lucian toma upb intellicis

31
Power Market Strategies of Synchronized Microgrids Lucian Toma, PhD Department of Electrical Power Systems University POLITEHNICA of Bucharest IntelliCIS 7 th Action Workshop, 10-11 September 2012, Riga

Upload: lucian-toma

Post on 23-Oct-2015

57 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Lucian Toma UPB IntelliCIS

Power Market Strategiesof Synchronized Microgrids

Lucian Toma, PhDDepartment of Electrical Power SystemsUniversity POLITEHNICA of Bucharest

IntelliCIS 7th Action Workshop, 10-11 September 2012, Riga

Page 2: Lucian Toma UPB IntelliCIS

~AMRAMR AMR

AMR AMR~~

AMR

GEN 10

GEN 1

CBUS- 8

BUS- 2

BUS- 30

BUS- 39

BUS- 1

BUS- 8

BUS- 9

CBUS- 8

BUS- 16

BUS- 12

CBUS- 12

GEN 9

CBUS- 12

GEN 3

BUS- 28

BUS- 37

CBUS- 18

BUS- 26

CBUS- 26

GEN 8

CBUS- 26

BUS- 29

BUS- 5

BUS- 25

CBUS- 25

CBUS- 25

BUS- 17

BUS- 3

CBUS- 39

CBUS- 39BUS- 18

BUS- 4

CBUS- 3

CBUS- 4

CBUS- 3

CBUS- 16

CBUS- 18

BUS- 27

CBUS- 27

CBUS- 28

CBUS- 27

CBUS- 28

CBUS- 29

CBUS- 29

CBUS- 16

BUS- 15

CBUS- 15

CBUS- 15

BUS- 19

CBUS- 24

BUS- 38

CBUS- 24

CBUS- 21

BUS- 22

CBUS- 21

BUS- 21

GEN 4

BUS- 24

BUS- 20

BUS- 33

BUS- 23

BUS- 35

GEN 6

BUS- 14

CBUS- 7CBUS- 31

GEN 2

BUS- 6 BUS- 7

BUS- 31

CBUS- 4

CBUS- 31

CBUS- 7BUS- 13

BUS- 11

BUS- 10

BUS- 32

BUS- 34

BUS- 36 CBUS- 23

CBUS- 20

GEN 5

GEN 7 CBUS- 23

CBUS- 20

Transmission network

Distribution network

~AMRAMR AMR

AMR AMR~~

AMR

The future of power systems

Page 3: Lucian Toma UPB IntelliCIS

http://www.transelectrica.ro/4OperareSEN/functionare.php

Are we ready for renewables?

Page 4: Lucian Toma UPB IntelliCIS

Balancing vs. frequency control

Page 5: Lucian Toma UPB IntelliCIS

Bilateral Contracts Market

Day Ahead Market

Ancillary Services

Balancing Market

Green Certificates Market

CO2 Market

The electricity market

months to years

one day

months

one day

awarded for produced energy

… this is an intricate story

Page 6: Lucian Toma UPB IntelliCIS

BalancingMarket

15:00

Open BM

17:00

Close BM

11:00

Close DAM

DAM

D-1

h-1 h

BC

DAM

D

Time [h]

P [MW]

Powerreserves

Short term auctions

Page 7: Lucian Toma UPB IntelliCIS

Eligibility for Electricity Market

if

Pgen > 10 MW The ENTITY can be licensed to independently participate on the electricity market

elseThe entity must sign a contract with Balancing Responsible Party

!!! The condition is valid for both energy and balancing

Page 8: Lucian Toma UPB IntelliCIS

Results of the Day Ahead Market

Day Ahead Market 10.09.2012, sources: www.opcom.ro

Page 9: Lucian Toma UPB IntelliCIS

The Green Certificates

- Awarded for the energy produced from renewable energy sources

Pricemin = 24 EUR/GC

Pricemin = 55 EUR/GC

- A quota based mechanism

Wind

Hydro

Solar

2 GCs

1 GC

6 GCs ???

Cogeneration 1 GC

Page 10: Lucian Toma UPB IntelliCIS

PolitehnicaD.S. 10 kV

MilitariDistrib. St.

CotroceniDistrib. St.

Gas Engine P.P

Photovoltaic PP

Microgrid – University “Politehnica” of Bucharest

Page 11: Lucian Toma UPB IntelliCIS

Photovoltaic Power Plant at University “Politehnica” of Bucharest

P [kW] 25

20

15

10

5

00 500 1000 1500 2000 2500 3000 t ( 10 min)

Pinst = 30 kW

Eav = 6 kWh/h

CF = 20%

Location: roof of Faculty of Electrical Engineering

Commissioned: 26 May 2006

Payback time >> Lifetime

Page 12: Lucian Toma UPB IntelliCIS

Commissioned: 25 March 2010

Jenbacher Engines

Hoval boilers

2 x 800 kWel

3 x 1200 kWth

ηel = 38%

ηth = 42%

ηtotal = 80%

Fuel: Natural Gas

Gas Distribution Network

Gas Engine Power Plantat University “Politehnica” of Bucharest

Page 13: Lucian Toma UPB IntelliCIS

February 2009

June 2009

Load – University “Politehnica” of Bucharest

Page 14: Lucian Toma UPB IntelliCIS

Microgrid – University “Politehnica” of Bucharest

10 kVbusbar

Distribution Network(ENEL)

- Natural Gas price- Electrical Energy price- Total load- Total available generation

POLITEHNICA

Technical data:

Power Market - License for electrical energy generation

Advantages:- Allows load increase

without strengthening the network

- Profit from selling el. energy to small consumers without paying transmission costs

Page 15: Lucian Toma UPB IntelliCIS

PT2 Metalurgie

PT Dedurizare

PT Mecanica A

PT Mecanica B

PT1 Metalurgie

PT1 Elth

PT2 Elth

STATIE

PT3 Elth

Biblioteca

Înv. general

D2/D5

D1/D4

D2/D5

D2/D5

D1/D4

D1/D4

D1/D4

D3/D6

Meter

Meter

Meter

Meter

Meter Meter

Meter

MeterMeter

MeterDataConcentrator

Smart Grid development

Microgrid – University “Politehnica” of Bucharest

Page 16: Lucian Toma UPB IntelliCIS

VPPControl

– Technical characteristics– Availability of primary resource, etc.– Fuel cost– Information from the electricity market

Power reserves Electrical EnergyBalancingmarket

Day ahead market

Developing the Virtual Power Plant concept

Page 17: Lucian Toma UPB IntelliCIS

VPPControl

RTU RTU RTU RTU RTU

SCADA

Set pointsSystemparameters

Developing the Virtual Power Plant concept

Page 18: Lucian Toma UPB IntelliCIS

Commercial Virtual Power Plant

Several generation entities are aggregated to form a single entity capable to behave on the power market similar to a classical power plant.

Maximize the profit; it takes into account both the generation costs and the power market price;

Minimize the generation costs, by coordinating the generation entities; electrical vehicles and loads can also be included;

Minimize the cost of energy bought from the power market;

Coordinate between energy sold on the power market an energy/reserve sold as ancillary service.

Developing the Virtual Power Plant concept

Page 19: Lucian Toma UPB IntelliCIS

Technical Virtual Power Plant

Integration to a central control system of the distributed generators, storage devices and loads located in the same distribution network, so that to provide various technical functions.

Automatic generation control;

Voltage – VAr control;

Load Management;

Load Shedding.

Developing the Virtual Power Plant concept

Page 20: Lucian Toma UPB IntelliCIS

The objective function:

VPP – The optimization problem

Benefit Incomes Costs

[ ]max Benefit

The optimization objective:

Page 21: Lucian Toma UPB IntelliCIS

EDAM,t – the energy traded by the VPP on the Day‐Ahead Market in the dispatching interval t, in kWh; 

cDAM,t – the DAM clearing price in the dispatching interval t, in m.u./kWh; 

EBC,t – the energy traded by the VPP through Bilateral Contracts in the dispatching interval t, in kWh; 

cBC,t – the energy price negotiated on the bilateral contracts market, in m.u./kWh; 

where:

, ,

24 24 24 24 24

, , , , ,1 1 1 1 1

g t g tDAM t DAM t BC t BC t L VPP t VPP R R

t t t t t

Incomes E c E c E c C C

EL‐VPP,t – the energy traded by the VPP through Bilateral Contracts in the dispatching interval t, in kWh; 

cVPP,t – the energy price negotiated on the bilateral contracts market, in m.u./kWh; 

,g tRC

,g tRC ‐ the hourly income for maintaining a power reserve available to be 

provided by the VPP based on the arrangements on the ancillary services market for upward and downward regulation, respectively, in m.u.; 

VPP – The optimization problem

Page 22: Lucian Toma UPB IntelliCIS

24 24 24 24

, , , ,1 1 1 1

g t g t g t L tt t t t

Costs C SU SD R

‐ the total cost of the energy generated by all generators in the dispatching interval t, in m.u., with 

,g tC

, , , , ,1

n

g t g i t g i i ti

C E c I

, ,g i tE

‐ the energy produced by the generator i, in the dispatching interval t, in kWh

,g ic ‐ the marginal costs of the generator i, in m.u./kWh

,g tSU ‐ the cost involved for all generators to start‐up in the dispatching interval t, in m.u.

,g tSD ‐ the cost of all generators involved for shut‐down in the dispatching interval t, in m.u. 

,L tR‐ the cost of total power reserve maintained available by all consumers for disconnection in the upward regulation during the dispatching interval t, in kWh

where:

VPP – The optimization problem

Page 23: Lucian Toma UPB IntelliCIS

Constraints

, , , ,gen t DAM t BC t L VPP tE E E E

, , , ,1

n

g t g i t i ti

R R I

a) Power balance: generation = load

b) Capability constraints of generators 

is the minimum active power limit of the ith DG unit, in kW;

– maximum active power limit of the ith DG unit, in kW.

min,iP

max.iP

min, , , , max,i g i t i t iP P I P

The power reserve

VPP – The optimization problem

Page 24: Lucian Toma UPB IntelliCIS

3.02000200050DG6

3.51600160050DG5

4.55000500050DG4

5.03000300050DG3

8.0…4000DG2 (PV power plant)

4.1…3000DG1 (Wind power plant)

m.u./kWhkWkWkW

CostPavailPmaxPmin

2 4 6 8 10 12 14 16 18 20 22 240

1000

2000

3000

4000

5000

time [h]

capa

city

[kW

]DG4

DG6

DG3

DG5

DG1DG2

VPP – Study Case

Available Powers of DGs

Characteristics of DGs

Page 25: Lucian Toma UPB IntelliCIS

2 4 6 8 10 12 14 16 18 20 22 241

2

3

4

5

6

7

Time [h]

pric

e [m

.u./k

Wh]

c

cc

DAM

VPP

BC

2 4 6 8 10 12 14 16 18 20 22 240

2000

4000

6000

8000

10000

12000

time[h]

load

[kW

h/h]

E-VPPE-BCE-DAM

E-Total

Traded energies

Energy prices

, 1000 kWh/hg tR

Traded power reserve (availability)

,0.5 m.u./kWh

g tRc

VPP – Study Case

Page 26: Lucian Toma UPB IntelliCIS

2 4 6 8 10 12 14 16 18 20 22 24

0

1000

2000

3000

4000

5000

time [h]

Gen

erat

ion

[kW

h]

DG4

DG1 DG3

DG2

DG6

DG5

2 4 6 8 10 12 14 16 18 20 22 240

1

2

3

4

5

6x 10

4

time [h]

Pro

fit [m

.u.]

Incomes

Profit

Costs (Expenses)

Unit commitment

The total profit

VPP – Study Case

Page 27: Lucian Toma UPB IntelliCIS

Diesel enginePmin = 0 kWPmax = 300 kWc = 4.2 ¢€/kWh

Wind farmPmin = 0 kWPmax = 400 kWc = 7 ¢€/kWh

Hydro plantPmin = 0 kWPmax = 1600 kWc = 2.4 ¢€/kWh

PhotovoltaicsPmin = 0 kWPmax = 60 kWc = 15 ¢€/kWh

Gas enginePmin = 0 kWPmax = 800 kWc = 3.7 ¢€/kWh

Load 1D1 = 2000 kW

Load 2D1 = 2300 kW

GEN 10

GEN 1

CBUS- 8

BUS- 2

BUS- 30

BUS- 39

BUS- 1

BUS- 8

BUS- 9

CBUS- 8

BUS- 16

BUS- 12

CBUS- 12

GEN 9

CBUS- 12

GEN 3

BUS- 28

BUS- 37

CBUS- 18

BUS- 26

CBUS- 26

GEN 8

CBUS- 26

BUS- 29

BUS- 5

BUS- 25

CBUS- 25

CBUS- 25

BUS- 17

BUS- 3

CBUS- 39

CBUS- 39BUS- 18

BUS- 4

CBUS- 3

CBUS- 4

CBUS- 3

CBUS- 16

CBUS- 18

BUS- 27

CBUS- 27

CBUS- 28

CBUS- 27

CBUS- 28

CBUS- 29

CBUS- 29

CBUS- 16

BUS- 15

CBUS- 15

CBUS- 15

BUS- 19

CBUS- 24

BUS- 38

CBUS- 24

CBUS- 21

BUS- 22

CBUS- 21

BUS- 21

GEN 4

BUS- 24

BUS- 20

BUS- 33

BUS- 23

BUS- 35

GEN 6

BUS- 14

CBUS- 7CBUS- 31

GEN 2

BUS- 6 BUS- 7

BUS- 31

CBUS- 4

CBUS- 31

CBUS- 7BUS- 13

BUS- 11

BUS- 10

BUS- 32

BUS- 34

BUS- 36 CBUS- 23

CBUS- 20

GEN 5

GEN 7 CBUS- 23

CBUS- 20

PBC = 2000 kW

PDAM = 3.69 ¢€/kWh

PDAM = 240 kW

P = 60 kW

P = 0 kWP = 1600 kW

P = 400 kWP = 0 kW

Page 28: Lucian Toma UPB IntelliCIS

Diesel enginePmin = 0 kWPmax = 300 kWc = 4.2 ¢€/kWh

Wind farmPmin = 0 kWPmax = 400 kWc = 7 ¢€/kWh

Hydro plantPmin = 0 kWPmax = 1600 kWc = 2.4 ¢€/kWh

PhotovoltaicsPmin = 0 kWPmax = 60 kWc = 15 ¢€/kWh

Gas enginePmin = 0 kWPmax = 800 kWc = 3.7 ¢€/kWh

Load 1D1 = 2000 kW

Load 2D1 = 2300 kW

PBC = 2000 kW

PDAM = 3.71 ¢€/kWh

GEN 10

GEN 1

CBUS- 8

BUS- 2

BUS- 30

BUS- 39

BUS- 1

BUS- 8

BUS- 9

CBUS- 8

BUS- 16

BUS- 12

CBUS- 12

GEN 9

CBUS- 12

GEN 3

BUS- 28

BUS- 37

CBUS- 18

BUS- 26

CBUS- 26

GEN 8

CBUS- 26

BUS- 29

BUS- 5

BUS- 25

CBUS- 25

CBUS- 25

BUS- 17

BUS- 3

CBUS- 39

CBUS- 39BUS- 18

BUS- 4

CBUS- 3

CBUS- 4

CBUS- 3

CBUS- 16

CBUS- 18

BUS- 27

CBUS- 27

CBUS- 28

CBUS- 27

CBUS- 28

CBUS- 29

CBUS- 29

CBUS- 16

BUS- 15

CBUS- 15

CBUS- 15

BUS- 19

CBUS- 24

BUS- 38

CBUS- 24

CBUS- 21

BUS- 22

CBUS- 21

BUS- 21

GEN 4

BUS- 24

BUS- 20

BUS- 33

BUS- 23

BUS- 35

GEN 6

BUS- 14

CBUS- 7CBUS- 31

GEN 2

BUS- 6 BUS- 7

BUS- 31

CBUS- 4

CBUS- 31

CBUS- 7BUS- 13

BUS- 11

BUS- 10

BUS- 32

BUS- 34

BUS- 36 CBUS- 23

CBUS- 20

GEN 5

GEN 7 CBUS- 23

CBUS- 20

P = 60 kW

P = 270 kWP = 1600 kW

P = 400 kWP = 0 kW

PDAM = 0 kW

Page 29: Lucian Toma UPB IntelliCIS

Diesel enginePmin = 0 kWPmax = 300 kWc = 4.2 ¢€/kWh

Wind farmPmin = 0 kWPmax = 400 kWc = 7 ¢€/kWh

Hydro plantPmin = 0 kWPmax = 1600 kWc = 2.4 ¢€/kWh

PhotovoltaicsPmin = 0 kWPmax = 60 kWc = 15 ¢€/kWh

Gas enginePmin = 0 kWPmax = 800 kWc = 3.7 ¢€/kWh

Load 1D1 = 2000 kW

Load 2D1 = 2300 kW

PBC = 2000 kW

PDAM = 4.21 ¢€/kWh

GEN 10

GEN 1

CBUS- 8

BUS- 2

BUS- 30

BUS- 39

BUS- 1

BUS- 8

BUS- 9

CBUS- 8

BUS- 16

BUS- 12

CBUS- 12

GEN 9

CBUS- 12

GEN 3

BUS- 28

BUS- 37

CBUS- 18

BUS- 26

CBUS- 26

GEN 8

CBUS- 26

BUS- 29

BUS- 5

BUS- 25

CBUS- 25

CBUS- 25

BUS- 17

BUS- 3

CBUS- 39

CBUS- 39BUS- 18

BUS- 4

CBUS- 3

CBUS- 4

CBUS- 3

CBUS- 16

CBUS- 18

BUS- 27

CBUS- 27

CBUS- 28

CBUS- 27

CBUS- 28

CBUS- 29

CBUS- 29

CBUS- 16

BUS- 15

CBUS- 15

CBUS- 15

BUS- 19

CBUS- 24

BUS- 38

CBUS- 24

CBUS- 21

BUS- 22

CBUS- 21

BUS- 21

GEN 4

BUS- 24

BUS- 20

BUS- 33

BUS- 23

BUS- 35

GEN 6

BUS- 14

CBUS- 7CBUS- 31

GEN 2

BUS- 6 BUS- 7

BUS- 31

CBUS- 4

CBUS- 31

CBUS- 7BUS- 13

BUS- 11

BUS- 10

BUS- 32

BUS- 34

BUS- 36 CBUS- 23

CBUS- 20

GEN 5

GEN 7 CBUS- 23

CBUS- 20

P = 60 kW

P = 800 kWP = 1600 kW

P = 400 kWP = 300 kW

PDAM = -860 kW

Page 30: Lucian Toma UPB IntelliCIS

Balancing is required by participation from distribution networks

Conclusions

VPP might be an efficient way to use the small electricity sources

Large power plants (mainly thermal) are seriously subjected to aging

Page 31: Lucian Toma UPB IntelliCIS

IntelliCIS 7th Action Workshop, 10-11 September 2012, Riga

Thank you