luisa pirozzi enea c-si pv labs [email protected]

67
Luisa Pirozzi Luisa Pirozzi ENEA c-Si PV labs ENEA c-Si PV labs [email protected] [email protected] Crystalline Silicon Solar Cells: from the Material to the Devices

Upload: vadin

Post on 05-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Crystalline Silicon Solar Cells: from the Material to the Devices. Luisa Pirozzi ENEA c-Si PV labs [email protected]. ENEA Crystalline Si PV laboratory – Rome http://wwwcas.casaccia.enea.it/sicri/. -. -. I -Introduction Cell Design -Silicon technology. II - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Luisa Pirozzi Luisa Pirozzi ENEA c-Si PV labsENEA c-Si PV labs

[email protected]@casaccia.enea.it

Crystalline Silicon Solar Cells: from the Material to the Devices

Page 2: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

ENEA Crystalline Si PV laboratory – Romehttp://wwwcas.casaccia.enea.it/sicri/

- -

Page 3: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

II

-Cell fabrication processes

-Crystalline Silicon Solar Cells

I

-Introduction

-Cell Design

-Silicon technology

Page 4: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

1839 (Becquerel): light-dependent voltage between electrodes immersed in an electrolyte

1941: first Silicon solar cell (announced in 1954)

1958: first space applications

Page 5: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

• incident photons having energy higher than the band gap of the semiconductor are absorbed in the material generating electron and hole pairs

• carriers created at distance less than the diffusion lenght from the depletion layer are separated by the electric field there existing and a potential difference arises across the junction

• if the device is connected to a load the photoinduced voltage allows a current flow in the load

PV cell structure:• p-n junction with upper electrode shaped as a grid to allow light (photons) transmission

BACK CONTACT

DEPLETION LAYER

N - REGION

P - REGION

LOAD

+_

SUNLIGHT

+_+_

ANTIREFLECTIVE COATING

FRONT CONTACT(GRID)

Page 6: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

2000

0.3 1.1 2.5wavelength m)

Energy distribution(W/m2 /

m)

1000

h < Eg

h - Eg

net energy

Spectral distribution of sunlight

Page 7: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

As for IC, Silicon is not the best material for solar cells:

band-gap too narrow and low absorption coefficient (indirect gap)

0

5

10

15

20

25

30

35

0 0,5 1 1,5 2 2,5 3 3,5 4

Eg (eV)

Eff

(%

)

Single crystalline Si 24,7%

Multicrystalline-Si 19,8%

GaAs

Page 8: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

300 400 500 600 700 800 900 1000 1100 1200

Wavelength (nm)

Ab

sorp

tio

n C

oef

fici

enct

(cm

-1)

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

Ab

sorp

tio

n D

epth

(

cm)

REG

ION

N

REG

ION

P

GR

ID

AR

C

Page 9: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

PV CELL PARAMETERS

Pm = Vm Im

Vm

Im

Voc

Isc

V

I

Isc =short circuit currentVoc=open circuit voltagePm=maximum power output= Vm Im FF=Fill Factor=Pm / Isc * Voc

=efficiency =Pm / Pin= Voc IscFF/ PinPin=total power of incident light

0I

Iln

q

nkTV L

ocLsc II 0/ IIln

1nkT

qV1ln

1FFL

m

1exp0 nkT

IRVqIII(V) s

L

IL=photogenerated currentI0=diode saturation currentq=electron chargeRs=series resistance n=diode ideality factor (1 - 2)k=Boltzmann’s constant

Page 10: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

0,0 0,2 0,4 0,6 0,80

1

2

3

4

I-V curves at different light Intensities

Volt

Am

p.

I1 = 1 kW/m2

I2 = 0,5 kW/m2

0,0 0,2 0,4 0,6 0,80

1

2

3

4

VoltA

mp

.

T1 = 20°C

T2 = 60°C

I-V curves at different Temperatures

Page 11: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-Cell Design

Page 12: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

- the cell design must take into account its application:

Production-terrestrial, space, concentration, architecture, etc

Lab- high efficiency, theoretical limit

-process lay-out: from three to more than 20 steps

production line –clean room

-Si cells theoretical efficiency limit: 27%

-Record efficiency: 24.7%- Average efficiency (production): 14.5%

Page 13: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Cell Parameters

•Jsc- short circuit current optical absorption

base recombination (red light)

emitter recombination (blue light)

•Voc- open circuit voltage bulk recombination (Job)

emitter recombination (Joe)

Space charge region (Jor)

•Fill FactorIdeality factor (n)

Series resistance (Rs)

Shunt resistance (Rsh)

Page 14: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

To optimise cell efficiency:-Increase carriers

generation-Increase carriers

collection

Recombination:Joe: Front surface

EmitterJr: space charge region Job: Base

Back

Resistive:Bulk

EmitterBack

Contact gridShunt

Losses: recombination, resistive

Page 15: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Crystalline Silicon

• over 90% of world-wide solar cell production

(1400 MW in 2005)

- Second most abundant element

- Only semiconductor employed in microelectronic industry

Large-scale production/Technology coming from microelectronics

Page 16: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-Silicon technology

Page 17: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Silicon is the second most abundant element, but about half of the cell cost is due to the substrate.

Silicon production steps:

1) From sand to metallurgical-grade Silicon (MG-Si)

2) MG-Si to semiconductor-grade Silicon (SeG-Si)

3) Crystal growth

Page 18: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

“sand”coke

Arc Furnace Fluid bed Reactor

UMG-Si SiHCl3

HCl

1-2 $/kg

Siemens

ProcessIngots for electronics

poly

60 $/kg15 - 30$/kg

Scraps

Solar grade silicon

Silicon Silicon

Multi crystalSingle crystal

Low quality

Page 19: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Metallurgical-grade Silicon (MG-Si)

- Due to the relative impurity of sand, quartzite – 99% SiO2- is the starting material.

- Silicon is produced in an Arc Furnace, at T about 1900°C, reducing SiO2 by Carbon ( coke, coal and wood chips):

SiO2 + 2C Si + 2 COLiquid silicon is poured into shallow troughs.

MG-Si 98% pure (major impurities Fe and Al). Cost 1-2$/Kg

Page 20: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Metallurgical-grade Silicon (MG-Si)

Page 21: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Semiconductor grade Si (SeG-Si)For use in electronics, impurities must be almost completely removed

MG-Si purification (Siemens process)

MG-Si is converted to a volatile compound

Si + 3HCl = SiHCl3 + H2

Trichlorosilane is produced by multiple fractional distillation

SeG-Si is obtained reducing Trichlorosilane by H2:

SiHCl3 + H2 = Si + 3HCl

Result: polysilicon

Page 22: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Crystal Growth

-Silicon for electronic industry must be not only impurity-free, but also a single crystal, defect-free.

-Poly-Si is molten and grown into single-crystal ingots:

Czochralsky (CZ)Floating Zone (FZ)

Page 23: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-SeG polycrystalline Si is molten in a crucible, at T=1410 °C

-A crystal seed is dipped into the molten Si and pulled slowly out of the melt in the vertical direction while rotating: crystallization at solid/liquid interface

- SeG- Si residual impurities are confined in liquid phase

- dopants (B, P) can be added to the melt - Ld=200m sec

Czochralsky (CZ) method

Page 24: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-A zone of molten Si is slowly passed along the length of a poly-Si ingot.

-Material melts at one boudary and recrystallizes at the other.

-High purity regrown Si crystal: no crucible, liquid region prevents impurity from entering the growing crystal

-Ld>500m sec

Floating Zone (FZ) Method

Page 25: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

•Microelectronics 1 Si wafer for >106 chips•Photovoltaic 1 Si wafer for 1,5Wp; 1,5KWh/year

•PV application requirements much less severe than in electronics: -impurity levels-carriers transport properties

•Silicon especially developed for PV: Multi-crystalline Si Ribbon Solar grade Si

Page 26: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-Crystalline grains random oriented.

-Grain boundaries: recombination centers - shunt paths for current.

-Columnar structures and large grains (some mm): comparable to single-crystal

Ld>150 m >10 sec

-Production less expensive

-55% Si cells production on mc-Si (record EFF: 19,8%)

Multi-crystalline Si

Page 27: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Casting

-starting material: scraps of ingots for microelectronics, molten in a quartz crucible.

- DS method:Solidification starts from the bottom: columnar ingot growth.

Ld 200m >10 sec

Multi-crystalline Silicon

Page 28: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

- Almost half of the material is lost during wafering.

•Silicon is grown in ribbons (250-300m)-EFG method (Edge-defined-Film-fed-Growth): Molten Silicon moves up the interior of a grafite die by capillarity.

Ribbon

Page 29: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Solar grade Silicon

-some metallic impurities can be present in concentrations>1015/cm3

(100 times > SeG-Si)

-Preparation of Silane (SiH4) from metallurgical grade Si-Deposition of Si from SiH4

N

at/cm3

Page 30: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-Cell fabrication processes

Page 31: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Emitter formation

Ohmic Contacts

Anti Reflection treatments

Page 32: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Emitter

•photogeneration in blue region of spectrum•collection of photogenerated carriers

shallow, lightly doped, passivated (low recombination)

•Contribution to Series Resistance:

deep, heavily doped

•Compromise: junction profile

REGION N

REGION P

GRID

ARC

Page 33: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

n/p Junction

-thermal diffusion of dopant atoms into the silicon (p doped during growth)

n type

(donors)

Phosphorus

Arsenic

Antimony

p type

(acceptors)

Boron

Aluminum

Gallium

Page 34: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Phosphorous thermal Diffusion in Silicon

-Phosphorus: most usedFick laws: I) J= -D grad C II) C/ t = D 2C/ x2

J = fluxC = concentration

Diffusion source:

Solid

Liquid

Gaseous

Doped Oxide, spin-on, screen printing, thin films

laser

Open tube

Page 35: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

“open tube” diffusion:a) Predeposition on wafer surface

b) Drive-in: P atoms diffusion

T: 800-1000 °C; N2 and O2

N2

Quartz tube

Silicon Wafers

Exhaust

Quartz

O2

Carrier Gas

Reactive Gas

Carrier Gas

N2p

Thermostat

POCl3 25 ºC

Mass flowmeters

Page 36: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Source: POCl3

2POCl3 + 3/2O2 P2 O5+3 Cl2 Si + O2 SiO2

5Si + 2P2 O5 5SiO2 +4P

SiO2 : better control of diffusion process

Page 37: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

•Temperature, time duration and dopant source determine:-P surface concentration,Cs

-xj=junction depth-resistance and of diffused region

- when Cs > P solubility limit (1021 at/cm3 a 1000ºC) dead layer: high defect density region , low

-Concentration profile:

C(x,t)=Cs erfc(x/2Dt)

D= D0 exp (-E/KT) P diffusion coefficient in Si (10-14 cm2/sec a 980 ºC)

Page 38: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

  

Laser Assisted Doping  laser beam creates dopant atoms (PCl3 pyrolysis or solid source) and simultaneously induces melting of silicon: dopant liquid phase diffusion. Localized process, low thermal budgetFast diffusion kinetics

p - Si

n+

p - Si

PP

P

PPP

PCl3

Page 39: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

TEM picture of laser doped silicon after re-

crystallization Dopant concentration profile

Page 40: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Surface Passivation•Surface: critical discontinuity in the crystal structure-High density of allowed states within the forbidden gap

•Silicon: surface-state density reduced growing passivating oxide-interface between oxide and Si moves

towards bulk

•Thermal Oxidation: open tube, in O2

at T 800-1000 °C

•low T alternative: SiN layer

400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

B sel23ox

D sel23

E om23

F sel23+om96

Y A

xis

Tit

le

X axis title

Page 41: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Ohmic Contacts

-Front contact must minimize series resistance losses, providing at the same time the maximum light amount to reach the cell surface.

-A good back contact allows to increase Jsc and Voc (confinement techniques).

-Good ohmic contact metal/silicon-Low metal resistivity

Page 42: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Front Grid: -Busbar are directly connected to the external load

-Fingers collect current to delivery to a busbar.

Ohmic Contacts

Rs=Rbase+Remitter+Rgrid

Page 43: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Contact technologies

- photolitography vacuum

evaporation

-screen printing

- electrochemical growth

Deposition technique/Metal

Electro-plating

Electroless

Evaporation Screen printing

Ni Front Front

Au F/B F/B F/B

Ag Front Front Front

Ti Front

Pd Front

Al Back Back Back

Page 44: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Metal/Si contact-Schottky barrierHigh contact resistance

-ohmic contact is obtained by reducing barrier width:

tunneling

- high P concentration at Si surface can reduce barrier

width:Highly doped emitters

Alloying

Annealing at T 450-800 °C

metal Silicon

Page 45: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Photolitography

- photosensitive polymer is deposited on wafer surface-Regions to metallize are exposed through a mask to UV light- Vacuum evaporation Front: Ti (400 A) adherence to Si

Pd (200 A) barrier layer Ag 1-5 m good conductivity

Back: Al 1m-Lift-off: photoresist removed in acetone-Annealing: 400- 600 °C N2 or forming gas ohmic contactResolution: few micronsShadowing < 4%

Page 46: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Screen printing

-contact grid is obtained by depositing on wafer surface, through metal screens, inks or conductive pastes-inks contain metal grains (Ag, Al), glasses, organic binders and solvent

-Firing:In a belt furnace, the glass melting temperature (about 800°C) is reached for few minutesContact to Si: alloy metal/Si (Al) through glass matrix (Ag)•Resolution: 80-100 micronShadowing:10%

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70

Tempo (s)

Tem

pera

tura

(°C

)

Page 47: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Selective Emitter

•Heavy doped emitter :low response in blue region -“dead layer”, photogenerated carriers have low probability to be collected-

•Selective emitter:regions under contacts are heavy doped, to reduce RcExposed region is low doped to increase collection in blue spectral portion

- double diffusion, laser doping

Page 48: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Back Surface Field

Bulk

Emitter

Wb WBSF

p

EF

BSFn+

p+

p e-

SfSeff Sb

T 577C

(b)

Al/Si-liquid

Si

T=25C

Al-layer

(a)

Si

T 577C cooling

(c)

Al/Si-liquid

p-Si

p+-Si

T 577Ccooling

(d)

Al/Si-layer

p-Si

p+-Si

Page 49: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

AntiReflection treatments

•Silicon reflects 35% of incident light, and up to 54% at short(high refractive index n)

•Techniques to reduce losses:

-Deposition of one or more layers of thin oxides

- Surface Texturization

Page 50: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Thin AR layers

•losses due to reflection can be drastically reduced

10

101

nn

nnr

2cos1

2cos2

2121

2121

22

22

rrrr

rrrrR

2

02

02

nn

nnR

21

212

nn

nnr

112 dn

2

201

201

min 2

2

nnn

nnnR

minRR

4

011

dn

0min R

1

01

4nd

201 nnn

Page 51: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Thin AR layers

• single layer AR coating:

0= 600 nm; n1=2.0; d1=750 A

•Losses reduced to 10%

Material n

Si 3,45

SiO 1,9

Al2O3 1,9

Si3N4 2,0

TiO2 2,2

Ta2O5 2,2

Page 52: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Double layer AR coatings-better match between high index of Si (3,5) and low index of air (1)

-AR effect over a wide wavelength range

- losses reduced to 3%

Material n

Si 3,45

TiO2 2,2

SiO2 1,5

ZnS 2,3

MgF2 1,4

1st layer: n1=2.2-2.62nd layer: n3=1.3-1.6

2

0231

0231min

22

22

nnnn

nnnnR

Internal Quantum Efficiency and Total Reflectance of cell

0

10

20

30

40

50

60

70

80

90

100

300 400 500 600 700 800 900 1000 1100 1200

Wavelength (nm)

IQE

(%

)

0

10

20

30

40

50

60

70

80

90

100

Ref

lect

ance

(%

)

IQE0.3-4

Page 53: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

ARC deposition methods

• vacuum Evaporation

•Sputtering

•Chemical Vapour Deposition

•Plasma Enhanced CVD

- thickness uniformity and reproducibility-Stoichiometry control

Page 54: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Texturing

•pyramidal structures (about 10 microns) on wafer surface

• incident light is trapped (multiple reflections)

-larger exposed area-Oblique incidence (increased collection efficiency at long

Reflectance < 10%

with ARC < 4%

Page 55: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-wet anisotropic etch NaOH or KOH based

-Different etch rates along different crystallographic

directions:

etch rate about 35 faster for <100> direction than for <111>

direction.

100

010

111

001

-for Si <100> oriented, structure is achieved by intersection between the <100> and <111> planes (=54.7°), allowing at least two consecutive reflections

Page 56: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

-Inverted pyramids structure reduces reflection to few

percent

-honeycomb: traps light in multi-

crystalline Si cells

Texturing

Page 57: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Crystalline Silicon Cells

Page 58: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

• High Efficiency cells: 24.7%

• Industrially Scalable Cells– New Design: 20%– Advanced Screen Printing: 18-19%

• Industrial cells: 14-15%

Thin polysilicon cells: -14%

Page 59: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

PERL (Passivated Emitter and Rear Locally diffused) Cell

Voc= 706 mV, Jsc=42.2 mA/cm2 FF=82,8%

=24,7% (UNSW)

• Double AntiReflection Coating (DARC) and inverted pyramids

• Passivating oxide on front (10 nm, Sf<10 cm/s)

• Selective emitter

• High purity material, high resistivity FZ (>1 *cm =>Ld=1 mm)

• Passivating oxide on Back (150-300 nm, Sb<10cm/s)

• Boron overdoping on back contact regions

• 19.8% on multi-crystalline Si

Page 60: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

27.5% 100X

Point Contact cells

Back Sided Point Contact Solar Cell (Stanford University)

Page 61: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Buried Contact Solar Cell

• Buried contact grid (laser or mechanical), Selective emitter, Back Surface Field, electroless metal plating

EFF 19-20% (>21% on bifacials)

UNSW

Page 62: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

BURIED CONTACT

SOLAR CELLS

Page 63: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

• Bi-facial cells: carriers are generated also by light incident on the back side EFF 21% (FhG-ISE) – 19% (Buried contacts)

Page 64: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

• “ emitter wrap-through” cells: back-contact solar cells, with emitter contacts on the rear realized through laser –drilled vias. 17% on 225 cm2 mc-Si cells (ECN)

Page 65: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Advanced Screen Printing• High efficiency solutions: -Selective emitter obtained by screen printing of a doped paste - Screen printed contact buried cells-Low temperature (SiN, a-Si) layers deposition on front and back for surface and bulk passivation.

19.8% SiN ( GeorgiaTech)

Page 66: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Future developments

-Short term: lower cost (thinner wafers, further efficiency

enhancement, new structures, etc)

-Long term: spectrum conversion to utilize the solar radiation more completely

Crystalline silicon cells will dominate the market for a very long time

Page 67: Luisa Pirozzi  ENEA c-Si PV labs pirozzi@casaccia.enea.it

Thank you for your attention