ltc2309 - 8-channel, 12-bit sar adc with i2c interface€¦ · ltc2309 2309fd block diagram...

26
LTC2309 2309fd BLOCK DIAGRAM FEATURES APPLICATIONS DESCRIPTION 8-Channel, 12-Bit SAR ADC with I 2 C Interface n Industrial Process Control n Motor Control n Accelerometer Measurements n Battery-Operated Instruments n Isolated and/or Remote Data Acquisition n Power Supply Monitoring Integral Nonlinearity vs Output Code n 12-Bit Resolution n Low Power: 1.5mW at 1ksps, 35µW Sleep Mode n 14ksps Throughput Rate n Low Noise: SNR = 73.4dB n Guaranteed No Missing Codes n Single 5V Supply n 2-Wire I 2 C Compatible Serial Interface with Nine Addresses Plus One Global for Synchronization n Fast Conversion Time: 1.3µs n Internal Reference n Internal 8-Channel Multiplexer n Internal Conversion Clock n Unipolar or Bipolar Input Ranges (Software Selectable) n Guaranteed Operation from –40°C to 125°C (TSSOP Package) n 24-Pin 4mm × 4mm QFN and 20-Pin TSSOP Packages The LTC ® 2309 is a low noise, low power, 8-channel, 12-bit successive approximation ADC with an I 2 C compatible serial interface. This ADC includes an internal reference and a fully differential sample-and-hold circuit to reduce common mode noise. The LTC2309 operates from an internal clock to achieve a fast 1.3µs conversion time. The LTC2309 operates from a single 5V supply and draws just 300µA at a throughput rate of 1ksps. The ADC enters nap mode when not converting, reducing the power dissipation. The LTC2309 is available in both a small 24-pin 4mm × 4mm QFN and a 20-pin TSSOP package. The internal 2.5V reference and 8-channel multiplexer further reduce PCB board space requirements. The low power consumption and small size make the LTC2309 ideal for battery-operated and portable applica- tions, while the 2-wire I 2 C compatible serial interface makes this ADC a good match for space-constrained systems. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarksand Easy Drive is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 COM 2309 TA01 I 2 C PORT ANALOG INPUT MUX ANALOG INPUTS 0V TO 4.096V UNIPOLAR ±2.048V BIPOLAR REFCOMP INTERNAL 2.5V REF V DD 5V GND LTC2309 0.1μF 12-BIT SAR ADC + 2.2μF 10μF 0.1μF 10μF V REF SDA SCL AD1 AD0 OUTPUT CODE 0 INL (LSB) 0 0.25 0.50 4096 2309 G01 –0.25 –0.50 –1.00 1024 2048 3072 –0.75 1.00 0.75

Upload: doandung

Post on 01-Aug-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

LTC2309

2309fd

BLOCK DIAGRAM

FeAtuRes

AppLICAtIOns

DesCRIptIOn

8-Channel, 12-Bit SAR ADC with I2C Interface

n IndustrialProcessControln MotorControln AccelerometerMeasurementsn Battery-OperatedInstrumentsn Isolatedand/orRemoteDataAcquisitionn PowerSupplyMonitoring

Integral Nonlinearity vs Output Code

n 12-Bit Resolutionn Low Power: 1.5mW at 1ksps, 35µW Sleep Moden 14ksps Throughput Raten Low Noise: SNR = 73.4dBn GuaranteedNoMissingCodesn Single5VSupplyn 2-WireI2CCompatibleSerialInterfacewithNine

AddressesPlusOneGlobalforSynchronizationn FastConversionTime:1.3µsn InternalReferencen Internal8-ChannelMultiplexern InternalConversionClockn UnipolarorBipolarInputRanges(SoftwareSelectable)n GuaranteedOperationfrom–40°Cto125°C

(TSSOPPackage)n 24-Pin4mm×4mmQFNand20-PinTSSOPPackages

TheLTC®2309isalownoise,lowpower,8-channel,12-bitsuccessive approximation ADC with an I2C compatibleserialinterface.ThisADCincludesaninternalreferenceandafullydifferentialsample-and-holdcircuittoreducecommon mode noise. The LTC2309 operates from aninternalclocktoachieveafast1.3µsconversiontime.

The LTC2309 operates from a single 5V supply anddraws just 300µA at a throughput rate of 1ksps. TheADCentersnapmodewhennot converting, reducingthepowerdissipation.

TheLTC2309isavailableinbothasmall24-pin4mm×4mmQFNanda20-pinTSSOPpackage.Theinternal2.5Vreferenceand8-channelmultiplexerfurtherreducePCBboardspacerequirements.

The low power consumption and small size make theLTC2309idealforbattery-operatedandportableapplica-tions,whilethe2-wireI2CcompatibleserialinterfacemakesthisADCagoodmatchforspace-constrainedsystems.L,LT,LTC,LTM,LinearTechnologyandtheLinearlogoareregisteredtrademarksandEasyDriveisatrademarkofLinearTechnologyCorporation.Allothertrademarksarethepropertyoftheirrespectiveowners.

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

COM

2309 TA01

I2CPORT

ANALOGINPUTMUX

ANALOG INPUTS0V TO 4.096V UNIPOLAR

±2.048V BIPOLAR

REFCOMP

INTERNAL2.5V REF

VDD

5V

GND

LTC2309

0.1µF

12-BITSAR ADC

+–

2.2µF

10µF0.1µF

10µF

VREF

SDA

SCL

AD1AD0

OUTPUT CODE0

INL

(LSB

)

0

0.25

0.50

4096

2309 G01

–0.25

–0.50

–1.001024 2048 3072

–0.75

1.00

0.75

LTC2309

2309fd

ABsOLute MAxIMuM RAtInGs (Notes 1, 2)

ORDeR InFORMAtIOnLEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION TEMPERATURE RANGE

LTC2309CUF#PBF LTC2309CUF#TRPBF 2309 24-Lead(4mm×4mm)PlasticQFN 0°Cto70°C

LTC2309IUF#PBF LTC2309IUF#TRPBF 2309 24-Lead(4mm×4mm)PlasticQFN –40°Cto85°C

LTC2309CF#PBF LTC2309CF#TRPBF LTC2309F 20-LeadPlasticTSSOP 0°Cto70°C

LTC2309IF#PBF LTC2309IF#TRPBF LTC2309F 20-LeadPlasticTSSOP –40°Cto85°C

LTC2309HF#PBF LTC2309HF#TRPBF LTC2309F 20-LeadPlasticTSSOP –40°Cto125°C

ConsultLTCMarketingforpartsspecifiedwithwideroperatingtemperatureranges.*Thetemperaturegradeisidentifiedbyalabelontheshippingcontainer.ConsultLTCMarketingforinformationonnon-standardleadbasedfinishparts.Formoreinformationonleadfreepartmarking,goto:http://www.linear.com/leadfree/Formoreinformationontapeandreelspecifications,goto:http://www.linear.com/tapeandreel/

SupplyVoltage VDD.......................................................... –0.3Vto6VAnalogInputVoltage(Note3) CH0-CH7,COM,VREF, REFCOMP.................... (GND–0.3V)to(VDD+0.3V)DigitalInputVoltage(Note3)............................ (GND–0.3V)to(VDD+0.3V)DigitalOutputVoltage...... (GND–0.3V)to(VDD+0.3V)

PowerDissipation.............................................. 500mWOperatingTemperatureRange LTC2309C................................................ 0°Cto70°C LTC2309I.............................................–40°Cto85°C LTC2309H.......................................... –40°Cto125°CStorageTemperatureRange.................. –65°Cto150°CLeadTemperature(Soldering,10sec) TSSOP.............................................................. 300°C

24

25

23 22 21 20 19

7 8 9

TOP VIEW

UF PACKAGE24-LEAD (4mm 4mm) PLASTIC QFN

10 11 12

6

5

4

3

2

1

13

14

15

16

17

18CH3

CH4

CH5

CH6

CH7

COM

GND

SDA

SCL

AD1

AD0

VDD

CH2

CH1

CH0

V DD

GND

GND

V REF

REFC

OMP

GND

GND

GND

V DD

TJMAX=150°C,θJA=37°C/W

EXPOSEDPAD(PIN25)ISGND,MUSTBESOLDEREDTOPCB

F PACKAGE20-LEAD PLASTIC TSSOP

1

2

3

4

5

6

7

8

9

10

TOP VIEW

20

19

18

17

16

15

14

13

12

11

REFCOMP

GND

VDD

AD0

AD1

SCL

SDA

GND

GND

VDD

VREF

COM

CH7

CH6

CH5

CH4

CH3

CH2

CH1

CH0

TJMAX=150°C,θJA=90°C/W,θJC=20°C/W

pIn COnFIGuRAtIOn

LTC2309

2309fd

COnVeRteR AnD MuLtIpLexeR CHARACteRIstICsPARAMETER CONDITIONS MIN TYP MAX UNITSResolution(NoMissingCodes) l 12 BitsIntegralLinearityError (Note6) l ±0.45 ±1 LSBDifferentialLinearityError l ±0.35 ±1 LSBBipolarZeroError (Note7) l ±1 ±8 LSBBipolarZeroErrorDrift 0.002 LSB/°CBipolarZeroErrorMatch ±0.1 ±3 LSBUnipolarZeroError (Note7) l ±0.4 ±6 LSBUnipolarZeroErrorDrift 0.002 LSB/°CUnipolarZeroErrorMatch ±0.2 ±1 LSBBipolarFull-ScaleError ExternalReference(Note8)

REFCOMP=4.096Vl

l

±0.5±0.4

±10±9

LSBLSB

BipolarFull-ScaleErrorDrift ExternalReference 0.05 LSB/°CBipolarFull-ScaleErrorMatch ±0.4 ±3 LSBUnipolarFull-ScaleError QFNExternalReference(Note8)

TSSOPExternalReference(Note8)l

l

±0.4±0.5

±10±12

LSBLSB

REFCOMP=4.096V l ±0.3 ±6 LSBUnipolarFull-ScaleErrorDrift ExternalReference 0.05 LSB/°CUnipolarFull-ScaleErrorMatch ±0.3 ±2 LSB

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Notes 4, 5)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITSVIN

+ AbsoluteInputRange(CH0toCH7) (Note9) l –0.05 REFCOMP VVIN

– AbsoluteInputRange(CH0toCH7,COM) Unipolar(Note9)Bipolar(Note9)

l

l

–0.05–0.05

0.25•REFCOMP0.75•REFCOMP

VV

VIN+–VIN

– InputDifferentialVoltageRange VIN=VIN+–VIN

–(Unipolar)VIN=VIN

+–VIN–(Bipolar)

l

l

0toREFCOMP±REFCOMP/2

VV

IIN AnalogInputLeakageCurrent l ±1 µACIN AnalogInputCapacitance SampleMode

HoldMode555

pFpF

CMRR InputCommonModeRejectionRatio 70 dB

AnALOG Input The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITSSINAD Signal-to-(Noise+Distortion)Ratio fIN=1kHz l 71 73.3 dBSNR Signal-to-NoiseRatio fIN=1kHz l 71 73.4 dBTHD TotalHarmonicDistortion fIN=1kHz,First5Harmonics l –88 –77 dBSFDR SpuriousFreeDynamicRange fIN=1kHz l 79 90 dB

Channel-to-ChannelIsolation fIN=1kHz –109 dBFullLinearBandwidth (Note11) 700 kHz–3dBInputLinearBandwidth 25 MHzApertureDelay 13 nsTransientResponse Full-ScaleStep 240 ns

DYnAMIC ACCuRACY The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Notes 4, 10)

LTC2309

2309fd

pOWeR ReQuIReMents

PARAMETER CONDITIONS MIN TYP MAX UNITSVREFOutputVoltage IOUT=0(QFN)

IOUT=0(TSSOP)l

l

2.472.46

2.502.50

2.532.54

VV

VREFOutputTempco IOUT=0 ±25 ppm/°CVREFOutputImpedance –0.1mA≤IOUT≤0.1mA 8 kΩVREFCOMPOutputVoltage IOUT=0 4.096 VVREFLineRegulation VDD=4.75Vto5.25V 0.8 mV/V

InteRnAL ReFeRenCe CHARACteRIstICs The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)

I2C Inputs AnD DIGItAL Outputs The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITSVIH HighLevelInputVoltage l 2.85 VVIL LowLevelInputVoltage l 1.5 VVIHA HighLevelInputVoltageforAddressPinsA1,A0 l 4.75 VVILA LowLevelInputVoltageforAddressPinsA1,A0 l 0.25 VRINH ResistancefromA1,A0,toVDDtoSetChip

AddressBitto1l 10 kΩ

RINL ResistancefromA1,A0toGNDtoSetChipAddressBitto0

l 10 kΩ

RINF ResistancefromA1,A0toGNDorVDDtoSetChipAddressBittoFloat

l 2 MΩ

II DigitalInputCurrent VIN=VDD l –10 10 µAVHYS HysteresisofSchmittTriggerInputs (Note9) l 0.25 VVOL LowLevelOutputVoltage(SDA) I=3mA l 0.4 VtOF OutputFallTimeVHtoVIL(MAX) (Note12) l 20+0.1CB 250 nstSP InputSpikeSuppression l 50 nsCCAX ExternalCapacitanceLoadOn-ChipAddressPins

(A1,A0)forValidFloatl 10 pF

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITSVDD SupplyVoltage l 4.75 5 5.25 VIDD SupplyCurrent 14kspsSampleRate l 2.3 3 mA

NapMode SLPBit=0,ConversionDone l 210 350 µASleepMode SLPBit=1,ConversionDone l 7 15 µA

PD PowerDissipation 14kspsSampleRate l 11.5 15 mWNapMode SLPBit=0,ConversionDone l 1.05 1.75 mWSleepMode SLPBit=1,ConversionDone l 35 75 µW

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)

LTC2309

2309fd

I2C tIMInG CHARACteRIstICs The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITSfSCL SCLClockFrequency l 400 kHztHD(SDA) HoldTime(Repeated)STARTCondition l 0.6 µstLOW LOWPeriodoftheSCLPin l 1.3 µstHIGH HIGHPeriodoftheSCLPin l 0.6 µstSU(STA) Set-UpTimeforaRepeatedSTARTCondition l 0.6 µstHD(DAT) DataHoldTime l 0 0.9 µstSU(DAT) DataSet-UpTime l 100 nstr RiseTimeforSDA/SCLSignals (Note12) l 20+0.1CB 300 nstf FallTimeforSDA/SCLSignals (Note12) l 20+0.1CB 300 nstSU(STO) Set-UpTimeforSTOPCondition l 0.6 µstBUF BusFreeTimeBetweenaSTOPandSTARTCondition l 1.3 µs

ADC tIMInG CHARACteRIstICs The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITSfSMPL ThroughputRate(SuccessiveReads) l 14 kspstCONV ConversionTime (Note9) l 1.3 1.8 µstACQ AcquisitionTime (Note9) l 240 nstREFWAKE REFCOMPWake-UpTime(Note13) CREFCOMP=10µF,CREF=2.2µF 200 ms

Note 1:StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.ExposuretoanyAbsoluteMaximumRatingconditionforextendedperiodsmayaffectdevicereliabilityandlifetime.Note 2:Allvoltagevaluesarewithrespecttoground.Note 3:WhenthesepinvoltagesaretakenbelowgroundoraboveVDD,theywillbeclampedbyinternaldiodes.Theseproductscanhandleinputcurrentsgreaterthan100mAbelowgroundoraboveVDDwithoutlatchup.Note 4:VDD=5V,fSMPL=14kspsinternalreferenceunlessotherwisenoted.Note 5:Linearity,offsetandfull-scalespecificationsapplyforasingle-endedanaloginputwithrespecttoCOM.Note 6:Integralnonlinearityisdefinedasthedeviationofacodefromastraightlinepassingthroughtheactualendpointsofthetransfercurve.Thedeviationismeasuredfromthecenterofthequantizationband.Note 7:Bipolarzeroerroristheoffsetvoltagemeasuredfrom–0.5LSBwhentheoutputcodeflickersbetween000000000000and11111111

1111.Unipolarzeroerroristheoffsetvoltagemeasuredfrom+0.5LSBwhentheoutputcodeflickersbetween000000000000and000000000001.Note 8:Full-scalebipolarerroristheworst-caseof–FSor+FSuntrimmeddeviationfromidealfirstandlastcodetransitionsandincludestheeffectofoffseterror.Unipolarfull-scaleerroristhedeviationofthelastcodetransitionfromidealandincludestheeffectofoffseterror.Note 9:Guaranteedbydesign,notsubjecttotest.Note 10:AllspecificationsindBarereferredtoafull-scale±2.048Vinputwitha2.5Vreferencevoltage.Note 11:Fulllinearbandwidthisdefinedasthefull-scaleinputfrequencyatwhichtheSINADdegradesto60dBor10bitsofaccuracy.Note 12:CB=capacitanceofonebuslineinpF(10pF≤CB≤400pF).Note 13:REFCOMPwake-uptimeisthetimerequiredfortheREFCOMPpintosettlewithin0.5LSBat12-bitresolutionofitsfinalvalueafterwakingupfromSLEEPmode.

LTC2309

2309fd

tYpICAL peRFORMAnCe CHARACteRIstICs

Integral Nonlinearity vs Output Code

1kHz Sine Wave 8192 Point FFT Plot

Supply Current vs Sampling Frequency Offset Error vs Temperature Full-Scale Error vs Temperature

Supply Current vs Temperature Sleep Current vs TemperatureAnalog Input Leakage Current vs Temperature

TA = 25°C, VDD = 5V, fSMPL = 14ksps, unless otherwise noted.

Differential Nonlinearity vs Output Code

OUTPUT CODE0

INL

(LSB

)

0

0.25

0.50

4096

2309 G01

–0.25

–0.50

–1.001024 2048 3072

–0.75

1.00

0.75

OUTPUT CODE0

DNL

(LSB

)0

0.25

0.50

4096

2309 G02

–0.25

–0.50

–1.001024 2048 3072

–0.75

1.00

0.75

FREQUENCY (kHz)0

–140

MAG

NITU

DE (d

B)

–120

–100

–80

0

–40

1 3 4 7

2309 G03

–20

–60

2 5 6

SNR = 73.4dBSINAD = 73.3dBTHD = –88dB

SAMPLING FREQUENCY (ksps)0.1

0

SUPP

LY C

URRE

NT (m

A)

1.5

2.0

2.5

1 10 100

3209 G04

1.0

0.5

TEMPERATURE (°C)–50

OFFS

ET E

RROR

(LSB

)

1.5

25

2309 G05

0

–1.0

–25 0 50

–0.5

–2.0

2.0

1.0

0.5

–0.5

75 100 125

UNIPOLAR

BIPOLAR

TEMPERATURE (°C)–50 –25

–6

FULL

-SCA

LE E

RROR

(LSB

)

–2

4

0 50 75

2309 G06

–4

2

0

25 100 125

UNIPOLAR

BIPOLAR

TEMPERATURE (°C)–50

1.0

SUPP

LY C

URRE

NT (m

A)

1.2

1.6

1.8

2.0

3.0

2.4

0 50 75

2309 G07

1.4

2.6

2.8

2.2

–25 25 100 125TEMPERATURE (°C)

–500

LEAK

AGE

CURR

ENT

(nA)

100

300

400

500

1000

700

0 50 75

2309 G09

200

800

900

600

–25 25 100 125

CH (ON)

CH (OFF)

TEMPERATURE (°C)–50 –25

0

SLEE

P CU

RREN

T (µ

A)

4

10

0 50 75

2309 G08

2

8

6

25 100 125

LTC2309

2309fd

pIn FunCtIOnsCH3-CH7 (Pins 1-5):Channel3toChannel7AnalogInputs.CH3-CH7canbeconfiguredassingle-endedor differential input channels. See the Analog InputMultiplexersection.

COM (Pin 6): Common Input. This is the referencepoint for all single-ended inputs. It must be free ofnoiseandshouldbeconnectedtogroundforunipolarconversionsandmidwaybetweenGNDandREFCOMPforbipolarconversions.

VREF (Pin 7):2.5VReferenceOutput.BypasstoGNDwithaminimum2.2µFceramiccapacitor.Theinternalreferencemaybeoverdrivenbyanexternal2.5Vrefer-enceatthispin.

REFCOMP (Pin 8):ReferenceBufferOutput.Bypassto GND with 10µF and 0.1µF ceramic capacitors inparallel.Nominaloutputvoltageis4.096V.Theinternalreferencebufferdrivingthispinisdisabledbyground-ingVREF,allowingREFCOMPtobeoverdrivenbyanexternalsource.

GND (Pins 9-11, 18-20):Ground.AllGNDpinsmustbeconnectedtoasolidgroundplane.

VDD (Pins 12, 13, 21):5VSupply.TherangeofVDDis4.75Vto5.25V.BypassVDDtoGNDwitha10µFceramiccapacitorinparallelwiththree0.1µFceramiccapacitors,onelocatedascloseaspossibletoeachpin.

AD0 (Pin 14):ChipAddressControlPin.Thispin isconfiguredasathree-state(LOW,HIGH,floating)ad-dresscontrolbitforthedeviceI2Caddress.SeeTable2foraddressselection.

AD1 (Pin 15):ChipAddressControlPin.Thispin isconfigured as a three-state (LOW, HIGH, floating)address control bit for the device I2C address. SeeTable2foraddressselection.

SCL (Pin 16):SerialClockPinoftheI2CInterface.TheLTC2309canonlyactasaslaveandtheSCLpinonlyaccepts anexternal serial clock.Data is shifted intotheSDApinontherisingedgesoftheSCLclockandoutputthroughtheSDApinonthefallingedgesoftheSCLclock.

SDA (Pin 17):BidirectionalSerialDataLineoftheI2CInterface.Intransmittermode(read),theconversionresultisoutputattheSDApin,whileinreceivermode(write),theDINwordisinputattheSDApintocon-figuretheADC.Thepinishighimpedanceduringthedatainputmodeandisanopen-drainoutput(requiresanappropriatepull-updevicetoVDD)duringthedataoutputmode.

CH0-CH2 (Pins 22-24):Channel0toChannel2AnalogInputs.CH0-CH2canbeconfiguredassingle-endedor differential input channels. See the Analog InputMultiplexersection.

Exposed Pad (Pin 25): Ground. Must be soldereddirectlytogroundplane.

(QFN)

LTC2309

2309fd

pIn FunCtIOnsREFCOMP (Pin 1):ReferenceBufferOutput.Bypassto GND with 10µF and 0.1µF ceramic capacitors inparallel.Nominaloutputvoltageis4.096V.Theinternalreferencebufferdrivingthispinisdisabledbyground-ingVREF,allowingREFCOMPtobeoverdrivenbyanexternalsource.

GND (Pins 2, 8 , 9):Ground.AllGNDpinsmustbeconnectedtoasolidgroundplane.

VDD (Pins 3, 10):5VSupply.TherangeofVDDis4.75Vto5.25V.BypassVDDtoGNDwitha10µFceramicca-pacitorinparallelwithtwo0.1µFceramiccapacitors,onelocatedascloseaspossibletoeachpin.

AD0 (Pin 4):ChipAddressControlPin.Thispiniscon-figuredasathree-state(LOW,HIGH,floating)addresscontrolbitforthedeviceI2Caddress.SeeTable2foraddressselection.

AD1 (Pin 5): Chip Address Control Pin. This pin isconfigured as a three-state (LOW, HIGH, floating)address control bit for the device I2C address. SeeTable2foraddressselection.

SCL (Pin 6):SerialClockPinoftheI2CInterface.TheLTC2309canonlyactasaslaveandtheSCLpinonlyaccepts anexternal serial clock.Data is shifted intotheSDApinontherisingedgesoftheSCLclockandoutputthroughtheSDApinonthefallingedgesoftheSCLclock.

SDA (Pin 7):BidirectionalSerialDataLineoftheI2CInterface.Intransmittermode(read),theconversionresultisoutputattheSDApin,whileinreceivermode(write),theDINwordisinputattheSDApintocon-figuretheADC.Thepinishighimpedanceduringthedatainputmodeandisanopen-drainoutput(requiresanappropriatepull-updevicetoVDD)duringthedataoutputmode.

CH0-CH7 (Pins 11-18):Channel0toChannel7AnalogInputs.CH0-CH7canbeconfiguredassingle-endedor differential input channels. See the Analog InputMultiplexersection.

COM (Pin 19):CommonInput.Thisisthereferencepoint for all single-ended inputs. It must be free ofnoiseandshouldbeconnectedtogroundforunipolarconversionsandmidwaybetweenGNDandREFCOMPforbipolarconversions.

VREF (Pin 20):2.5VReferenceOutput.BypasstoGNDwithaminimum2.2µFceramiccapacitor.Theinternalreferencemaybeoverdrivenbyanexternal2.5Vrefer-enceatthispin.

(TSSOP)

LTC2309

2309fd

FunCtIOnAL BLOCK DIAGRAM

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

COM

2308 BD

I2CPORT

ANALOGINPUTMUX

REFCOMP

INTERNAL2.5V REF

VDD

GND

12-BITSAR ADC

LTC2309

8k

GAIN = 1.6384x

+–

VREF

SDA

SCL

AD1AD0

tIMInG DIAGRAM

Definition of Timing for Fast/Standard Mode Devices on the I2C Bus

SDA

SCL

S Sr P StHD(SDA)

S = START, Sr = REPEATED START, P = STOP

tHD(DAT)tSU(STA) tSU(STO)

tSU(DAT)tLOW tHD(SDA)tSP

tBUFtr tf trtf

tHIGH 2309 TD

LTC2309

02309fd

AppLICAtIOns InFORMAtIOnOverview

TheLTC2309isalownoise,8-channel,12-bitsucces-siveapproximationregister(SAR)A/DconverterwithanI2Ccompatibleserialinterface.TheLTC2309includesaprecisioninternalreferenceandaconfigurable8-chan-nelanaloginputmultiplexer(MUX).TheADCmaybeconfiguredtoacceptsingle-endedordifferentialsignalsandcanoperateineitherunipolarorbipolarmode.Asleepmodeoptionisalsoprovidedtofurtherreducepowerduringinactiveperiods.

The LTC2309 communicates through a 2-wire I2Ccompatibleserial interface.Conversionsare initiatedbysignalingaSTOPconditionaftertheparthasbeensuccessfullyaddressedforaread/writeoperation.Thedevicewillnotacknowledge(NACK)anexternalrequestuntiltheconversionisfinished.Afteraconversionisfinished, the device is ready to accept a read/writerequest. Once the LTC2309 is addressed for a readoperation, the device begins outputting the conver-sionresultunderthecontroloftheserialclock(SCL).Thereisnolatencyintheconversionresult.Thereare12bitsofoutputdatafollowedby4trailingzeros.Dataisupdatedonthe fallingedgesofSCL,allowingtheusertoreliablylatchdataontherisingedgeofSCL.AwriteoperationmayfollowthereadoperationbyusingarepeatSTARToraSTOPconditionmaybegiventostartanewconversion.Byselectingawriteoperation,theADCcanbeprogrammedwitha6-bitDINword.TheDINwordconfigurestheMUXandprogramsvariousmodesofoperationoftheADC.

During a conversion, the internal 12-bit capacitivechargeredistributionDACoutputissequencedthroughasuccessiveapproximationalgorithmbytheSARstart-ing from themostsignificantbit (MSB) to the leastsignificantbit(LSB).ThesampledinputissuccessivelycomparedwithbinaryweightedchargessuppliedbythecapacitiveDACusingadifferentialcomparator.Attheendofaconversion,theDACoutputbalancestheanaloginput.TheSARcontents(a12-bitdataword)thatrepresentthesampledanaloginputareloadedinto12outputlatchesthatallowthedatatobeshiftedoutviatheI2Cinterface.

Programming the LTC2309

Thevariousmodesofoperationof theLTC2309areprogrammedbya6-bitDINword.TheSDIinputdatabitsareloadedontherisingedgeofSCLduringawriteoperation,withtheS/DbitloadedonthefirstrisingedgeandtheSLPbitonthesixthrisingedge(seeFigure8bin the I2C Interfacesection).The inputdataword isdefinedasfollows:

S/D O/S S1 S0 UNI SLP

S/D=SINGLE-ENDED/DIFFERENTIALBIT

O/S=ODD/SIGNBIT

S1=CHANNELSELECTBIT1

S0=CHANNELSELECTBIT0

UNI=UNIPOLAR/BIPOLARBIT

SLP=SLEEPMODEBIT

Analog Input Multiplexer

The analog input MUX is programmed by the S/D,O/S,S1andS0bitsoftheDINword.Table1liststheMUXconfigurationsforallcombinationsofthecon-figurationbits.Figure1ashowsseveralpossibleMUXconfigurationsandFigure1bshowshowtheMUXcanbereconfiguredfromoneconversiontothenext.

Driving the Analog Inputs

Theanalog inputsof theLTC2309areeasy todrive.Eachoftheanaloginputscanbeusedasasingle-endedinputrelativetotheCOMpin(CH0-COM,CH1-COM,etc.)orindifferentialinputpairs(CH0andCH1,CH2andCH3,CH4andCH5,CH6andCH7).Figure2showshowtodriveCOMforsingle-endedinputsinunipolarandbipolarmodes.RegardlessoftheMUXconfigura-tion,the“+”and“–”inputsaresampledatthesameinstant.Anyunwantedsignalthatiscommontobothinputswillbereducedbythecommonmoderejectionofthesample-and-holdcircuit.Theinputsdrawonlyonesmallcurrentspikewhilechargingthesample-and-holdcapacitorsduringtheacquiremode.Inconversion

LTC2309

2309fd

AppLICAtIOns InFORMAtIOn

CH0CH1CH2CH3CH4CH5CH6CH7

COM (–)

8 Single-Ended

+++++++

4 Differential

+ (–) +

+ (–)

+ (–)

+ (–)– (+)

– (+)

– (+)

– (+)

COM (–)

Combinations of Differential and Single-Ended

+++++

+––

2309 F01a

CH0CH1

CH2CH3

CH4CH5

CH6CH7

CH0CH1

CH2CH3

CH4CH5CH6CH7

Table 1. Channel ConfigurationS/D O/S S1 S0 0 1 2 3 4 5 6 7 COM

0 0 0 0 + –0 0 0 1 + –0 0 1 0 + –0 0 1 1 + –0 1 0 0 – +0 1 0 1 – +0 1 1 0 – +0 1 1 1 – +1 0 0 0 + –1 0 0 1 + –1 0 1 0 + –1 0 1 1 + –1 1 0 0 + –1 1 0 1 + –1 1 1 0 + –1 1 1 1 + –

COM(UNUSED)

COM (–)

1st Conversion 2nd Conversion

+–+–

+–

++

CH2CH3

CH4CH5

CH2CH3

CH4CH5

2328 F01b

COM COM

REFCOMP/2

Unipolar Mode Bipolar Mode

2328 F02

+–

Figure 1a. Example of MUX Configurations

Figure 1b. Changing the MUX Assignments “On the Fly”

Figure 2. Driving COM in Unipolar and Bipolar Modes

mode,theanaloginputsdrawonlyasmallleakagecur-rent.Ifthesourceimpedanceofthedrivingcircuitislow,theADCinputscanbedrivendirectly.Otherwise,moreacquisitiontimeshouldbeallowedforasourcewithhigherimpedance.

Input Filtering

The noise and distortion of the input amplifier andothercircuitrymustbeconsideredsincetheywilladdtotheADCnoiseanddistortion.Therefore,noisyinputcircuitryshouldbefilteredpriortotheanaloginputstominimizenoise.Asimple1-poleRCfilterissufficientformanyapplications.

TheanaloginputsoftheLTC2309canbemodeledasa55pFcapacitor(CIN)inserieswitha100Ωresistor(RON),asshowninFigure3a.CINgetsswitchedtotheselectedinputonceduringeachconversion.LargefilterRCtimeconstantswillslowthesettlingoftheinputs.It is importantthattheoverallRCtimeconstantsbeshortenoughtoallowtheanaloginputstocompletelysettleto12-bitresolutionwithintheacquisitiontime(tACQ)ifDCaccuracyisimportant.

LTC2309

2309fd

AppLICAtIOns InFORMAtIOnWhenusingafilterwithalargeCFILTERvalue(e.g.1µF),theinputsdonotcompletelysettleandthecapacitiveinputswitchingcurrentsareaveraged intoanetDCcurrent(IDC).Inthiscase,theanaloginputcanbemod-eledbyanequivalentresistance(REQ=1/(fSMPL•CIN))inserieswithanidealvoltagesource(VREFCOMP/2),asshowninFigure3b.ThemagnitudeoftheDCcurrentisthenapproximatelyIDC=(VIN–VREFCOMP/2)/REQ,whichisroughlyproportionaltoVIN.TopreventlargeDCdropsacrosstheresistorRFILTER,afilterwithasmallresistorandlargecapacitorshouldbechosen.Whenrunningatthemaximumthroughputrateof14ksps,theinputcurrentequals1.5µAatVIN=4.096V,whichamountstoafull-scaleerrorof0.5LSBwhenusingafilterresistor(RFILTER)of333Ω.Applicationsrequiringlowersampleratescantoleratealargerfilterresistorforthesameamountoffull-scaleerror.

selfheatingandfromdamagethatmayoccurduringsoldering.Metalfilmsurfacemountresistorsaremuchlesssusceptibletobothproblems.

Dynamic Performance

FastFourierTransform(FFT)testtechniquesareusedtotesttheADC’sfrequencyresponse,distortionandnoiseattheratedthroughput.ByapplyingalowdistortionsinewaveandanalyzingthedigitaloutputusinganFFTalgorithm,theADC’sspectralcontentcanbeexaminedforfrequenciesoutsidethefundamental.

Signal-to-Noise and Distortion Ratio (SINAD)

Thesignal-to-noiseanddistortionratio(SINAD)istheratiobetweentheRMSamplitudeofthefundamentalinputfrequencytotheRMSamplitudeofallotherfre-quencycomponentsattheA/Doutput.Theoutputisband-limitedtofrequenciesfromaboveDCandbelowhalfthesamplingfrequency.Figure5showsatypicalSINADof73.3dBwitha14kHzsampling rateanda1kHzinput.AnSNRof73.4dBcanbeachievedwiththeLTC2309.

VIN

INPUTCH0-CH7 RON

100Ω

CIN55pFCFILTER

RSOURCE

2309 F03a

LTC2309

Figure 3a. Analog Input Equivalent Circuit

VIN

INPUTCH0-CH7

REQ1/(fSMPL • CIN)

VREFCOMP/2

CFILTER

RFILTERIDC

2309 F03b

LTC2309

+–

Figure 3b. Analog Input Equivalent Circuit for Large Filter Capacitances

Figures4aand4bshowexamplesofinputfilteringforsingle-ended and differential inputs. For the single-endedcaseinFigure4a,a50Ωsourceresistoranda2000pFcapacitortogroundontheinputwilllimittheinputbandwidthto1.6MHz.HighqualitycapacitorsandresistorsshouldbeusedintheRCfiltersincethesecomponentscanadddistortion.NPOandsilvermicatypedielectriccapacitorshaveexcellentlinearity.Carbonsurfacemountresistorscangeneratedistortionfrom

2309 F04a

CH0

COM

LTC2309

REFCOMP

2000pF

0.1µF 10µF

50ΩANALOGINPUT

Figure 4a. Optional RC Input Filtering for Single-Ended Input

1000pF

2309 F04b

CH0

CH1

LTC2309

REFCOMP

1000pF

1000pF

0.1µF 10µF

50Ω

50Ω

DIFFERENTIALANALOGINPUTS

Figure 4b. Optional RC Input Filtering for Differential Inputs

LTC2309

2309fd

Total Harmonic Distortion (THD)

Total harmonic distortion (THD) is the ratio of theRMSsumofallharmonicsoftheinputsignaltothefundamentalitself.Theout-of-bandharmonicsaliasintothefrequencybandbetweenDCandhalfthesamplingfrequency(fSMPL/2).THDisexpressedas:

THD

V V V VV

N=+ + +

20 22

32

42 2

1log

...

where V1 is the RMS amplitude of the fundamentalfrequencyandV2throughVNaretheamplitudesofthesecondthroughNthharmonics.

Internal Reference

The LTC2309 has an on-chip, temperature compen-sated bandgap reference that is factory trimmed to2.5V(RefertoFigure6a).ItisinternallyconnectedtoareferenceamplifierandisavailableatVREF.VREFshouldbebypassedtoGNDwitha2.2μFceramiccapacitortominimizenoise.An8kresistorisinserieswiththeoutputsothatitcanbeeasilyoverdrivenbyanexternalrefer-enceifmoreaccuracyand/orlowerdriftarerequired,asshowninFigure6b.ThereferenceamplifiergainstheVREFvoltageby1.638to4.096VatREFCOMP.Tocompensatethereferenceamplifier,bypassREFCOMPwitha10μFceramiccapacitorinparallelwitha0.1μFceramic capacitor for best noise performance. The

internalreferencebuffercanalsobeoverdrivenfrom1VtoVDD,asshowninFigure6c.Todoso,VREFmustbegroundedtodisablethereferencebuffer.

AppLICAtIOns InFORMAtIOn

Figure 5. 1kHz Sine Wave 8192 Point FFT Plot

R2

R3

REFERENCEAMP

0.1µF

10µF

2.2µF

REFCOMP

GND

VREF

R18k

2.5V

4.096V

LTC2309

2309 F06a

BANDGAPREFERENCE

Figure 6a. LTC2309 Reference Circuit

0.1µF10µF

2309 F06b

LT1790A-2.5VOUT

VIN

5V

VREF

LTC2309

GND

REFCOMP

2.2µF

0.1µF

Figure 6b. Using the LT®1790A-2.5 as an External Reference

FREQUENCY (kHz)0

–140

MAG

NITU

DE (d

B)

–120

–100

–80

0

–40

1 3 4 7

2309 G03

–20

–60

2 5 6

SNR = 73.4dBSINAD = 73.3dBTHD = –88dB

Figure 6c. Overdriving REFCOMP Using the LT1790A-4.096

0.1µF

0.1µF

10µF

2309 F06c

LT1790A-4.096VOUT

VIN

5V

VREF

LTC2309

GND

REFCOMP

LTC2309

2309fd

Internal Conversion Clock

The internal conversion clock is factory trimmed toachieveatypicalconversiontime(tCONV)of1.3μsanda maximum conversion time of 1.8μs over the fulloperatingtemperaturerange.

I2C Interface

TheLTC2309communicatesthroughanI2Cinterface.TheI2Cinterfaceisa2-wireopen-draininterfacesup-porting multiple devices and multiple masters on asinglebus.Theconnecteddevicescanonlypull theserialdataline(SDA)LOWandcanneverdriveitHIGH.SDAisrequiredtobeexternallyconnectedtothesup-plythroughapull-upresistor.WhenthedatalineisnotbeingdrivenLOW,itisHIGH.DataontheI2Cbuscanbetransferredatratesupto100kbits/sinthestandardmodeandupto400kbits/sinthefastmode.TheVDDpowershouldnotberemovedfromtheLTC2309whentheI2CbusisactivetoavoidloadingtheI2CbuslinesthroughtheinternalESDprotectiondiodes.

EachdeviceontheI2Cbusisrecognizedbyauniqueaddressstoredinthedeviceandcanonlyoperateeitherasatransmitterorreceiver,dependingonthefunctionof thedevice.Adevicecanalsobeconsideredasamasteroraslavewhenperformingdatatransfers.Amasteristhedevicewhichinitiatesadatatransferonthebusandgeneratestheclocksignalstopermitthetransfer.Devicesaddressedbythemasterareconsid-eredslaves.

TheLTC2309canonlybeaddressedasaslave(seeTable2).Onceaddressed,itcanreceiveconfigurationbits(DINword)ortransmitthelastconversionresult.Theserialclockline(SCL)isalwaysaninputtotheLTC2309andtheserialdataline(SDA)isbidirectional.Thedevicesupportsthestandardmodeandthefastmodefordatatransferspeedsupto400kbits/s(seetheTimingDiagramsectionfordefinitionoftheI2Ctiming).

The START and STOP Conditions

ReferringtoFigure7,aSTART(S)conditionisgener-atedby transitioningSDA fromHIGH toLOWwhileSCLisHIGH.ThebusisconsideredtobebusyaftertheSTARTcondition.Whenthedatatransferisfinished,aSTOP(P)conditionisgeneratedbytransitioningSDAfromLOWtoHIGHwhileSCLisHIGH.ThebusisfreeafteraSTOPconditionisgenerated.STARTandSTOPconditionsarealwaysgeneratedbythemaster.

When the bus is in use, it stays busy if a repeatedSTART(Sr)isgeneratedinsteadofaSTOPcondition.TherepeatedSTARTtimingisfunctionallyidenticaltotheSTARTandisusedforwritingandreadingfromthedevicebeforetheinitiationofanewconversion.

AppLICAtIOns InFORMAtIOn

S

START Condition STOP Condition

P

2309 F07

SDA

SCL

SDA

SCL

Figure 7. Timing Diagrams of START and STOP Conditions

Data Transferring

After theSTARTcondition, theI2Cbus isbusyanddatatransfercanbeginbetweenthemasterandtheaddressedslave.Dataistransferredoverthebusingroups of nine bits, one byte followed by one ac-knowledge(ACK)bit.Themaster releases theSDAlineduringtheninthSCLclockcycle.TheslavedevicecanissueanACKbypullingSDALOWorissueaNotAcknowledge (NACK) by leaving the SDA line highimpedance(theexternalpull-upresistorwillholdthelinehigh).ChangeofdataonlyoccurswhiletheSCLlineisLOW.

Data Format

After a START condition, the master sends a 7-bitaddressfollowedbyaread/write(R/W)bit.TheR/Wbit is1forareadrequestand0forawriterequest.If the 7-bit address matches one of the LTC2309’s9pin-selectableaddresses,theADCisselected.When

LTC2309

2309fd

AppLICAtIOns InFORMAtIOntheADCisaddressedduringaconversion,itwillnotacknowledgeR/WrequestsandwillissueaNACKbyleavingtheSDAlineHIGH.Iftheconversioniscom-plete,theLTC2309issuesanACKbypullingtheSDAlineLOW.TheLTC2309hastworegisters.The12-bitwideoutputregistercontainsthelastconversionresult.The6-bitwideinputregisterconfigurestheinputMUXandtheoperatingmodeoftheADC.

Output Data Format

Theoutputregistercontainsthelastconversionresult.Aftereachconversioniscompleted,thedeviceauto-maticallyenterseithernaporsleepmodedependingonthesettingoftheSLPbit(seeNapModeandSleepModesections).WhentheLTC2309isaddressedfor

a read operation, it acknowledges by pulling SDALOW and acts as a transmitter. The master/receivercanreadupto twobytes fromtheLTC2309.Afteracompletereadoperationof2bytes,aSTOPconditionisneededtoinitiateanewconversion.ThedevicewillNACKsubsequentreadoperationswhileaconversionisbeingperformed.

Thedataoutputstreamis16bitslongandisshiftedoutonthefallingedgesofSCL(seeFigure8a).ThefirstbitistheMSBandthe12thbitistheLSBoftheconversion result. The remaining four bits are zero.Figures14and15arethetransfercharacteristicsforthebipolarandunipolarmodes.DataisoutputontheSDAlinein2’scomplementformatforbipolarreadingsorinstraightbinaryforunipolarreadings.

1 2

A6SDA

START BYMASTER

ACK BYADC

ACK BYMASTER

NACK BYMASTER

STOPBY MASTER

CONVERSIONINITIATED

SCL

SCL(CONTINUED)

A5 A4 A3 A2 A1 A0 R/W

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

2309 F08a

B11 B10

READ 1 BYTE

B9 B8 B7

MOST SIGNIFICANT DATA BYTE

B6 B5 B4

• • •

• • •

SDA(CONTINUED) • • •

• • •

B3 B2 B1 B0

LEAST SIGNIFICANT DATA BYTE

READ 1 BYTE

ADDRESS FRAME

Figure 8a. Timing Diagram for Reading from the LTC2309

LTC2309

2309fd

Input Data Format

WhentheLTC2309isaddressedforawriteoperation,itacknowledgesbypullingSDALOWduringtheLOWperiodbeforethe9thcycleandactsasareceiver.Themaster/transmittercanthensend1bytetoprogramthedevice.Theinputbyteconsistsofthe6-bitDINwordfollowedbytwobitsthatareignoredbytheADCandare considered don’t cares (X) (see Figure8b). TheinputbitsarelatchedontherisingedgeofSCLduringthewriteoperation.

After power-up, the ADC initiates an internal resetcyclewhichsetstheDINwordtoall0s(S/D=O/S=S0=S1=UNI=SLP=0).AwriteoperationmaybeperformedifthedefaultstateoftheADC’sconfigurationisnotdesired.Otherwise,theADCmustbeproperlyaddressedandfollowedbyaSTOPconditiontoinitiateaconversion.

Initiating a New Conversion

TheLTC2309awakensfromeithernaporsleepwhenproperlyaddressedforaread/writeoperation.ASTOPcommand may then be issued after performing theread/writeoperationtotriggeranewconversion.

IssuingaSTOPcommandafterthe8thSCLclockpulseoftheaddressframeandbeforethecompletionofa

Table 2. Address AssignmentAD1 AD0 ADDRESS

LOW LOW 0001000

LOW Float 0001001

LOW HIGH 0001010

Float HIGH 0001011

Float Float 0011000

Float LOW 0011001

HIGH LOW 0011010

HIGH Float 0011011

HIGH HIGH 0101000

1 2

A6SDA

START BYMASTER

ACK BYADC

ACK BYADC

CONVERSIONINITIATED

STOP BYMASTER

SCL

A5 A4 A3 A2 A1 A0 R/W

3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

2309 F08b

S/D O/S

WRITE 1 BYTE

S1 S0 UNI

DIN WORD

SLP X X

ADDRESS FRAME

Figure 8b. Timing Diagram for Writing to the LTC2309

AppLICAtIOns InFORMAtIOnread/writeoperationwillalsoinitiatenewconversion,buttheoutputresultmaynotbevalidduetolackofadequateacquisitiontime(seeAcquisitionsection).

LTC2309 Address

TheLTC2309hastwoaddresspins(AD0andAD1)thatmaybetiedHIGH,LOW,orleftfloatingtoenableoneof9possibleaddresses(seeTable2).

In addition to the configurable addresses listed inTable2, theLTC2309alsocontainsaglobaladdress(1101011)whichmaybeusedforsynchronizingmul-tipleLTC2309sorotherI2CLTC230XSARADCs(seeSynchronizingMultipleLTC2309swithGlobalAddressCallsection).

LTC2309

2309fd

AppLICAtIOns InFORMAtIOnatesaNACKsignalindicatingtheconversioncycleisinprogress.

Continuous Read/Write

Oncetheconversioncycleiscomplete,theLTC2309canbewrittentoandthenreadfromusingtherepeatedSTART(Sr)command.Figure10showsacyclewhichbeginswithadatawrite,arepeatedSTART,followedbyareadandconcludedwithaSTOPcommand.Afterall16bitsarereadout,aconversionmaybeinitiatedbyissuingaSTOPcommand.Thefollowingconver-sionwillbeperformedusingthenewlyprogrammeddata.

S

CONVERSION NAP DATA OUTPUT CONVERSION CONVERSIONNAP DATAOUTPUT

R ACK READ7-BIT ADDRESS P S R ACK

2309 F09

READ7-BIT ADDRESS P

Figure 9. Consecutive Reading with the Same Configuration

Continuous Read

Inapplicationswherethesameinputchannelissampledeachcycle,conversionscanbecontinuouslyperformedandreadwithoutawritecycle(seeFigure9).TheDINwordremainsunchangedfromthelastvaluewrittenintothedevice.Ifthedevicehasnotbeenwrittentosincepower-up,theDINworddefaultstoall0s(S/D=O/S=S0=S1=UNI=SLP=0).Attheendofareadoperation,aSTOPconditionmaybegiventostartanewconversion.Attheconclusionoftheconversioncycle,thenextresultmaybereadusingthemethoddescribedabove.Iftheconversioncycleisnotconcludedandavalidaddressselectsthedevice,theLTC2309gener-

S

CONVERSION NAP DATA INPUT ADDRESS CONVERSIONDATAOUTPUT

W ACK WRITE7-BIT ADDRESS Sr R ACK

2309 F10

READ7-BIT ADDRESS P

Figure 10. Write, Read, START Conversion

LTC2309

2309fd

AppLICAtIOns InFORMAtIOnSynchronizing Multiple LTC2309s with a Global Address Call

InapplicationswhereseveralLTC2309sorotherI2CSARADCsfromLinearTechnologyCorporationareusedonthesameI2Cbus,allconverterscanbesynchronizedthroughtheuseofaglobaladdresscall.Priortoissu-ingtheglobaladdresscall,allconvertersmusthavecompletedaconversioncycle.ThemasterthenissuesaSTART,followedbytheglobaladdress1101011,andawriterequest.Allconverterswillbeselectedandac-knowledgetherequest.Themasterthensendsawritebyte(optional)followedbytheSTOPcommand.Thiswillupdatethechannelselection(optional)andsimultane-ouslyinitiateaconversionforallADCsonthebus(seeFigure11).Inordertosynchronizemultipleconverterswithoutchangingthechannel,aSTOPcommandmaybeissuedafteracknowledgementoftheglobalwritecommand.GlobalreadcommandsarenotallowedandtheconverterswillNACKaglobalreadrequest.

Nap Mode

TheADCentersnapmodeafteraconversioniscom-plete(tCONV)iftheSLPbitissettoalogic0.Thesup-plycurrentdecreasesto210μAinnapmodebetweenconversions, thereby reducing the average powerdissipationasthesampleratedecreases.Forexample,theLTC2309drawsanaverageof300µAata1kspssamplingrate.TheLTC2309keepsonlythereference(VREF)andreferencebuffer(REFCOMP)circuitryactivewheninnapmode.

Sleep Mode

TheADCenterssleepmodeafteraconversioniscom-plete(tCONV)iftheSLPbitissettoalogic1.TheADCdrawsonly7µAinsleepmode,providedthatnoneofthedigitalinputsareswitching.WhentheLTC2309isproperlyaddressed,theADCisreleasedfromsleepmodeandrequires200ms(tREFWAKE)towakeupandchargetherespective2.2μFand10μFbypasscapacitorsontheVREFandREFCOMPpins.Anewconversionshouldnotbeinitiatedbeforethistime,asshowninFigure12.

S

SDA

SCL

CONVERSION NAP

LTC2309

DATA OUTPUT CONVERSION OF ALL LTC2309s

W ACK WRITE (OPTIONAL)GLOBAL ADDRESS P

LTC2309 LTC2309

2309 F11

Figure 11. Synchronous Multiple LTC2309s with a Global Address Call

S

CONVERSION SLEEP tREFWAKE CONVERSION

R/W ACK7-BIT ADDRESS P

2309 F12

Figure 12. Exiting Sleep Mode and Starting a New Conversion

LTC2309

2309fd

AppLICAtIOns InFORMAtIOnAcquisition

TheLTC2309beginsacquiringtheinputsignalatdif-ferentinstancesdependingonwhetherareadorwriteoperation isbeingperformed. If a readoperation isbeingperformed,acquisitionoftheinputsignalbeginsontherisingedgeofthe9thclockpulsefollowingtheaddressframe,asshowninFigure13a.

Ifawriteoperationisbeingperformed,acquisitionoftheinputsignalbeginsonthefallingedgeofthesixthclockcycleaftertheDINwordhasbeenshiftedin,asshown in Figure 13b. The LTC2309 will acquire thesignalfromtheinputchannelthatwasmostrecentlyprogrammedbytheDINword.Aminimumof240nsisrequiredtoacquiretheinputsignalbeforeinitiatinganewconversion.

1 2

A6SDA

SCL

A5 A4 A3 A2 A1 A0 R/W

3 4 5 6 7 8 9 1 2

B11

ACQUISITION BEGINS

tACQ2309 F13a

B10

1 2

A2 A1 A0 R/WSDA

SCL

S/D O/S S1 S0 UNI X X

3 4 55 6 7 8 9 6 7 8 9

ACQUISITION BEGINS

tACQ 2309 F13b

SLP

Figure 13a. Timing Diagram Showing Acquisition During a Read Operation

Figure 13b. Timing Diagram Showing Acquisition During a Write Operation

INPUT VOLTAGE (V)

0V

OUTP

UT C

ODE

(TW

O’S

COM

PLEM

ENT)

–1 LSB

2309 F14

011...111

011...110

000...001

000...000

100...000

100...001

111...110

1LSB

BIPOLARZERO

111...111

FS/2 – 1LSB–FS/2

FS = 4.096V1LSB = FS/212

1LSB = 1mV

INPUT VOLTAGE (V)

OUTP

UT C

ODE

2309 F15

111...111

111...110

100...001

100...000

000...000

000...001

011...110

011...111

FS – 1LSB0V

UNIPOLARZERO

FS = 4.096V1LSB = FS/212

1LSB = 1mV

Figure 14. Bipolar Transfer Characteristics (2’s Complement) Figure 15. Unipolar Transfer Characteristics (Straight Binary)

LTC2309

02309fd

AppLICAtIOns InFORMAtIOn

Figure 16a. Top Silkscreen

2309 F16a

Board Layout and Bypassing

Toobtainthebestperformance,aprintedcircuitboardwithasolidgroundplaneisrequired.Layoutfortheprintedboardshouldensuredigitalandanalogsignal linesareseparatedasmuchaspossible.Careshouldbetakennottorunanydigitalsignalsalongsideananalogsignal.AllanaloginputsshouldbeshieldedbyGND.VREF,REFCOMP

andVDDshouldbebypassedtothegroundplaneasclosetothepinaspossible.Maintainingalowimpedancepathfor the common return of these bypass capacitors isessential to the lownoiseoperationof theADC.Thesetracesshouldbeaswideaspossible.SeeFigures16a-eforasuggestedlayout.

LTC2309

2309fd

2309 F16b

Figure 16b. Layer 1 Component Side

AppLICAtIOns InFORMAtIOn

Figure 16c. Layer 2 Ground Plane2309 F16c

LTC2309

2309fd

AppLICAtIOns InFORMAtIOn

Figure 16d. Layer 3 Power Plane2309 F16d

Figure 16e. Layer Back Solder Side2309 F16e

LTC2309

2309fd

pACKAGe DesCRIptIOnUF Package

24-Lead Plastic QFN (4mm × 4mm)(ReferenceLTCDWG#05-08-1697)

4.00 ± 0.10(4 SIDES)

NOTE:1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PIN 1TOP MARK(NOTE 6)

0.40 ± 0.10

2423

1

2

BOTTOM VIEW—EXPOSED PAD

2.45 ± 0.10(4-SIDES)

0.75 ± 0.05 R = 0.115TYP

0.25 ± 0.05

0.50 BSC

0.200 REF

0.00 – 0.05

(UF24) QFN 0105

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

0.70 ±0.05

0.25 ±0.050.50 BSC

2.45 ± 0.05(4 SIDES)3.10 ± 0.05

4.50 ± 0.05

PACKAGE OUTLINE

PIN 1 NOTCHR = 0.20 TYP OR 0.35 45° CHAMFER

LTC2309

2309fd

F Package20-Lead Plastic TSSOP (4.4mm)(ReferenceLTCDWG#05-08-1650)

F20 TSSOP 0204

0.09 – 0.20(.0035 – .0079)

0° – 8°

0.25REF

0.50 – 0.75(.020 – .030)

4.30 – 4.50**(.169 – .177)

1 3 4 5 6 7 8 9 10

111214 13

6.40 – 6.60*(.252 – .260)

20 19 18 17 16 15

1.10(.0433)

MAX

0.05 – 0.15(.002 – .006)

0.65(.0256)

BSC

6.40(.252)BSC

0.19 – 0.30(.0075 – .0118)

TYP

2

MILLIMETERS(INCHES)

DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .152mm (.006") PER SIDEDIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEADFLASH SHALL NOT EXCEED .254mm (.010") PER SIDE

*

**

NOTE:1. CONTROLLING DIMENSION: MILLIMETERS

2. DIMENSIONS ARE IN

3. DRAWING NOT TO SCALE

RECOMMENDED SOLDER PAD LAYOUT

0.45 ±0.05 0.65 BSC

4.50 ±0.106.60 ±0.10

1.05 ±0.10

pACKAGe DesCRIptIOn

LTC2309

2309fd

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-tionthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.

ReVIsIOn HIstORYREV DATE DESCRIPTION PAGE NUMBER

D 7/10 RevisedBlockDiagram 1

ChangedAVDDandDVDDpinstoVDDonly 2,4-9,20

RevisedNote2 5

ConsolidatedAVDDandDVDDintoVDDandrevisedVREFandREFCOMPpindescriptionsinPinFunctionssection 7,8

RevisedFigures6band6candInternalReferenceparagraph,andaddedtexttoI2CInterfaceinApplicationsInformationsection

13,14

ChangedNAKtoNACKinFigure8a 15

RevisedTypicalApplication 26

(Revision history begins at Rev D)

LTC2309

2309fd

Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408)432-1900FAX: (408)434-0507www.linear.com LINEAR TECHNOLOGY CORPORATION 2008

LT 0710 REV D • PRINTED IN USA

ReLAteD pARts

tYpICAL AppLICAtIOn

PART NUMBER DESCRIPTION COMMENTS

LTC1417 14-Bit,400kspsSerialADC 20mW,UnipolarorBipolar,InternalReference,SSOP-16Package

LTC1468/LTC1469 Single/Dual90MHz,22V/µs,16-BitAccurateOpAmps

LowInputOffset:75µV/125µV

LTC1609 16-Bit,200kspsSerialADC 65mW,ConfigurableBipolarandUnipolarInputRanges,5VSupply

LTC1790 MicropowerLowDropoutReference 60µASupplyCurrent,10ppm/°C,SOT-23Package

LTC1850/LTC1851 10-Bit/12-Bit,8-Channel,1.25MspsADCs ParallelOutput,ProgrammableMUXandSequencer,5VSupply

LTC1852/LTC1853 10-Bit/12-Bit,8-Channel,400kspsADCs ParallelOutput,ProgrammableMUXandSequencer,3Vor5VSupply

LTC1860/LTC1861 12-Bit,1-/2-Channel250kspsADCsinMSOP 850µAat250ksps,2µAat1ksps,SO-8andMSOPPackages

LTC1860L/LTC1861L 3V,12-bit,1-/2-Channel150kspsADCs 450µAat150ksps,10µAat1ksps,SO-8andMSOPPackages

LTC1863/LTC1867 12-/16-Bit,8-Channel200kspsADCs 6.5mW,UnipolarorBipolar,InternalReference,SSOP-16Package

LTC1863L/LTC1867L 3V,12-/16-bit,8-Channel175kspsADCs 2mW,UnipolarorBipolar,InternalReference,SSOP-16Package

LTC1864/LTC1865 16-Bit,1-/2-Channel250kspsADCsinMSOP 850µAat250ksps,2µAat1ksps,SO-8andMSOPPackages

LTC1864L/LTC1865L 3V,16-Bit,1-/2-Channel150kspsADCsinMSOP 450µAat150ksps,10µAat1ksps,SO-8andMSOPPackages

LTC2302/LTC2306 12-Bit,1-/2-Channel500kspsSPIADCsin3mm×3mmDFN

14mWat500ksps,Single5VSupply,SoftwareCompatiblewithLTC2308

LTC2308 12-Bit,8-Channel500kspsSPIADC 5V,InternalReference,4mm×4mmQFNPackage,SoftwareCompatiblewithLTC2302/LTC2306

LTC2453 Easy-to-Use,Ultratiny16-BitI2CDeltaSigmaADC 2LSBINL,50nASleepCurrent,60HzOutputRate,3mm×2mmDFNPackage

LTC2487/LTC2489/LTC2493

2-/4-ChannelEasyDrive™I2CDeltaSigmaADCs 16-/24Bits,PGAandTemperatureSensor,15HzOutputRate,4mm×3mmDFNPackages

LTC2495/LTC2497/LTC2499

8-/16-ChannelEasyDriveI2CDeltaSigmaADCs 16-/24-Bits,PGAandTemperatureSensor,15HzOutputRate,5mm×7mmQFNPackages

CH1

CH2

CH3

CH4

CH5

CH6

CH7

COM

2309 TA02

I2CPORT

ANALOGINPUTMUX

REFCOMP

CONTROLLOGIC

(FPGA, CPLD,DSP, ETC)

INTERNAL2.5V REF

VDD

5V

10V

–10V

±10VINPUT

SIGNAL

GND

LTC2309

0.1µF

12-BITSAR ADC

+–

2.2µF

10µF0.1µF

10µF

1µF0.1µF

47pF

7

4 5

6

8

1

910

100Ω

450k

LT1790-2.5

5V

IN OUT

GND

50k

150k

450k

150k

450k4pF

VREF

SDA

SCL

1.7k 1.7kAD1 AD0CH0

450k

4pF3

2

50k

+LT1991

Driving the LTC2309 with ±10V Input Signals Using a Precision Attenuator