (f12.6) EMZ_Raw[13] [Raw EMZ13 Window (fT)] COMM 53 533 - 544 real (f12.6) EMZ_Raw[14] [Raw EMZ14 Window (fT)] COMM 54 545 - 556 real (f12.6) EMZ_Raw[15] [Raw EMZ15 Window (fT)] COMM 55 557 - 566 real (f10.3) X_Sferics [X_Sferics ] COMM 56 567 - 576 real (f10.3) Z_Sferics [Z_Sferics ] COMM 57 577 - 586 real (f10.3) X_VLF1 [X_18.2kHz ] COMM 58 587 - 596 real (f10.3) X_VLF2 [X_19.8kHz ] COMM 59 597 - 606 real (f10.3) X_VLF3 [X_21.4kHz ] COMM 60 607 - 616 real (f10.3) X_VLF4 [X_22.2kHz ] COMM 61 617 - 626 real (f10.3) Z_VLF1 [Z_18.2kHz ] COMM 62 627 - 636 real (f10.3) Z_VLF2 [Z_19.8kHz ] COMM 63 637 - 646 real (f10.3) Z_VLF3 [Z_21.4kHz ] COMM 64 647 - 656 real (f10.3) Z_VLF4 [Z_22.2kHz ] COMM 65 657 - 666 real (f10.3) X_Powerline [X_Powerline ] COMM 66 667 - 676 real (f10.3) Z_Powerline [Z_Powerline ] COMM 67 677 - 686 real (f10.3) X_Lowfreq [X_Lowfreq ] COMM 68 687 - 696 real (f10.3) Z_Lowfreq [Z_Lowfreq ] COMM 697 - 698 <newline> COMM Total number of lines : 268 COMM Total Kilometres : 8659.97

Page 104: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 104

DUBBO S1 GEOMETRY CORRECTED (LMRAEM_S1_HPR.HDR) COMM JOB NUMBER: 1835 COMM AREA NUMBER: S1 COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April, 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: 300 m COMM TRAVERSE LINE DIRECTION: 000-180 deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 8661.0 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 10010 - 12680 COMM COMM AREA BOUNDARY (GDA94, MGA55) COMM COMM 558900 6451800 COMM 624900 6451800 COMM 624900 6444000 COMM 639000 6444000 COMM 639000 6431100 COMM 624900 6431100 COMM 624900 6426300 COMM 619500 6426300 COMM 619500 6435900 COMM 613800 6435900 COMM 613800 6426300 COMM 612600 6426300 COMM 612600 6411900 COMM 558900 6411900 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER: 115 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER: 45 m COMM

Page 105: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 105

COMM RADAR ALTIMETER: Collins ALT55 COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Regal LD90-3300HR COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED 0.4 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM DATA CORRECTED FOR TRANSMITTER HEIGHT, PITCH AND ROLL COMM DATA CORRECTED FOR TRANSMITTER-RECEIVER GEOMETRY VARIATIONS COMM DATA HAVE BEEN MICROLEVELLED COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz, COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173

Page 106: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 106

COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 68 COMM COMM Field Columns Type Format Channel Description COMM COMM 1 1 - 4 int (i 4) PROJECT [Project Number ] COMM 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] COMM 3 7 - 10 int (i 4) FLIGHT [Flight ] COMM 4 11 - 16 int (i 6) LINE [Line ] COMM 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] COMM 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] COMM 7 34 - 41 real (f 8.1) TIME [Time (s) ] COMM 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] COMM 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] COMM10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] COMM11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] COMM12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] COMM13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] COMM14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] COMM15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] COMM16 117 - 124 real (f 8.2) DTM [DTM (m) ] COMM17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] COMM18 135 - 144 real (f10.5) Roll_Final [Final Tx loop roll (deg) ] COMM19 145 - 154 real (f10.5) Pitch_Final [Final Tx loop pitch (deg) ] COMM20 155 - 160 real (f 6.1) TxAlt [Tx ground clearance (m) ] COMM21 161 - 168 real (f 8.2) HSep_Final [Final Tx-Rx horizontal separation(m) ] COMM22 169 - 176 real (f 8.2) VSep_Final [Final Tx-Rx vertical separation (m) ] COMM23 177 - 186 real (f10.3) X_Geofact [X_Geometric factor ] COMM24 187 - 196 real (f10.3) Z_Geofact [Z_Geometric factor ] COMM25 197 - 208 real (f12.6) EMX_Final[1] [Final EMX01 Window (fT) ] COMM26 209 - 220 real (f12.6) EMX_Final[2] [Final EMX02 Window (fT) ] COMM27 221 - 232 real (f12.6) EMX_Final[3] [Final EMX03 Window (fT) ] COMM28 233 - 244 real (f12.6) EMX_Final[4] [Final EMX04 Window (fT) ] COMM29 245 - 256 real (f12.6) EMX_Final[5] [Final EMX05 Window (fT) ] COMM30 257 - 268 real (f12.6) EMX_Final[6] [Final EMX06 Window (fT) ] COMM31 269 - 280 real (f12.6) EMX_Final[7] [Final EMX07 Window (fT) ] COMM32 281 - 292 real (f12.6) EMX_Final[8] [Final EMX08 Window (fT) ] COMM33 293 - 304 real (f12.6) EMX_Final[9] [Final EMX09 Window (fT) ] COMM34 305 - 316 real (f12.6) EMX_Final[10] [Final EMX10 Window (fT) ] COMM35 317 - 328 real (f12.6) EMX_Final[11] [Final EMX11 Window (fT) ] COMM36 329 - 340 real (f12.6) EMX_Final[12] [Final EMX12 Window (fT) ] COMM37 341 - 352 real (f12.6) EMX_Final[13] [Final EMX13 Window (fT) ] COMM38 353 - 364 real (f12.6) EMX_Final[14] [Final EMX14 Window (fT) ] COMM39 365 - 376 real (f12.6) EMX_Final[15] [Final EMX15 Window (fT) ] COMM40 377 - 388 real (f12.6) EMZ_Final[1] [Final EMZ01 Window (fT) ]

Page 107: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 107

COMM41 389 - 400 real (f12.6) EMZ_Final[2] [Final EMZ02 Window (fT) ] COMM42 401 - 412 real (f12.6) EMZ_Final[3] [Final EMZ03 Window (fT) ] COMM43 413 - 424 real (f12.6) EMZ_Final[4] [Final EMZ04 Window (fT) ] COMM44 425 - 436 real (f12.6) EMZ_Final[5] [Final EMZ05 Window (fT) ] COMM45 437 - 448 real (f12.6) EMZ_Final[6] [Final EMZ06 Window (fT) ] COMM46 449 - 460 real (f12.6) EMZ_Final[7] [Final EMZ07 Window (fT) ] COMM47 461 - 472 real (f12.6) EMZ_Final[8] [Final EMZ08 Window (fT) ] COMM48 473 - 484 real (f12.6) EMZ_Final[9] [Final EMZ09 Window (fT) ] COMM49 485 - 496 real (f12.6) EMZ_Final[10] [Final EMZ10 Window (fT) ] COMM50 497 - 508 real (f12.6) EMZ_Final[11] [Final EMZ11 Window (fT) ] COMM51 509 - 520 real (f12.6) EMZ_Final[12] [Final EMZ12 Window (fT) ] COMM52 521 - 532 real (f12.6) EMZ_Final[13] [Final EMZ13 Window (fT) ] COMM53 533 - 544 real (f12.6) EMZ_Final[14] [Final EMZ14 Window (fT) ] COMM54 545 - 556 real (f12.6) EMZ_Final[15] [Final EMZ15 Window (fT) ] COMM55 557 - 566 real (f10.3) X_Sferics [X_Sferics ] COMM56 567 - 576 real (f10.3) Z_Sferics [Z_Sferics ] COMM57 577 - 586 real (f10.3) X_VLF1 [X_18.2kHz ] COMM58 587 - 596 real (f10.3) X_VLF2 [X_19.8kHz ] COMM59 597 - 606 real (f10.3) X_VLF3 [X_21.4kHz ] COMM60 607 - 616 real (f10.3) X_VLF4 [X_22.2kHz ] COMM61 617 - 626 real (f10.3) Z_VLF1 [Z_18.2kHz ] COMM62 627 - 636 real (f10.3) Z_VLF2 [Z_19.8kHz ] COMM63 637 - 646 real (f10.3) Z_VLF3 [Z_21.4kHz ] COMM64 647 - 656 real (f10.3) Z_VLF4 [Z_22.2kHz ] COMM65 657 - 666 real (f10.3) X_Powerline [X_Powerline ] COMM66 667 - 676 real (f10.3) Z_Powerline [Z_Powerline ] COMM67 677 - 686 real (f10.3) X_Lowfreq [X_Lowfreq ] COMM68 687 - 696 real (f10.3) Z_Lowfreq [Z_Lowfreq ] COMM 697 - 698 <newline> COMM Total Kilometres : 8659.97

Page 108: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 108

DUBBO S1 Conductivity data (LMRAEM_S1_COND.HDR) COMM JOB NUMBER: 1835 COMM AREA NUMBER: 1 COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April, 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: 300 m COMM TRAVERSE LINE DIRECTION: 000-180 deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 8661.0 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 10010 - 12680 COMM COMM AREA BOUNDARY (GDA94, MGA55) COMM COMM 558900 6451800 COMM 624900 6451800 COMM 624900 6444000 COMM 639000 6444000 COMM 639000 6431100 COMM 624900 6431100 COMM 624900 6426300 COMM 619500 6426300 COMM 619500 6435900 COMM 613800 6435900 COMM 613800 6426300 COMM 612600 6426300 COMM 612600 6411900 COMM 558900 6411900 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER: 115 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER: 45 m COMM

Page 109: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 109

COMM RADAR ALTIMETER: Collins ALT55 COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Regal LD90-3300HR COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED 0.4 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM DATA CORRECTED FOR TRANSMITTER HEIGHT, PITCH AND ROLL COMM DATA CORRECTED FOR TRANSMITTER-RECEIVER GEOMETRY VARIATIONS COMM DATA HAVE BEEN MICROLEVELLED COMM CONDUCTIVITY DEPTH INVERSION CALCULATED EMFlow V5.10 COMM CONDUCTIVITIES CALCULATED USING corrected EM DATA COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz, COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067

Page 110: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 110

COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 127 COMM COMM Field Columns Type Format Channel Description COMM COMM 1 1 - 4 int (i 4) PROJECT [Project Number ] COMM 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] COMM 3 7 - 10 int (i 4) FLIGHT [Flight ] COMM 4 11 - 16 int (i 6) LINE [Line ] COMM 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] COMM 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] COMM 7 34 - 41 real (f 8.1) TIME [Time (s) ] COMM 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] COMM 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] COMM 10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] COMM 11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] COMM 12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] COMM 13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] COMM 14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] COMM 15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] COMM 16 117 - 124 real (f 8.2) DTM [DTM (m) ] COMM 17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] COMM 18 135 - 144 real (f10.3) CND[1] [Conductivity_001 0-5 m (mS/m) ] COMM 19 145 - 154 real (f10.3) CND[2] [Conductivity_002 5-10 m (mS/m) ] COMM 20 155 - 164 real (f10.3) CND[3] [Conductivity_003 10-15 m (mS/m) ] COMM 21 165 - 174 real (f10.3) CND[4] [Conductivity_004 15-20 m (mS/m) ] COMM 22 175 - 184 real (f10.3) CND[5] [Conductivity_005 20-25 m (mS/m) ] COMM 23 185 - 194 real (f10.3) CND[6] [Conductivity_006 25-30 m (mS/m) ] COMM 24 195 - 204 real (f10.3) CND[7] [Conductivity_007 30-35 m (mS/m) ] COMM 25 205 - 214 real (f10.3) CND[8] [Conductivity_008 35-40 m (mS/m) ] COMM 26 215 - 224 real (f10.3) CND[9] [Conductivity_009 40-45 m (mS/m) ] COMM 27 225 - 234 real (f10.3) CND[10] [Conductivity_010 45-50 m (mS/m) ] COMM 28 235 - 244 real (f10.3) CND[11] [Conductivity_011 50-55 m (mS/m) ] COMM 29 245 - 254 real (f10.3) CND[12] [Conductivity_012 55-60 m (mS/m) ] COMM 30 255 - 264 real (f10.3) CND[13] [Conductivity_013 60-65 m (mS/m) ] COMM 31 265 - 274 real (f10.3) CND[14] [Conductivity_014 65-70 m (mS/m) ] COMM 32 275 - 284 real (f10.3) CND[15] [Conductivity_015 70-75 m (mS/m) ] COMM 33 285 - 294 real (f10.3) CND[16] [Conductivity_016 75-80 m (mS/m) ] COMM 34 295 - 304 real (f10.3) CND[17] [Conductivity_017 80-85 m (mS/m) ] COMM 35 305 - 314 real (f10.3) CND[18] [Conductivity_018 85-90 m (mS/m) ] COMM 36 315 - 324 real (f10.3) CND[19] [Conductivity_019 90-95 m (mS/m) ] COMM 37 325 - 334 real (f10.3) CND[20] [Conductivity_020 95-100 m (mS/m) ] COMM 38 335 - 344 real (f10.3) CND[21] [Conductivity_021 100-105 m (mS/m) ]

Page 111: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 111

COMM 39 345 - 354 real (f10.3) CND[22] [Conductivity_022 105-110 m (mS/m) ] COMM 40 355 - 364 real (f10.3) CND[23] [Conductivity_023 110-115 m (mS/m) ] COMM 41 365 - 374 real (f10.3) CND[24] [Conductivity_024 115-120 m (mS/m) ] COMM 42 375 - 384 real (f10.3) CND[25] [Conductivity_025 120-125 m (mS/m) ] COMM 43 385 - 394 real (f10.3) CND[26] [Conductivity_026 125-130 m (mS/m) ] COMM 44 395 - 404 real (f10.3) CND[27] [Conductivity_027 130-135 m (mS/m) ] COMM 45 405 - 414 real (f10.3) CND[28] [Conductivity_028 135-140 m (mS/m) ] COMM 46 415 - 424 real (f10.3) CND[29] [Conductivity_029 140-145 m (mS/m) ] COMM 47 425 - 434 real (f10.3) CND[30] [Conductivity_030 145-150 m (mS/m) ] COMM 48 435 - 444 real (f10.3) CND[31] [Conductivity_031 150-155 m (mS/m) ] COMM 49 445 - 454 real (f10.3) CND[32] [Conductivity_032 155-160 m (mS/m) ] COMM 50 455 - 464 real (f10.3) CND[33] [Conductivity_033 160-165 m (mS/m) ] COMM 51 465 - 474 real (f10.3) CND[34] [Conductivity_034 165-170 m (mS/m) ] COMM 52 475 - 484 real (f10.3) CND[35] [Conductivity_035 170-175 m (mS/m) ] COMM 53 485 - 494 real (f10.3) CND[36] [Conductivity_036 175-180 m (mS/m) ] COMM 54 495 - 504 real (f10.3) CND[37] [Conductivity_037 180-185 m (mS/m) ] COMM 55 505 - 514 real (f10.3) CND[38] [Conductivity_038 185-190 m (mS/m) ] COMM 56 515 - 524 real (f10.3) CND[39] [Conductivity_039 190-195 m (mS/m) ] COMM 57 525 - 534 real (f10.3) CND[40] [Conductivity_040 195-200 m (mS/m) ] COMM118 1135 -1144 real (f10.3) INT_CND_0_5 [Interval Conductivity 0-5m (mS/m) ] COMM119 1145 -1154 real (f10.3) INT_CND_5_10 [Interval Conductivity 5-10m (mS/m) ] COMM120 1155 -1164 real (f10.3) INT_CND_10_15[Interval Conductivity 10-15m (mS/m) ] COMM121 1165 -1174 real (f10.3) INT_CND_15_20[Interval Conductivity 15-20m (mS/m) ] COMM122 1175 -1184 real (f10.3) INT_CND_20_30[Interval Conductivity 20-30m (mS/m) ] COMM123 1185 -1194 real (f10.3) INT_CND_30_40[Interval Conductivity 30-40m (mS/m) ] COMM124 1195 -1204 real (f10.3) INT_CND_40_60[Interval Conductivity 40-60m (mS/m) ] COMM125 1205 -1214 real (f10.3) INT_CND_60_10[Interval Conductivity 60-100m (mS/m) ] COMM126 1215 -1224 real (f10.3) INT_CND_100_150[Interval Conductivity 100-150m (mS/m)] COMM127 1225 -1234 real (f10.3) INT_CND_150_200[Interval Conductivity 150-200m (mS/m)] COMM 1235 -1236 <newline> COMM Total number of lines : 268 COMM Total Kilometres : 8659.97

Page 112: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 112

DUBBO N1-3 NON-GEOMERTY CORRECTED (LMRAEM_N1-3_NON-HPR.HDR) COMM JOB NUMBER: 1835 COMM AREA NUMBER: N1-3/L1-6 COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April, 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: 300-900 m COMM TRAVERSE LINE DIRECTION: 090-270 deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 26529.31 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 20010 - 26210 COMM COMM AREA BOUNDARY (GDA94, MGA55) COMM COMM 499200 6637200 503100 6517200 COMM 581100 6637200 503100 6523500 COMM 581100 6567437 554672 6523500 COMM 597855 6504531 543300 6561106 COMM 624900 6477900 543300 6565200 COMM 624900 6451200 505200 6565200 COMM 503100 6451200 505200 6570000 COMM 503100 6462000 543300 6570000 COMM 558900 6462000 543300 6610200 COMM 558900 6489000 505200 6610200 COMM 503100 6489000 505200 6616800 COMM 503100 6500700 543300 6616800 COMM 558900 6500700 543300 6626400 COMM 558900 6509516 499200 6626400 COMM 556550 6517200 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM CASA C212 Turbo Prop, VH-TEM COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER (TEM AVERAGE): 120.7 m

Page 113: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 113

COMM RECEIVER DISTANCE BELOW THE TRANSMITTER (TEM AVERAGE): 39.4 m COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER (WGT AVERAGE): 115.6 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER (WGT AVERAGE): 43.2 m COMM COMM RADAR ALTIMETER: Sperry RT-220 (TEM) COMM RADAR ALTIMETER: Collins ALT55 (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Optech 501SB (TEM) COMM LASER ALTIMETER: Regal LD90-3300HR (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED (WGT) 0.4 s COMM PARALLAX CORRECTION APPLIED (TEM) 0.6 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz, COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013

Page 114: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 114

COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 68 COMM COMM Field Columns Type Format Channel Description COMM COMM 1 1 - 4 int (i 4) PROJECT [Project Number ] COMM 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] COMM 3 7 - 10 int (i 4) FLIGHT [Flight ] COMM 4 11 - 16 int (i 6) LINE [Line ] COMM 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] COMM 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] COMM 7 34 - 41 real (f 8.1) TIME [Time (s) ] COMM 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] COMM 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] COMM10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] COMM11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] COMM12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] COMM13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] COMM14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] COMM15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] COMM16 117 - 124 real (f 8.2) DTM [DTM (m) ] COMM17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] COMM18 135 - 144 real (f10.5) Roll_Raw [Raw Tx loop roll (deg) ] COMM19 145 - 154 real (f10.5) Pitch_Raw [Raw Tx loop pitch (deg) ] COMM20 155 - 160 real (f 6.1) TxLasalt [Tx ground clearance (m) ] COMM21 161 - 168 real (f 8.2) HSep_Raw [Raw Tx-Rx horizontal separation (m) ] COMM22 169 - 176 real (f 8.2) VSep_Raw [Raw Tx-Rx vertical separation (m) ] COMM23 177 - 186 real (f10.3) X_Geofact [X_Geometric factor ] COMM24 187 - 196 real (f10.3) Z_Geofact [Z_Geometric factor ] COMM25 197 - 208 real (f12.6) EMX_Raw[1] [Raw EMX01 Window (fT) ] COMM26 209 - 220 real (f12.6) EMX_Raw[2] [Raw EMX02 Window (fT) ] COMM27 221 - 232 real (f12.6) EMX_Raw[3] [Raw EMX03 Window (fT) ] COMM28 233 - 244 real (f12.6) EMX_Raw[4] [Raw EMX04 Window (fT) ] COMM29 245 - 256 real (f12.6) EMX_Raw[5] [Raw EMX05 Window (fT) ] COMM30 257 - 268 real (f12.6) EMX_Raw[6] [Raw EMX06 Window (fT) ] COMM31 269 - 280 real (f12.6) EMX_Raw[7] [Raw EMX07 Window (fT) ] COMM32 281 - 292 real (f12.6) EMX_Raw[8] [Raw EMX08 Window (fT) ] COMM33 293 - 304 real (f12.6) EMX_Raw[9] [Raw EMX09 Window (fT) ] COMM34 305 - 316 real (f12.6) EMX_Raw[10] [Raw EMX10 Window (fT) ] COMM35 317 - 328 real (f12.6) EMX_Raw[11] [Raw EMX11 Window (fT) ] COMM36 329 - 340 real (f12.6) EMX_Raw[12] [Raw EMX12 Window (fT) ]

Page 115: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 115

COMM37 341 - 352 real (f12.6) EMX_Raw[13] [Raw EMX13 Window (fT) ] COMM38 353 - 364 real (f12.6) EMX_Raw[14] [Raw EMX14 Window (fT) ] COMM39 365 - 376 real (f12.6) EMX_Raw[15] [Raw EMX15 Window (fT) ] COMM40 377 - 388 real (f12.6) EMZ_Raw[1] [Raw EMZ01 Window (fT) ] COMM41 389 - 400 real (f12.6) EMZ_Raw[2] [Raw EMZ02 Window (fT) ] COMM42 401 - 412 real (f12.6) EMZ_Raw[3] [Raw EMZ03 Window (fT) ] COMM43 413 - 424 real (f12.6) EMZ_Raw[4] [Raw EMZ04 Window (fT) ] COMM44 425 - 436 real (f12.6) EMZ_Raw[5] [Raw EMZ05 Window (fT) ] COMM45 437 - 448 real (f12.6) EMZ_Raw[6] [Raw EMZ06 Window (fT) ] COMM46 449 - 460 real (f12.6) EMZ_Raw[7] [Raw EMZ07 Window (fT) ] COMM47 461 - 472 real (f12.6) EMZ_Raw[8] [Raw EMZ08 Window (fT) ] COMM48 473 - 484 real (f12.6) EMZ_Raw[9] [Raw EMZ09 Window (fT) ] COMM49 485 - 496 real (f12.6) EMZ_Raw[10] [Raw EMZ10 Window (fT) ] COMM50 497 - 508 real (f12.6) EMZ_Raw[11] [Raw EMZ11 Window (fT) ] COMM51 509 - 520 real (f12.6) EMZ_Raw[12] [Raw EMZ12 Window (fT) ] COMM52 521 - 532 real (f12.6) EMZ_Raw[13] [Raw EMZ13 Window (fT) ] COMM53 533 - 544 real (f12.6) EMZ_Raw[14] [Raw EMZ14 Window (fT) ] COMM54 545 - 556 real (f12.6) EMZ_Raw[15] [Raw EMZ15 Window (fT) ] COMM55 557 - 566 real (f10.3) X_Sferics [X_Sferics ] COMM56 567 - 576 real (f10.3) Z_Sferics [Z_Sferics ] COMM57 577 - 586 real (f10.3) X_VLF1 [X_18.2kHz ] COMM58 587 - 596 real (f10.3) X_VLF2 [X_19.8kHz ] COMM59 597 - 606 real (f10.3) X_VLF3 [X_21.4kHz ] COMM60 607 - 616 real (f10.3) X_VLF4 [X_22.2kHz ] COMM61 617 - 626 real (f10.3) Z_VLF1 [Z_18.2kHz ] COMM62 627 - 636 real (f10.3) Z_VLF2 [Z_19.8kHz ] COMM63 637 - 646 real (f10.3) Z_VLF3 [Z_21.4kHz ] COMM64 647 - 656 real (f10.3) Z_VLF4 [Z_22.2kHz ] COMM65 657 - 666 real (f10.3) X_Powerline [X_Powerline ] COMM66 667 - 676 real (f10.3) Z_Powerline [Z_Powerline ] COMM67 677 - 686 real (f10.3) X_Lowfreq [X_Lowfreq ] COMM68 687 - 696 real (f10.3) Z_Lowfreq [Z_Lowfreq ] COMM 697 - 698 <newline> COMM________________________________________________________________________________ COMM Total number of lines : 507 COMM Total Kilometres : 26529.31

Page 116: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 116

DUBBO N1-3 GEOMETRY CORRECTED (LMRAEM_N1-3_HPR.HDR) COMM JOB NUMBER: 1835 COMM AREA NUMBER: N1-3/L1-6 COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April, 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: 300-900 m COMM TRAVERSE LINE DIRECTION: 090-270 deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 26529.31 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 20010 - 26210 COMM COMM AREA BOUNDARY (GDA94, MGA55) COMM COMM 499200 6637200 503100 6517200 COMM 581100 6637200 503100 6523500 COMM 581100 6567437 554672 6523500 COMM 597855 6504531 543300 6561106 COMM 624900 6477900 543300 6565200 COMM 624900 6451200 505200 6565200 COMM 503100 6451200 505200 6570000 COMM 503100 6462000 543300 6570000 COMM 558900 6462000 543300 6610200 COMM 558900 6489000 505200 6610200 COMM 503100 6489000 505200 6616800 COMM 503100 6500700 543300 6616800 COMM 558900 6500700 543300 6626400 COMM 558900 6509516 499200 6626400 COMM 556550 6517200 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM CASA C212 Turbo Prop, VH-TEM COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER: 115 m

Page 117: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 117

COMM RECEIVER DISTANCE BELOW THE TRANSMITTER: 45 m COMM COMM RADAR ALTIMETER: Sperry RT-220 (TEM) COMM RADAR ALTIMETER: Collins ALT55 (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Optech 501SB (TEM) COMM LASER ALTIMETER: Regal LD90-3300HR (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED (WGT) 0.4 s COMM PARALLAX CORRECTION APPLIED (TEM) 0.6 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM DATA CORRECTED FOR TRANSMITTER HEIGHT, PITCH AND ROLL COMM DATA CORRECTED FOR TRANSMITTER-RECEIVER GEOMETRY VARIATIONS COMM DATA HAVE BEEN MICROLEVELLED COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz, COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE

Page 118: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 118

COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 68 COMM Field Columns Type Format Channel Description 1 1 - 4 int (i 4) PROJECT [Project Number ] 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] 3 7 - 10 int (i 4) FLIGHT [Flight ] 4 11 - 16 int (i 6) LINE [Line ] 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] 7 34 - 41 real (f 8.1) TIME [Time (s) ] 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] 10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] 11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] 12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] 13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] 14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] 15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] 16 117 - 124 real (f 8.2) DTM [DTM (m) ] 17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] 18 135 - 144 real (f10.5) Roll_Final [Final Tx loop roll (deg) ] 19 145 - 154 real (f10.5) Pitch_Final [Final Tx loop pitch (deg) ] 20 155 - 160 real (f 6.1) TxAlt [Tx ground clearance (m) ] 21 161 - 168 real (f 8.2) HSep_Final [Final Tx-Rx horizontal separation (m) ] 22 169 - 176 real (f 8.2) VSep_Final [Final Tx-Rx vertical separation (m) ] 23 177 - 186 real (f10.3) X_Geofact [X_Geometric factor ] 24 187 - 196 real (f10.3) Z_Geofact [Z_Geometric factor ] 25 197 - 208 real (f12.6) EMX_Final[1] [Final EMX01 Window (fT) ] 26 209 - 220 real (f12.6) EMX_Final[2] [Final EMX02 Window (fT) ] 27 221 - 232 real (f12.6) EMX_Final[3] [Final EMX03 Window (fT) ] 28 233 - 244 real (f12.6) EMX_Final[4] [Final EMX04 Window (fT) ] 29 245 - 256 real (f12.6) EMX_Final[5] [Final EMX05 Window (fT) ] 30 257 - 268 real (f12.6) EMX_Final[6] [Final EMX06 Window (fT) ] 31 269 - 280 real (f12.6) EMX_Final[7] [Final EMX07 Window (fT) ] 32 281 - 292 real (f12.6) EMX_Final[8] [Final EMX08 Window (fT) ] 33 293 - 304 real (f12.6) EMX_Final[9] [Final EMX09 Window (fT) ] 34 305 - 316 real (f12.6) EMX_Final[10] [Final EMX10 Window (fT) ]

Page 119: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 119

35 317 - 328 real (f12.6) EMX_Final[11] [Final EMX11 Window (fT) ] 36 329 - 340 real (f12.6) EMX_Final[12] [Final EMX12 Window (fT) ] 37 341 - 352 real (f12.6) EMX_Final[13] [Final EMX13 Window (fT) ] 38 353 - 364 real (f12.6) EMX_Final[14] [Final EMX14 Window (fT) ] 39 365 - 376 real (f12.6) EMX_Final[15] [Final EMX15 Window (fT) ] 40 377 - 388 real (f12.6) EMZ_Final[1] [Final EMZ01 Window (fT) ] 41 389 - 400 real (f12.6) EMZ_Final[2] [Final EMZ02 Window (fT) ] 42 401 - 412 real (f12.6) EMZ_Final[3] [Final EMZ03 Window (fT) ] 43 413 - 424 real (f12.6) EMZ_Final[4] [Final EMZ04 Window (fT) ] 44 425 - 436 real (f12.6) EMZ_Final[5] [Final EMZ05 Window (fT) ] 45 437 - 448 real (f12.6) EMZ_Final[6] [Final EMZ06 Window (fT) ] 46 449 - 460 real (f12.6) EMZ_Final[7] [Final EMZ07 Window (fT) ] 47 461 - 472 real (f12.6) EMZ_Final[8] [Final EMZ08 Window (fT) ] 48 473 - 484 real (f12.6) EMZ_Final[9] [Final EMZ09 Window (fT) ] 49 485 - 496 real (f12.6) EMZ_Final[10] [Final EMZ10 Window (fT) ] 50 497 - 508 real (f12.6) EMZ_Final[11] [Final EMZ11 Window (fT) ] 51 509 - 520 real (f12.6) EMZ_Final[12] [Final EMZ12 Window (fT) ] 52 521 - 532 real (f12.6) EMZ_Final[13] [Final EMZ13 Window (fT) ] 53 533 - 544 real (f12.6) EMZ_Final[14] [Final EMZ14 Window (fT) ] 54 545 - 556 real (f12.6) EMZ_Final[15] [Final EMZ15 Window (fT) ] 55 557 - 566 real (f10.3) X_Sferics [X_Sferics ] 56 567 - 576 real (f10.3) Z_Sferics [Z_Sferics ] 57 577 - 586 real (f10.3) X_VLF1 [X_18.2kHz ] 58 587 - 596 real (f10.3) X_VLF2 [X_19.8kHz ] 59 597 - 606 real (f10.3) X_VLF3 [X_21.4kHz ] 60 607 - 616 real (f10.3) X_VLF4 [X_22.2kHz ] 61 617 - 626 real (f10.3) Z_VLF1 [Z_18.2kHz ] 62 627 - 636 real (f10.3) Z_VLF2 [Z_19.8kHz ] 63 637 - 646 real (f10.3) Z_VLF3 [Z_21.4kHz ] 64 647 - 656 real (f10.3) Z_VLF4 [Z_22.2kHz ] 65 657 - 666 real (f10.3) X_Powerline [X_Powerline ] 66 667 - 676 real (f10.3) Z_Powerline [Z_Powerline ] 67 677 - 686 real (f10.3) X_Lowfreq [X_Lowfreq ] 68 687 - 696 real (f10.3) Z_Lowfreq [Z_Lowfreq ] 697 - 698 <newline> COMM Total number of lines : 507 COMM Total Kilometres : 26529.31

Page 120: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 120

DUBBO N1-3 Conductivity data COMM JOB NUMBER: 1835 COMM AREA NUMBER: N1-3/L1-6 COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April, 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: 300-900 m COMM TRAVERSE LINE DIRECTION: 090-270 deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 26529.31 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 20010 - 26210 COMM COMM AREA BOUNDARY (GDA94, MGA55) COMM COMM 499200 6637200 503100 6517200 COMM 581100 6637200 503100 6523500 COMM 581100 6567437 554672 6523500 COMM 597855 6504531 543300 6561106 COMM 624900 6477900 543300 6565200 COMM 624900 6451200 505200 6565200 COMM 503100 6451200 505200 6570000 COMM 503100 6462000 543300 6570000 COMM 558900 6462000 543300 6610200 COMM 558900 6489000 505200 6610200 COMM 503100 6489000 505200 6616800 COMM 503100 6500700 543300 6616800 COMM 558900 6500700 543300 6626400 COMM 558900 6509516 499200 6626400 COMM 556550 6517200 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM CASA C212 Turbo Prop, VH-TEM COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER: 115 m

Page 121: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 121

COMM RECEIVER DISTANCE BELOW THE TRANSMITTER: 45 m COMM COMM RADAR ALTIMETER: Sperry RT-220 (TEM) COMM RADAR ALTIMETER: Collins ALT55 (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Optech 501SB (TEM) COMM LASER ALTIMETER: Regal LD90-3300HR (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED (WGT) 0.4 s COMM PARALLAX CORRECTION APPLIED (TEM) 0.6 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM DATA CORRECTED FOR TRANSMITTER HEIGHT, PITCH AND ROLL COMM DATA CORRECTED FOR TRANSMITTER-RECEIVER GEOMETRY VARIATIONS COMM DATA HAVE BEEN MICROLEVELLED COMM CONDUCTIVITY DEPTH INVERSION CALCULATED EMFlow V5.10 COMM CONDUCTIVITIES CALCULATED USING corrected EM DATA COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz, COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE:

Page 122: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 122

COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 127 COMM COMM Field Columns Type Format Channel Description COMM COMM 1 1 - 4 int (i 4) PROJECT [Project Number ] COMM 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] COMM 3 7 - 10 int (i 4) FLIGHT [Flight ] COMM 4 11 - 16 int (i 6) LINE [Line ] COMM 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] COMM 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] COMM 7 34 - 41 real (f 8.1) TIME [Time (s) ] COMM 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] COMM 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] COMM 10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] COMM 11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] COMM 12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] COMM 13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] COMM 14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] COMM 15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] COMM 16 117 - 124 real (f 8.2) DTM [DTM (m) ] COMM 17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] COMM 18 135 - 144 real (f10.3) CND[1] [Conductivity_001 0-5 m (mS/m) ] COMM 19 145 - 154 real (f10.3) CND[2] [Conductivity_002 5-10 m (mS/m) ] COMM 20 155 - 164 real (f10.3) CND[3] [Conductivity_003 10-15 m (mS/m) ] COMM 21 165 - 174 real (f10.3) CND[4] [Conductivity_004 15-20 m (mS/m) ] COMM 22 175 - 184 real (f10.3) CND[5] [Conductivity_005 20-25 m (mS/m) ] COMM 23 185 - 194 real (f10.3) CND[6] [Conductivity_006 25-30 m (mS/m) ] COMM 24 195 - 204 real (f10.3) CND[7] [Conductivity_007 30-35 m (mS/m) ] COMM 25 205 - 214 real (f10.3) CND[8] [Conductivity_008 35-40 m (mS/m) ] COMM 26 215 - 224 real (f10.3) CND[9] [Conductivity_009 40-45 m (mS/m) ] COMM 27 225 - 234 real (f10.3) CND[10] [Conductivity_010 45-50 m (mS/m) ] COMM 28 235 - 244 real (f10.3) CND[11] [Conductivity_011 50-55 m (mS/m) ] COMM 29 245 - 254 real (f10.3) CND[12] [Conductivity_012 55-60 m (mS/m) ] COMM 30 255 - 264 real (f10.3) CND[13] [Conductivity_013 60-65 m (mS/m) ] COMM 31 265 - 274 real (f10.3) CND[14] [Conductivity_014 65-70 m (mS/m) ] COMM 32 275 - 284 real (f10.3) CND[15] [Conductivity_015 70-75 m (mS/m) ]

Page 123: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 123

COMM 33 285 - 294 real (f10.3) CND[16] [Conductivity_016 75-80 m (mS/m) ] COMM 34 295 - 304 real (f10.3) CND[17] [Conductivity_017 80-85 m (mS/m) ] COMM 35 305 - 314 real (f10.3) CND[18] [Conductivity_018 85-90 m (mS/m) ] COMM 36 315 - 324 real (f10.3) CND[19] [Conductivity_019 90-95 m (mS/m) ] COMM 37 325 - 334 real (f10.3) CND[20] [Conductivity_020 95-100 m (mS/m) ] COMM 38 335 - 344 real (f10.3) CND[21] [Conductivity_021 100-105 m (mS/m) ] COMM 39 345 - 354 real (f10.3) CND[22] [Conductivity_022 105-110 m (mS/m) ] COMM 40 355 - 364 real (f10.3) CND[23] [Conductivity_023 110-115 m (mS/m) ] COMM 41 365 - 374 real (f10.3) CND[24] [Conductivity_024 115-120 m (mS/m) ] COMM 42 375 - 384 real (f10.3) CND[25] [Conductivity_025 120-125 m (mS/m) ] COMM 43 385 - 394 real (f10.3) CND[26] [Conductivity_026 125-130 m (mS/m) ] COMM 44 395 - 404 real (f10.3) CND[27] [Conductivity_027 130-135 m (mS/m) ] COMM 45 405 - 414 real (f10.3) CND[28] [Conductivity_028 135-140 m (mS/m) ] COMM 46 415 - 424 real (f10.3) CND[29] [Conductivity_029 140-145 m (mS/m) ] COMM 47 425 - 434 real (f10.3) CND[30] [Conductivity_030 145-150 m (mS/m) ] COMM 48 435 - 444 real (f10.3) CND[31] [Conductivity_031 150-155 m (mS/m) ] COMM 49 445 - 454 real (f10.3) CND[32] [Conductivity_032 155-160 m (mS/m) ] COMM 50 455 - 464 real (f10.3) CND[33] [Conductivity_033 160-165 m (mS/m) ] COMM 51 465 - 474 real (f10.3) CND[34] [Conductivity_034 165-170 m (mS/m) ] COMM 52 475 - 484 real (f10.3) CND[35] [Conductivity_035 170-175 m (mS/m) ] COMM 53 485 - 494 real (f10.3) CND[36] [Conductivity_036 175-180 m (mS/m) ] COMM 54 495 - 504 real (f10.3) CND[37] [Conductivity_037 180-185 m (mS/m) ] COMM 55 505 - 514 real (f10.3) CND[38] [Conductivity_038 185-190 m (mS/m) ] COMM 56 515 - 524 real (f10.3) CND[39] [Conductivity_039 190-195 m (mS/m) ] COMM 57 525 - 534 real (f10.3) CND[40] [Conductivity_040 195-200 m (mS/m) ] COMM118 1135 -1144 real (f10.3) INT_CND_0_5 [Interval Conductivity 0-5m (mS/m) ] COMM119 1145 -1154 real (f10.3) INT_CND_5_10 [Interval Conductivity 5-10m (mS/m) ] COMM120 1155 -1164 real (f10.3) INT_CND_10_15[Interval Conductivity 10-15m (mS/m) ] COMM121 1165 -1174 real (f10.3) INT_CND_15_20[Interval Conductivity 15-20m (mS/m) ] COMM122 1175 -1184 real (f10.3) INT_CND_20_30[Interval Conductivity 20-30m (mS/m) ] COMM123 1185 -1194 real (f10.3) INT_CND_30_40[Interval Conductivity 30-40m (mS/m) ] COMM124 1195 -1204 real (f10.3) INT_CND_40_60[Interval Conductivity 40-60m (mS/m) ] COMM125 1205 -1214 real (f10.3) INT_CND_60_10[Interval Conductivity 60-100m (mS/m) ] COMM126 1215 -1224 real (f10.3) INT_CND_100_150[Interval Conductivity 100-150m (mS/m)] COMM127 1225 -1234 real (f10.3) INT_CND_150_200[Interval Conductivity 150-200m (mS/m)] COMM 1235 -1236 <newline> Total number of lines : 507 Total Kilometres : 26529.31

Page 124: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 124

DUBBO Seismic/Borehole/Repeat Lines – NON-GEOMETRY CORRECTED (LMRAEM_Test_RptLines_NON-HPR.HDR) COMM JOB NUMBER: 1835 COMM AREA NUMBER: Seismic/Borehole/Repeat Lines COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: N/A m COMM TRAVERSE LINE DIRECTION: Various deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 235.5 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 81090 - 88320 COMM COMM LINE COORDINATES (GDA94, MGA55) COMM COMM LINE 81?? COMM 613347 6434698 610966 6424986 COMM LINE 82?? COMM 601924 6428719 603589 6438579 COMM LINE 83?? COMM 596009 6435176 605968 6434261 COMM LINE 84?? COMM 601654 6434125 610340 6439080 COMM LINE 85?? COMM 606908 6454490 616415 6451390 COMM LINE 86?? COMM 627600 6439000 627600 6444000 COMM LINE 87?? COMM 589001 6519000 594001 6519000 COMM LINE 88?? COMM 576100 6570000 581100 6570000 COMM LINE 89?? COMM 576100 6604800 581100 6604800 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM CASA C212 Turbo Prop, VH-TEM COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird

Page 125: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 125

COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER (TEM AVERAGE): 120.8 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER (TEM AVERAGE): 39.4 m COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER (WGT AVERAGE): 114.8 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER (WGT AVERAGE): 44.6 m COMM COMM RADAR ALTIMETER: Sperry RT-220 (TEM) COMM RADAR ALTIMETER: Collins ALT55 (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Optech 501SB (TEM) COMM LASER ALTIMETER: Regal LD90-3300HR (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED (WGT) 0.4 s COMM PARALLAX CORRECTION APPLIED (TEM) 0.6 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz, COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND.

Page 126: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 126

COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 68 COMM COMM Field Columns Type Format Channel Description COMM COMM 1 1 - 4 int (i 4) PROJECT [Project Number ] COMM 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] COMM 3 7 - 10 int (i 4) FLIGHT [Flight ] COMM 4 11 - 16 int (i 6) LINE [Line ] COMM 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] COMM 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] COMM 7 34 - 41 real (f 8.1) TIME [Time (s) ] COMM 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] COMM 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] COMM10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] COMM11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] COMM12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] COMM13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] COMM14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] COMM15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] COMM16 117 - 124 real (f 8.2) DTM [DTM (m) ] COMM17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] COMM18 135 - 144 real (f10.5) Roll_Raw [Raw Tx loop roll (deg) ] COMM19 145 - 154 real (f10.5) Pitch_Raw [Raw Tx loop pitch (deg) ] COMM20 155 - 160 real (f 6.1) TxLasalt [Tx ground clearance (m) ] COMM21 161 - 168 real (f 8.2) HSep_Raw [Raw Tx-Rx horizontal separation (m) ] COMM22 169 - 176 real (f 8.2) VSep_Raw [Raw Tx-Rx vertical separation (m) ] COMM23 177 - 186 real (f10.3) X_Geofact [X_Geometric factor ] COMM24 187 - 196 real (f10.3) Z_Geofact [Z_Geometric factor ] COMM25 197 - 208 real (f12.6) EMX_Raw[1] [Raw EMX01 Window (fT) ] COMM26 209 - 220 real (f12.6) EMX_Raw[2] [Raw EMX02 Window (fT) ] COMM27 221 - 232 real (f12.6) EMX_Raw[3] [Raw EMX03 Window (fT) ] COMM28 233 - 244 real (f12.6) EMX_Raw[4] [Raw EMX04 Window (fT) ] COMM29 245 - 256 real (f12.6) EMX_Raw[5] [Raw EMX05 Window (fT) ] COMM30 257 - 268 real (f12.6) EMX_Raw[6] [Raw EMX06 Window (fT) ]

Page 127: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 127

COMM31 269 - 280 real (f12.6) EMX_Raw[7] [Raw EMX07 Window (fT) ] COMM32 281 - 292 real (f12.6) EMX_Raw[8] [Raw EMX08 Window (fT) ] COMM33 293 - 304 real (f12.6) EMX_Raw[9] [Raw EMX09 Window (fT) ] COMM34 305 - 316 real (f12.6) EMX_Raw[10] [Raw EMX10 Window (fT) ] COMM35 317 - 328 real (f12.6) EMX_Raw[11] [Raw EMX11 Window (fT) ] COMM36 329 - 340 real (f12.6) EMX_Raw[12] [Raw EMX12 Window (fT) ] COMM37 341 - 352 real (f12.6) EMX_Raw[13] [Raw EMX13 Window (fT) ] COMM38 353 - 364 real (f12.6) EMX_Raw[14] [Raw EMX14 Window (fT) ] COMM39 365 - 376 real (f12.6) EMX_Raw[15] [Raw EMX15 Window (fT) ] COMM40 377 - 388 real (f12.6) EMZ_Raw[1] [Raw EMZ01 Window (fT) ] COMM41 389 - 400 real (f12.6) EMZ_Raw[2] [Raw EMZ02 Window (fT) ] COMM42 401 - 412 real (f12.6) EMZ_Raw[3] [Raw EMZ03 Window (fT) ] COMM43 413 - 424 real (f12.6) EMZ_Raw[4] [Raw EMZ04 Window (fT) ] COMM44 425 - 436 real (f12.6) EMZ_Raw[5] [Raw EMZ05 Window (fT) ] COMM45 437 - 448 real (f12.6) EMZ_Raw[6] [Raw EMZ06 Window (fT) ] COMM46 449 - 460 real (f12.6) EMZ_Raw[7] [Raw EMZ07 Window (fT) ] COMM47 461 - 472 real (f12.6) EMZ_Raw[8] [Raw EMZ08 Window (fT) ] COMM48 473 - 484 real (f12.6) EMZ_Raw[9] [Raw EMZ09 Window (fT) ] COMM49 485 - 496 real (f12.6) EMZ_Raw[10] [Raw EMZ10 Window (fT) ] COMM50 497 - 508 real (f12.6) EMZ_Raw[11] [Raw EMZ11 Window (fT) ] COMM51 509 - 520 real (f12.6) EMZ_Raw[12] [Raw EMZ12 Window (fT) ] COMM52 521 - 532 real (f12.6) EMZ_Raw[13] [Raw EMZ13 Window (fT) ] COMM53 533 - 544 real (f12.6) EMZ_Raw[14] [Raw EMZ14 Window (fT) ] COMM54 545 - 556 real (f12.6) EMZ_Raw[15] [Raw EMZ15 Window (fT) ] COMM55 557 - 566 real (f10.3) X_Sferics [X_Sferics ] COMM56 567 - 576 real (f10.3) Z_Sferics [Z_Sferics ] COMM57 577 - 586 real (f10.3) X_VLF1 [X_18.2kHz ] COMM58 587 - 596 real (f10.3) X_VLF2 [X_19.8kHz ] COMM59 597 - 606 real (f10.3) X_VLF3 [X_21.4kHz ] COMM60 607 - 616 real (f10.3) X_VLF4 [X_22.2kHz ] COMM61 617 - 626 real (f10.3) Z_VLF1 [Z_18.2kHz ] COMM62 627 - 636 real (f10.3) Z_VLF2 [Z_19.8kHz ] COMM63 637 - 646 real (f10.3) Z_VLF3 [Z_21.4kHz ] COMM64 647 - 656 real (f10.3) Z_VLF4 [Z_22.2kHz ] COMM65 657 - 666 real (f10.3) X_Powerline [X_Powerline ] COMM66 667 - 676 real (f10.3) Z_Powerline [Z_Powerline ] COMM67 677 - 686 real (f10.3) X_Lowfreq [X_Lowfreq ] COMM68 687 - 696 real (f10.3) Z_Lowfreq [Z_Lowfreq ] COMM 697 - 698 <newline> COMM________________________________________________________________________________ COMM COMM Total number of lines : 40 COMM COMM Flt Line Start X Start Y End X End Y Kms COMM COMM 9 81090 610947 6424980 613359 6434737 10.05 COMM 27 89270 581110 6604810 576057 6604802 5.05 COMM 30 89300 581107 6604792 576096 6604798 5.01 COMM 9 82090 603637 6438623 601917 6428686 10.08 COMM 9 83090 606145 6434244 595999 6435175 10.19 COMM 16 84162 610604 6429292 603839 6436726 10.05 COMM 26 84260 610635 6429320 603861 6436704 10.02 COMM 1 85010 606913 6454499 616455 6451378 10.04 COMM 16 85161 606881 6454542 616420 6451386 10.05 COMM 1 86010 627548 6444035 627595 6439001 5.03 COMM 8 86081 627602 6443986 627598 6439012 4.97 COMM 12 86120 627598 6438986 627610 6444019 5.03 COMM 16 86160 627596 6444029 627598 6438957 5.07 COMM 17 86170 627598 6444019 627593 6438985 5.03 COMM 18 86180 627590 6443997 627610 6438971 5.03 COMM 19 86190 627597 6444005 627603 6438977 5.03 COMM 23 86230 627592 6444037 627596 6438990 5.05 COMM 27 86270 627614 6444041 627605 6438976 5.07 COMM 31 86310 627596 6444015 627597 6438981 5.03 COMM 34 86340 627592 6443991 627599 6438980 5.01 COMM 37 86370 627594 6444047 627603 6438963 5.08 COMM 40 86400 627612 6444039 627605 6438953 5.09 COMM 41 86410 627606 6444023 627591 6438971 5.05 COMM 48 86480 627595 6444017 627607 6438998 5.02 COMM 51 86511 627549 6444012 627605 6438990 5.02 COMM 55 86550 627604 6444025 627601 6438948 5.08

Page 128: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 128

COMM 57 86570 627602 6444023 627607 6438984 5.04 COMM 61 86610 627601 6444008 627601 6438961 5.05 COMM 65 86650 627602 6444009 627599 6438995 5.01 COMM 71 86710 627600 6444019 627601 6439000 5.02 COMM 76 86760 627602 6443999 627602 6438976 5.02 COMM 2 87020 594022 6519005 588978 6518995 5.04 COMM 3 87030 594030 6518998 588969 6519006 5.06 COMM 4 87040 590312 6518983 593994 6518999 3.68 COMM 7 87070 588980 6518995 594025 6519016 5.05 COMM 10 87100 594056 6518996 588956 6519006 5.10 COMM 32 87320 594010 6519005 588967 6519005 5.04 COMM 36 87361 593993 6519006 588948 6519003 5.05 COMM 20 88200 581095 6570005 576044 6570007 5.05 COMM 22 88220 581121 6570005 576057 6569996 5.06 COMM COMM Total Kilometres : 235.52

Page 129: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 129

DUBBO Seismic/Borehole/Repeat Lines – GEOMETRY CORRECTED (LMRAEM_Test_RptLines_HPR.HDR) COMM JOB NUMBER: 1835 COMM AREA NUMBER: Seismic/Borehole/Repeat Lines COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: N/A m COMM TRAVERSE LINE DIRECTION: Various deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 235.5 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 81090 - 88320 COMM COMM LINE COORDINATES (GDA94, MGA55) COMM COMM LINE 81?? COMM 613347 6434698 610966 6424986 COMM LINE 82?? COMM 601924 6428719 603589 6438579 COMM LINE 83?? COMM 596009 6435176 605968 6434261 COMM LINE 84?? COMM 601654 6434125 610340 6439080 COMM LINE 85?? COMM 606908 6454490 616415 6451390 COMM LINE 86?? COMM 627600 6439000 627600 6444000 COMM LINE 87?? COMM 589001 6519000 594001 6519000 COMM LINE 88?? COMM 576100 6570000 581100 6570000 COMM LINE 89?? COMM 576100 6604800 581100 6604800 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM CASA C212 Turbo Prop, VH-TEM COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft

Page 130: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 130

COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER: 115 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER: 45 m COMM COMM RADAR ALTIMETER: Sperry RT-220 (TEM) COMM RADAR ALTIMETER: Collins ALT55 (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Optech 501SB (TEM) COMM LASER ALTIMETER: Regal LD90-3300HR (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED (WGT) 0.4 s COMM PARALLAX CORRECTION APPLIED (TEM) 0.6 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM DATA CORRECTED FOR TRANSMITTER HEIGHT, PITCH AND ROLL COMM DATA CORRECTED FOR TRANSMITTER-RECEIVER GEOMETRY VARIATIONS COMM DATA HAVE BEEN MICROLEVELLED COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz,

Page 131: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 131

COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 68 COMM Field Columns Type Format Channel Description 1 1 - 4 int (i 4) PROJECT [Project Number ] 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] 3 7 - 10 int (i 4) FLIGHT [Flight ] 4 11 - 16 int (i 6) LINE [Line ] 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] 7 34 - 41 real (f 8.1) TIME [Time (s) ] 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] 10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] 11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] 12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] 13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] 14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] 15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] 16 117 - 124 real (f 8.2) DTM [DTM (m) ] 17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] 18 135 - 144 real (f10.5) Roll_Final [Final Tx loop roll (deg) ] 19 145 - 154 real (f10.5) Pitch_Final [Final Tx loop pitch (deg) ] 20 155 - 160 real (f 6.1) TxAlt [Tx ground clearance (m) ] 21 161 - 168 real (f 8.2) HSep_Final [Final Tx-Rx horizontal separation (m) ] 22 169 - 176 real (f 8.2) VSep_Final [Final Tx-Rx vertical separation (m) ] 23 177 - 186 real (f10.3) X_Geofact [X_Geometric factor ] 24 187 - 196 real (f10.3) Z_Geofact [Z_Geometric factor ] 25 197 - 208 real (f12.6) EMX_Final[1] [Final EMX01 Window (fT) ] 26 209 - 220 real (f12.6) EMX_Final[2] [Final EMX02 Window (fT) ] 27 221 - 232 real (f12.6) EMX_Final[3] [Final EMX03 Window (fT) ] 28 233 - 244 real (f12.6) EMX_Final[4] [Final EMX04 Window (fT) ]

Page 132: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 132

29 245 - 256 real (f12.6) EMX_Final[5] [Final EMX05 Window (fT) ] 30 257 - 268 real (f12.6) EMX_Final[6] [Final EMX06 Window (fT) ] 31 269 - 280 real (f12.6) EMX_Final[7] [Final EMX07 Window (fT) ] 32 281 - 292 real (f12.6) EMX_Final[8] [Final EMX08 Window (fT) ] 33 293 - 304 real (f12.6) EMX_Final[9] [Final EMX09 Window (fT) ] 34 305 - 316 real (f12.6) EMX_Final[10] [Final EMX10 Window (fT) ] 35 317 - 328 real (f12.6) EMX_Final[11] [Final EMX11 Window (fT) ] 36 329 - 340 real (f12.6) EMX_Final[12] [Final EMX12 Window (fT) ] 37 341 - 352 real (f12.6) EMX_Final[13] [Final EMX13 Window (fT) ] 38 353 - 364 real (f12.6) EMX_Final[14] [Final EMX14 Window (fT) ] 39 365 - 376 real (f12.6) EMX_Final[15] [Final EMX15 Window (fT) ] 40 377 - 388 real (f12.6) EMZ_Final[1] [Final EMZ01 Window (fT) ] 41 389 - 400 real (f12.6) EMZ_Final[2] [Final EMZ02 Window (fT) ] 42 401 - 412 real (f12.6) EMZ_Final[3] [Final EMZ03 Window (fT) ] 43 413 - 424 real (f12.6) EMZ_Final[4] [Final EMZ04 Window (fT) ] 44 425 - 436 real (f12.6) EMZ_Final[5] [Final EMZ05 Window (fT) ] 45 437 - 448 real (f12.6) EMZ_Final[6] [Final EMZ06 Window (fT) ] 46 449 - 460 real (f12.6) EMZ_Final[7] [Final EMZ07 Window (fT) ] 47 461 - 472 real (f12.6) EMZ_Final[8] [Final EMZ08 Window (fT) ] 48 473 - 484 real (f12.6) EMZ_Final[9] [Final EMZ09 Window (fT) ] 49 485 - 496 real (f12.6) EMZ_Final[10] [Final EMZ10 Window (fT) ] 50 497 - 508 real (f12.6) EMZ_Final[11] [Final EMZ11 Window (fT) ] 51 509 - 520 real (f12.6) EMZ_Final[12] [Final EMZ12 Window (fT) ] 52 521 - 532 real (f12.6) EMZ_Final[13] [Final EMZ13 Window (fT) ] 53 533 - 544 real (f12.6) EMZ_Final[14] [Final EMZ14 Window (fT) ] 54 545 - 556 real (f12.6) EMZ_Final[15] [Final EMZ15 Window (fT) ] 55 557 - 566 real (f10.3) X_Sferics [X_Sferics ] 56 567 - 576 real (f10.3) Z_Sferics [Z_Sferics ] 57 577 - 586 real (f10.3) X_VLF1 [X_18.2kHz ] 58 587 - 596 real (f10.3) X_VLF2 [X_19.8kHz ] 59 597 - 606 real (f10.3) X_VLF3 [X_21.4kHz ] 60 607 - 616 real (f10.3) X_VLF4 [X_22.2kHz ] 61 617 - 626 real (f10.3) Z_VLF1 [Z_18.2kHz ] 62 627 - 636 real (f10.3) Z_VLF2 [Z_19.8kHz ] 63 637 - 646 real (f10.3) Z_VLF3 [Z_21.4kHz ] 64 647 - 656 real (f10.3) Z_VLF4 [Z_22.2kHz ] 65 657 - 666 real (f10.3) X_Powerline [X_Powerline ] 66 667 - 676 real (f10.3) Z_Powerline [Z_Powerline ] 67 677 - 686 real (f10.3) X_Lowfreq [X_Lowfreq ] 68 687 - 696 real (f10.3) Z_Lowfreq [Z_Lowfreq ] 697 - 698 <newline> COMM ________________________________________________________________________ COMM COMM Total number of lines : 40 COMM COMM Total Kilometres : 235.52

Page 133: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 133

DUBBO Seismic/Borehole/Repeat Lines – Conductivity data COMM JOB NUMBER: 1835 COMM AREA NUMBER: Seismic/Borehole/Repeat Lines COMM SURVEY COMPANY: Fugro Airborne Surveys COMM CLIENT: BRS COMM SURVEY TYPE: 25Hz TEMPEST Survey COMM AREA NAME: Lower Macquarie River AEM COMM STATE: NSW COMM COUNTRY: Australia COMM SURVEY FLOWN: January-April 2007 COMM LOCATED DATA CREATED: June 2007 COMM COMM DATUM: GDA94 COMM PROJECTION: MGA COMM ZONE: 55 COMM COMM SURVEY SPECIFICATIONS COMM COMM TRAVERSE LINE SPACING: N/A m COMM TRAVERSE LINE DIRECTION: Various deg COMM NOMINAL TERRAIN CLEARANCE: 115 m COMM FINAL LINE KILOMETRES: 235.5 km COMM COMM LINE NUMBERING COMM COMM TRAVERSE LINE NUMBERS: 81090 - 88320 COMM COMM LINE COORDINATES (GDA94, MGA55) COMM COMM LINE 81?? COMM 613347 6434698 610966 6424986 COMM LINE 82?? COMM 601924 6428719 603589 6438579 COMM LINE 83?? COMM 596009 6435176 605968 6434261 COMM LINE 84?? COMM 601654 6434125 610340 6439080 COMM LINE 85?? COMM 606908 6454490 616415 6451390 COMM LINE 86?? COMM 627600 6439000 627600 6444000 COMM LINE 87?? COMM 589001 6519000 594001 6519000 COMM LINE 88?? COMM 576100 6570000 581100 6570000 COMM LINE 89?? COMM 576100 6604800 581100 6604800 COMM COMM COMM SURVEY EQUIPMENT COMM COMM AIRCRAFT: Skyvan SC-3-200, VH-WGT COMM CASA C212 Turbo Prop, VH-TEM COMM COMM MAGNETOMETER: Scintrex Cs-2 Caesium Vapour COMM INSTALLATION: stinger mount COMM RESOLUTION: 0.001 nT COMM RECORDING INTERVAL: 0.2 s COMM COMM ELECTROMAGNETIC SYSTEM: 25Hz TEMPEST COMM INSTALLATION: Transmitter loop mounted on the aircraft COMM Receiver coils in a towed bird COMM COIL ORIENTATION: X,Z

Page 134: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 134

COMM RECORDING INTERVAL: 0.2 s COMM SYSTEM GEOMETRY: COMM RECEIVER DISTANCE BEHIND THE TRANSMITTER: 115 m COMM RECEIVER DISTANCE BELOW THE TRANSMITTER: 45 m COMM COMM RADAR ALTIMETER: Sperry RT-220 (TEM) COMM RADAR ALTIMETER: Collins ALT55 (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM LASER ALTIMETER: Optech 501SB (TEM) COMM LASER ALTIMETER: Regal LD90-3300HR (WGT) COMM RECORDING INTERVAL: 0.2 s COMM COMM NAVIGATION: real-time differential GPS COMM RECORDING INTERVAL: 1.0 s COMM COMM ACQUISITION SYSTEM: PDAS-1000 COMM COMM DATA PROCESSING COMM COMM MAGNETIC DATA COMM DIURNAL BASE VALUE APPLIED 56715 nT COMM PARALLAX CORRECTION APPLIED (WGT) 0.4 s COMM PARALLAX CORRECTION APPLIED (TEM) 0.6 s COMM IGRF BASE VALUE APPLIED 56786 nT COMM IGRF MODEL 2005 EXTRAPOLATED TO 2006.9 COMM COMM ELECTROMAGNETIC DATA COMM SYSTEM PARALLAX REMOVED, AS FOLLOWS COMM X-COMPONENT EM DATA 0.2 s COMM Z-COMPONENT EM DATA 1.4 s COMM DATA CORRECTED FOR TRANSMITTER HEIGHT, PITCH AND ROLL COMM DATA CORRECTED FOR TRANSMITTER-RECEIVER GEOMETRY VARIATIONS COMM DATA HAVE BEEN MICROLEVELLED COMM CONDUCTIVITY DEPTH INVERSION CALCULATED EMFlow V5.10 COMM CONDUCTIVITIES CALCULATED USING corrected EM DATA COMM COMM DIGITAL TERRAIN DATA COMM PARALLAX CORRECTION APPLIED TO RADAR ALIMETER DATA 0.6 s COMM PARALLAX CORRECTION APPLIED TO GPS ALIMETER DATA 0.0 s COMM DTM CALCULATED [DTM = GPS ALTITUDE - RADAR ALTITUDE] COMM DATA HAVE BEEN MICROLEVELLED COMM ---------------------------------------------------------------------- COMM The accuracy of the elevation calculation is directly dependent on COMM the accuracy of the two input parameters, radar altitude and GPS COMM altitude. The radar altitude value may be erroneous in areas of heavy COMM tree cover, where the altimeter reflects the distance to the tree COMM canopy rather than the ground. The GPS altitude value is primarily COMM dependent on the number of available satellites. Although COMM post-processing of GPS data will yield X and Y accuracies in the COMM order of 1-2 metres, the accuracy of the altitude value is usually COMM much less, sometimes in the ±5 metre range. Further inaccuracies COMM may be introduced during the interpolation and gridding process. COMM Because of the inherent inaccuracies of this method, no guarantee is COMM made or implied that the information displayed is a true COMM representation of the height above sea level. Although this product COMM may be of some use as a general reference, COMM THIS PRODUCT MUST NOT BE USED FOR NAVIGATION PURPOSES. COMM ---------------------------------------------------------------------- COMM COMM ELECTROMAGNETIC SYSTEM COMM COMM TEMPEST IS A TIME-DOMAIN SQUARE-WAVE SYSTEM, COMM TRANSMITTING AT A BASE FREQUENCY OF 25Hz,

Page 135: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 135

COMM WITH 2 ORTHOGONAL-AXIS RECEIVER COILS IN A TOWED BIRD. COMM FINAL EM OUTPUT IS RECORDED 5 TIMES PER SECOND. COMM THE TIMES (IN MILLISECONDS) FOR THE 15 WINDOWS ARE: COMM COMM WINDOW START END CENTRE COMM 1 0.007 0.020 0.013 COMM 2 0.033 0.047 0.040 COMM 3 0.060 0.073 0.067 COMM 4 0.087 0.127 0.107 COMM 5 0.140 0.207 0.173 COMM 6 0.220 0.340 0.280 COMM 7 0.353 0.553 0.453 COMM 8 0.567 0.873 0.720 COMM 9 0.887 1.353 1.120 COMM 10 1.367 2.100 1.733 COMM 11 2.113 3.273 2.693 COMM 12 3.287 5.113 4.200 COMM 13 5.127 7.993 6.560 COMM 14 8.007 12.393 10.200 COMM 15 12.407 19.993 16.200 COMM COMM PULSE WIDTH: 10 ms COMM COMM TEMPEST EM data are transformed to the response that would be COMM obtained with a B-field sensor for a 100% duty cycle square COMM waveform at the base frequency, involving a 1A change in COMM current (from -0.5A to +0.5A to -0.5A) in a 1sq.m transmitter. COMM It is this configuration, rather than the actual acquisition COMM configuration, which must be specified when modelling TEMPEST data. COMM COMM COMM ________________________________________________________________________ COMM COMM Output field format : DOS - Flat ascii COMM Number of fields : 127 COMM COMM Field Columns Type Format Channel Description COMM COMM 1 1 - 4 int (i 4) PROJECT [Project Number ] COMM 2 5 - 6 int (i 2) AIRCRAFT [Aircraft (1-TEM, 2-WGT) ] COMM 3 7 - 10 int (i 4) FLIGHT [Flight ] COMM 4 11 - 16 int (i 6) LINE [Line ] COMM 5 17 - 24 real (f 8.1) FID [Fiducial (s) ] COMM 6 25 - 33 int (i 9) DATE [Date ddmmyyyy ] COMM 7 34 - 41 real (f 8.1) TIME [Time (s) ] COMM 8 42 - 45 int (i 4) BEARING [Bearing (deg) ] COMM 9 46 - 58 real (f13.6) LONGITUDE [Longitude GDA94 (deg) ] COMM 10 59 - 71 real (f13.6) LATITUDE [Latitude GDA94 (deg) ] COMM 11 72 - 82 real (f11.2) EASTING [Easting MGA55 (m) ] COMM 12 83 - 94 real (f12.2) NORTHING [Northing MGA55 (m) ] COMM 13 95 - 101 real (f 7.2) Lasalt_final [Final Laser Altimeter (m) ] COMM 14 102 - 108 real (f 7.2) Radalt_final [Final Radar Altimeter (m) ] COMM 15 109 - 116 real (f 8.2) TxHeight [Transmitter GPS height (m) ] COMM 16 117 - 124 real (f 8.2) DTM [DTM (m) ] COMM 17 125 - 134 real (f10.3) MAG [Compensated TMI (nT) ] COMM 18 135 - 144 real (f10.3) CND[1] [Conductivity_001 0-5 m (mS/m) ] COMM 19 145 - 154 real (f10.3) CND[2] [Conductivity_002 5-10 m (mS/m) ] COMM 20 155 - 164 real (f10.3) CND[3] [Conductivity_003 10-15 m (mS/m) ] COMM 21 165 - 174 real (f10.3) CND[4] [Conductivity_004 15-20 m (mS/m) ] COMM 22 175 - 184 real (f10.3) CND[5] [Conductivity_005 20-25 m (mS/m) ] COMM 23 185 - 194 real (f10.3) CND[6] [Conductivity_006 25-30 m (mS/m) ] COMM 24 195 - 204 real (f10.3) CND[7] [Conductivity_007 30-35 m (mS/m) ] COMM 25 205 - 214 real (f10.3) CND[8] [Conductivity_008 35-40 m (mS/m) ] COMM 26 215 - 224 real (f10.3) CND[9] [Conductivity_009 40-45 m (mS/m) ] COMM 27 225 - 234 real (f10.3) CND[10] [Conductivity_010 45-50 m (mS/m) ] COMM 28 235 - 244 real (f10.3) CND[11] [Conductivity_011 50-55 m (mS/m) ] COMM 29 245 - 254 real (f10.3) CND[12] [Conductivity_012 55-60 m (mS/m) ]

Page 136: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 136

COMM 30 255 - 264 real (f10.3) CND[13] [Conductivity_013 60-65 m (mS/m) ] COMM 31 265 - 274 real (f10.3) CND[14] [Conductivity_014 65-70 m (mS/m) ] COMM 32 275 - 284 real (f10.3) CND[15] [Conductivity_015 70-75 m (mS/m) ] COMM 33 285 - 294 real (f10.3) CND[16] [Conductivity_016 75-80 m (mS/m) ] COMM 34 295 - 304 real (f10.3) CND[17] [Conductivity_017 80-85 m (mS/m) ] COMM 35 305 - 314 real (f10.3) CND[18] [Conductivity_018 85-90 m (mS/m) ] COMM 36 315 - 324 real (f10.3) CND[19] [Conductivity_019 90-95 m (mS/m) ] COMM 37 325 - 334 real (f10.3) CND[20] [Conductivity_020 95-100 m (mS/m) ] COMM 38 335 - 344 real (f10.3) CND[21] [Conductivity_021 100-105 m (mS/m) ] COMM 39 345 - 354 real (f10.3) CND[22] [Conductivity_022 105-110 m (mS/m) ] COMM 40 355 - 364 real (f10.3) CND[23] [Conductivity_023 110-115 m (mS/m) ] COMM 41 365 - 374 real (f10.3) CND[24] [Conductivity_024 115-120 m (mS/m) ] COMM 42 375 - 384 real (f10.3) CND[25] [Conductivity_025 120-125 m (mS/m) ] COMM 43 385 - 394 real (f10.3) CND[26] [Conductivity_026 125-130 m (mS/m) ] COMM 44 395 - 404 real (f10.3) CND[27] [Conductivity_027 130-135 m (mS/m) ] COMM 45 405 - 414 real (f10.3) CND[28] [Conductivity_028 135-140 m (mS/m) ] COMM 46 415 - 424 real (f10.3) CND[29] [Conductivity_029 140-145 m (mS/m) ] COMM 47 425 - 434 real (f10.3) CND[30] [Conductivity_030 145-150 m (mS/m) ] COMM 48 435 - 444 real (f10.3) CND[31] [Conductivity_031 150-155 m (mS/m) ] COMM 49 445 - 454 real (f10.3) CND[32] [Conductivity_032 155-160 m (mS/m) ] COMM 50 455 - 464 real (f10.3) CND[33] [Conductivity_033 160-165 m (mS/m) ] COMM 51 465 - 474 real (f10.3) CND[34] [Conductivity_034 165-170 m (mS/m) ] COMM 52 475 - 484 real (f10.3) CND[35] [Conductivity_035 170-175 m (mS/m) ] COMM 53 485 - 494 real (f10.3) CND[36] [Conductivity_036 175-180 m (mS/m) ] COMM 54 495 - 504 real (f10.3) CND[37] [Conductivity_037 180-185 m (mS/m) ] COMM 55 505 - 514 real (f10.3) CND[38] [Conductivity_038 185-190 m (mS/m) ] COMM 56 515 - 524 real (f10.3) CND[39] [Conductivity_039 190-195 m (mS/m) ] COMM 57 525 - 534 real (f10.3) CND[40] [Conductivity_040 195-200 m (mS/m) ] COMM118 1135 -1144 real (f10.3) INT_CND_0_5 [Interval Conductivity 0-5m (mS/m) ] COMM119 1145 -1154 real (f10.3) INT_CND_5_10 [Interval Conductivity 5-10m (mS/m) ] COMM120 1155 -1164 real (f10.3) INT_CND_10_15[Interval Conductivity 10-15m (mS/m) ] COMM121 1165 -1174 real (f10.3) INT_CND_15_20[Interval Conductivity 15-20m (mS/m) ] COMM122 1175 -1184 real (f10.3) INT_CND_20_30[Interval Conductivity 20-30m (mS/m) ] COMM123 1185 -1194 real (f10.3) INT_CND_30_40[Interval Conductivity 30-40m (mS/m) ] COMM124 1195 -1204 real (f10.3) INT_CND_40_60[Interval Conductivity 40-60m (mS/m) ] COMM125 1205 -1214 real (f10.3) INT_CND_60_10[Interval Conductivity 60-100m (mS/m) ] COMM126 1215 -1224 real (f10.3) INT_CND_100_150[Interval Conductivity 100-150m (mS/m)] COMM127 1225 -1234 real (f10.3) INT_CND_150_200[Interval Conductivity 150-200m (mS/m)] COMM 1235 -1236 <newline> COMM ________________________________________________________________________ COMM COMM Total number of lines : 40 COMM COMM Total Kilometres : 235.52

Page 137: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 137

APPENDIX VI – Standby Days

Aircraft: VH-TEM

Date Days Description Kms Flown 26-Feb 1 Rain, High winds 0 27-Feb 1 Rain, High winds 0 28-Feb 1 Lightning Storms 0

Aircraft: VH-WGT

Date Days Description Kms Flown 31-Jan 1 Spherics 0 1-Feb 1 High Winds 0 2-Feb 0.5 High Winds 159 5-Feb 1 High Winds 0 12-Feb 1 High Winds, Spherics 0 13-Feb 1 High Winds 0 28-Feb 1 Lightning Storms 0 5-Mar 1 Rain, Storms 0 6-Mar 1 Bad Weather 0 7-Mar 1 Rain, Low Cloud 0 8-Mar 1 Storms/Turbulence 0 16-Mar 2 Warren Open Day 0

Page 138: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 138

APPENDIX VII – List of all Supplied Data and Products Final Located Data Area S1:

LMRAEM_S1_HPR LMRAEM_S1_NON-HPR LMRAEM_S1_Cond

Areas N1-3/L1-6:

LMRAEM_N1-3_HPR LMRAEM_N1-3_NON-HPR LMRAEM_N1-3_Cond

Seismic, borehole and repeat lines:

LMRAEM_Test_RptLines_HPR LMRAEM_Test_RptLines_NON-HPR LMRAEM_Test_RptLines_Cond

For each filename above, there are 3 files. Extension ‘.asc’ is the data, ‘.hdr’ is a header describing the data format and survey specifications and ‘.i4’ is a geosoft import template. For all files, some changes to field format were required – these are shown in the ‘.hdr’ files. For each of the suffixes HPR, NON-HPR and Cond, the contents are as follows:

NON-HPR – data without geometry correction as defined in Attachment 2, section 3.3.2 of the contract.

HPR – data with geometry correction as defined in Attachment 2, section 3.3.3 of the contract.

Cond – Conductivity-depth data as defined in Attachment 2, section 3.3.4 of the contract. Final Gridded Products (delivered in ERMapper format GDA94 MGA55) • Total Magnetic Intensity • Digital Elevation Model • Interval Conductivity grids for these depth ranges:

• 0-5 metres • 5-10 metres • 10-15 metres • 15-20 metres • 20-30 metres • 30-40 metres • 40-60 metres • 60-100 metres • 100-150 metres • 150-200 metres

Final Acquisition and Processing Report Delivered as hardcopy and digitally (6 copies)

Page 139: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 139

APPENDIX VIII – EM Repeat line and Seismic / Borehole line CDIs Repeat Line 600 - 8601 flown by VH-TEM, All others flown by VH-WGT

Page 140: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 140

Page 141: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 141

Page 142: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 142

Repeat Line 700 - All flown by VH-TEM

Page 143: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 143

Repeat Line 800 - All flown by VH-TEM

Repeat Line 900 - All flown by VH-TEM

Page 144: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 144

Seismic / Borehole Line 100 - Flown by VH-WGT

Seismic / Borehole Line 200 - Flown by VH-WGT

Seismic / Borehole Line 300 - Flown by VH-WGT

Page 145: Lower Macquarie River Airborne Electromagnetic (AEM) Mapping …data.daff.gov.au/.../LMR_Fugro_AEMAcquisitionReport.pdf · 2011-06-14 · Between the 14th of December 2006 and the

Lower Macquarie River Tempest Survey – Commonwealth of Australia Job No. 1835 Page 145

Seismic / Borehole Line 400 - Line 8416 flown by VH-WGT, Line 8426 flown by VH-TEM

Seismic / Borehole Line 500 - Line 8501 flown by VH-TEM, Line 8516 flown by VH-WGT