lu zou sep. 12 th , 2005

38
1 What did I Learn in ’05 Summer? -- A report on Neutron and X-ray National School in Argonne National Laboratory Lu Zou Sep. 12 th , 2005

Upload: toni

Post on 13-Feb-2016

17 views

Category:

Documents


0 download

DESCRIPTION

What did I Learn in ’05 Summer? -- A report on Neutron and X-ray National School in Argonne National Laboratory. Lu Zou Sep. 12 th , 2005. Outline. Introduction to Neutron and X-Ray Scattering Introduction to APS and IPNS in Argonne National Lab - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Lu Zou Sep. 12 th , 2005

1

What did I Learn in ’05 Summer?

-- A report on Neutron and X-ray National School

in Argonne National Laboratory

Lu ZouSep. 12th, 2005

Page 2: Lu Zou Sep. 12 th , 2005

2

Outline• Introduction to Neutron and X-Ray

Scattering• Introduction to APS and IPNS in

Argonne National Lab• Neutron and X-Ray Detectors and

Instrumentation• Neutron and X-Ray Experiments• Other Information

Page 3: Lu Zou Sep. 12 th , 2005

3

1895: Discovery of X-Ray

Wilhelm Conrad Röntgen 1845-1923

Page 4: Lu Zou Sep. 12 th , 2005

4

d

2

Scattering GeometryIncident Radiation

(ki, Ei, pi)

Scattered Radiation

(kf, Ef, pf)

Energy Transfer

q = ki - kf

ΔE = Ei – Ef

Page 5: Lu Zou Sep. 12 th , 2005

5

Interaction Mechanisms

Page 6: Lu Zou Sep. 12 th , 2005

6

Intrinsic Cross Section

Page 7: Lu Zou Sep. 12 th , 2005

7

To “see ” 1H with Neutron diffraction,

DEUTORATE ‘H’ to ‘D’

const.dd 2

0

b

Page 8: Lu Zou Sep. 12 th , 2005

8

Advanced Photon Source (APS)• e- Gun: Cathode ~1100 oC

• LINAC

• 450 MeV

• >99.999% of C

• Booster Synchrotron

• 7 GeV

• >99.999999% of C

• Electron Storage Ring

• 1104-m-circumference

• > 1,000 electromagnets

• Insertion Devices

• Experiment Hall and Beamlines

Page 9: Lu Zou Sep. 12 th , 2005

9

Intense Pulsed Neutron Source (IPNS)50 MeV

450 MeVH-

750 keV

30 Hz

P+

N

Page 10: Lu Zou Sep. 12 th , 2005

10

X-Ray Detectors

• Photons can only by “detected” by registering the deposition of energy in the detecting medium

• Therefore, inelastic scattering processes (i.e. those that deposit energy) are relevant.

• Photoelectric effect (Ionization Chambers)

• Compton scattering (Scintillation Detectors)

• Pair (e+, e-) production (Solid State Detectors)

Page 11: Lu Zou Sep. 12 th , 2005

11

Neutron Detectors

• To “detect” a neutron, one need to use nuclear reactions to “convert” neutros into charged particles (now, countable)

• Then, use one of many types of charged particle detectors– Gas (3He) proportional counters and ionization

chambers– Scintillation detectors (6Li)– Semiconductor detectors (6Li)

Page 12: Lu Zou Sep. 12 th , 2005

12

X-Ray Instrumentation -- Mirror

c

Air (n1 ~ 1)

2

n2

c

Critical Angle for total External Reflection

c = (2)1/2

n2 = 1 - - i

Index of Refraction

Typical values for at 1Å is 10-5 to 10-6, so c is about 10-3 mrads.

R

1

F

F2

R = [2/sin ] [F1 F2/(F1 + F2)]

Page 13: Lu Zou Sep. 12 th , 2005

13

X-Ray Instrumentation -- Monochromators• Use Bragg’s Law to select a particular wavelength (or en

ergy since = hc/E), namely: = 2d sin()

• If we differentiate Bragg’s Law, we can determine the energy resolution of the monochromator.

/ = E/E = cot()

• Because of the small angular divergence of the x-ray beam in the vertical direction (and the polarization of the beam - in the plane of the orbit), synchrotron radiation monochromators normally diffract in the vertical plane.

Page 14: Lu Zou Sep. 12 th , 2005

14

Double Crystal Monochronmators• The most common arrangement for a monochromator is the double-crystal monochromator. It:

– is non-dispersive, that is all rays that diffract from the first crystal simultaneously diffract from the second crystal (if same crystals with same hkl’s are used)– keeps the beam fixed in space as the energy is changed.

polychromatic

monochromatic

Page 15: Lu Zou Sep. 12 th , 2005

15

Neutron Instrumentation• Collimator

• Monochromator

• Analyzer

• …

I didn’t find enough information on this topic …

Page 16: Lu Zou Sep. 12 th , 2005

16

Page 17: Lu Zou Sep. 12 th , 2005

17

Outline for 2nd part

• Small Angle Scattering

• Powder Diffraction

• Reflectometry

Page 18: Lu Zou Sep. 12 th , 2005

18

Small Angle Neutron and X-ray Scattering (SANS, SAXS)

• Small Angle X-ray Scattering (SAXS) 0.06 <λ< 0.2 nm

• Small Angle Neutron Scattering (SANS) 0.5 <λ< 2 nm

• Small Angle Light Scattering (LS) 400 <λ< 700 nm

USAXS

Page 19: Lu Zou Sep. 12 th , 2005

19

Basic schematics of a SAS experiments

Page 20: Lu Zou Sep. 12 th , 2005

20

Incident beamScat

tered beam

P

O

ki·r

kf·r

2 |kf · r - ki· r| = Q · r

Q = |Q| = 4 sin ()

2r

k = 2

Recall Bragg’s Law λ=2dsinθ

d = 2π/Q

Page 21: Lu Zou Sep. 12 th , 2005

21

Guinier Plot

• Look at scattering in low-Q regime• Plot the data as ln I(Q) vs Q2

• Needle shaped particles: I(Q) ~ Q-1

• Disk shaped particles: I(Q) ~ Q-2

• Spherical particles: I(Q) ~ Q-3

Page 22: Lu Zou Sep. 12 th , 2005

22

“IGOR Pro. 5.03”

• Debye Flexible Gaussian polymer

• Solid Sphere

• Schultz Polydisperse Sphere

• Spherical Shell

• …

Sperical Shell

Schultz Polydisperse Core Sherical Shell

Page 23: Lu Zou Sep. 12 th , 2005

23

Small angle scattering is used to study . . . • Polymer materials

– Conformation of polymer molecules in solution and in bulk– Structure of microphase-separated block copolymers– Factors affecting miscibility of polymer blends

• Biomaterials– Organization of biomolecular complexes in solution– Conformational changes affective function of proteins, enzym

es, complexes, membranes, . . . – Pathways for protein folding

• Chemistry– Colloidal suspensions, microemulsions, surfactant micelles– Molecular self-assembly in solution and on surfaces

• Metals and ceramics– Deformation microstructures and precipitation

Page 24: Lu Zou Sep. 12 th , 2005

24

Powder Diffraction

• We don’t take a picture of atoms!

• We live in a reciprocal space!

Page 25: Lu Zou Sep. 12 th , 2005

25

Page 26: Lu Zou Sep. 12 th , 2005

26

Page 27: Lu Zou Sep. 12 th , 2005

27

Sample(capillary)

Detectors

Å(25keV)

2APS

Analyzer

Beam optics = 2dsinVary 2

Parallel beam optics

32-ID powder diffractometer – multi-analyzer/detector

Page 28: Lu Zou Sep. 12 th , 2005

28

8 detectors used

sample

Beam pipe

Page 29: Lu Zou Sep. 12 th , 2005

29

X-ray Powder Diffraction-- Mixture of Y2O3 and Al2O3

Software : EXPGUI By Dr. R.B. Von DreeleAPS/IPNS Argonne National Laboratory

Gaussian profile

Lorentzian profile

2

2

2)T(2ln4exp2ln4),T(G

2T21

12),T(L

Page 30: Lu Zou Sep. 12 th , 2005

30

Summary for Powder Diffraction• Input Data

– Powder scattering pattern data– Trial structure space group and approximate lattice p

arameters and atomic positions– Line shape function and Q-dependence of resolution

• Output Results– Lattice Parameters– Refined atomic positions and occupancies– Thermal parameters for each atom site– Resolution parameters– Background parameters– R factors of fit– Preferential orientation, absorption, etc.

• More than one phase can be separately refined

Page 31: Lu Zou Sep. 12 th , 2005

31

Reflectometry

Page 32: Lu Zou Sep. 12 th , 2005

32

Scattering Length Density (SLD) ρ(z) = NbN = # of Atoms per unit volume

b = Scattering length

Page 33: Lu Zou Sep. 12 th , 2005

33

Page 34: Lu Zou Sep. 12 th , 2005

34

Reflectometry Applications

• Polymer Interface• Magnetic superlattices and thin films• Langmuir-Blodgett filmes• Biological membranes• Electrochemistry• Superconductivity• Diffusion processes• …

• Langmuir-Blodgett filmes

• Interdiffusion

• Surface and interfacial roughness

• Structures

•Biological membranes

• Lipid layer structure

• Protein adsorption

Page 35: Lu Zou Sep. 12 th , 2005

35

Structural studies of Langmuir-Blodgett films

• Dave Wiesler (NIST)• Lev Feigin (Moscow)• Wolfgang Knoll (Planck)• Albert Schmidt (Planck)• Mark Foster et. al. (Akron)• …

Page 36: Lu Zou Sep. 12 th , 2005

36

Spallation Neutron Source (SNS)

Page 37: Lu Zou Sep. 12 th , 2005

37

U.S. Neutron Scattering Schools• National Neutron and X-ray Scattering Summer School

– Two weeks in August– http://www.dep.anl.gov/nx/– Deadline Apr.30

• NCNR-NIST Summer School– One week in June– http://www.ncnr.nist.gov/summerschool/index.html– Deadline April

• LANSCE Winter School in Neutron Scattering– Topic focus (changes each year)– 7-10 days in January– http://www.lansce.lanl.gov/neutronschool/;– Deadline October

Page 38: Lu Zou Sep. 12 th , 2005

38

FissionFission chain reaction continuous flow 1 neutron/fission

SpallationSpallationno chain reactionpulsed operation 30 neutrons/proton

How do we produce neutrons?