lunar module (lm) j ! soil mechanics study i

236
I AM-68-1 t May 1, 1968 t .. i Final Report _ Lunar Module (LM) J[! Soil Mechanics Study I I Volume II I J GPO PRICE $__ i CFSTI PRICE(S) $ - Hard copy (HC)_, _" Microfiche (MF) r _'_J''" ._ ff 653 July 65 N 68- 3] 325 (ACCESSION-NUMBER) . (I"HRU) _._: Z_Z_'.. (NASA.CR OR TMX ORAD NUMBER) (CATEGORY) l _ _ . . . _ ,, , --

Upload: others

Post on 05-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lunar Module (LM) J ! Soil Mechanics Study I

I

AM-68-1t May 1, 1968

t ..

i Final Report_ Lunar Module (LM)

J[! Soil Mechanics StudyII Volume II

IJ GPO PRICE $__

i CFSTI PRICE(S) $ -

Hard copy (HC)_, _"

Microfiche (MF) r _'_J''"

._ ff 653 July 65

N 68- 3] 325(ACCESSION-NUMBER) . (I"HRU)

_._: Z_Z_'..(NASA.CR OR TMX OR AD NUMBER) (CATEGORY)

l_ _ . . . _ ,, , --

00000001

Page 2: Lunar Module (LM) J ! Soil Mechanics Study I

IIII

APPENDIX A

I SOIL SPECIFICATIONS

I

The data presented in this appendix will give descriptions of-the 12 basic soils used

in the LM soil mechanics study. The descriptions will include pertinent chemical

analysis, physical _roperties and handling methods used to maintain repeatable test

bed preparation for each soil.i

_ a. Clarke, F._W., The Data of Geochemistr_t Bulletin 770, 5th Ed., U.S. Geol.

. Surv., Government Printing Office, _Eashington, D. C., 1924.

[

b. Tyrrell, G. W., The Principles of Petrology, Methuen and Co., Ltd., London,

E. P. Dutton and Co., Inc., New York, 1926.

c. American Society for Testing and Materials, Procedures for Testing Soils,

ASTM, Philadelphia 3, Pa., 4th Ed., 1964.

;! •

i A-1

•7 •

I_p ___...... , i • il i i

00000001-TSB03

Page 3: Lunar Module (LM) J ! Soil Mechanics Study I

1

l

LM SOIL MECHANICS STUDY

SPECIFICATION ]_OR SOIL NO. 1-

I1. Bendix Designation: RS, Loose l

2. Description: Red narrowly-graded crushed andesitic volcanic-scoria (volcanic

cinders).

_

3. Source: Cinder Products Company

3450 Lakeshore Avenue, Oakland, California 94610

I4. Source Name: Volcalite

5. Chemical Analysis" I

Volcalite* Hyp rsthene Andesite (a, pp. 456-466) !_ t

Silica . (Si02) 54.22 56.88 I

Aluminum.Oxide (A1203) 25.04 18.25Ferric Oxide (Fe203) 4.28 2.35 ........ I

Calcium Oxide. (Ca0) 8.11 '/. 53Magnesium Oxide (Mg0) 5.58 4.07 ..................

Sodium. Oxide. (Na0) 1.61 3.29

Potassium Oxide (K20) 0.41- . . i

99.25 .42 , .'

*Chemicai analysis provlded by producer.

A-2 I

[ '

00000001-TSB04

Page 4: Lunar Module (LM) J ! Soil Mechanics Study I

1

6. Petrological Description

Highly porous volcanic (extrusive) rock of "basic" composition, commonly termed

volcanic scoria. A comparison of the chemical analysis provided by the producer

witR other published analyses (a, pp. 456-466; b, pp. 126- 131.) indicates that the rock

type is an andesite. Figure A- 1 is a photomicrograph of the RS soil.

7. Mineralogical Description

No mineralogic analysis of the test soil has been done,_but a normative analysis of

the hypersthene andesite reported bC_ke (a, p. 458) gives the following:

Quartz 9.1%

Orthoclase 8.3%

Albite 27.8°Io

Anorthite 30.9_ .

Diopside 5.3%

Hypersthene 13.2%

Magnetite 3.5%

Ilmenite 0.8%

The reddish color of the RS soil would indicate that this material contains iron hydrox-

ides (e.g. limonite) rather than the magnetite and ilmenite referred to in the norm

and probably constitutes a larger percentage of the RS material than the iron minerals

used in the example.

Decomposition due to weathering tends to decrease the percentage of silica, calcium

oxide and sodium oxide and increase 1he_percentage of ferric oxides and aluminum

oxide (leaching, chloritization and_kaolinization). The iron oxides (e.g.,magnetite,

ilmenite) tend to form.iron hydroxides (e.g., ilmenite); the femic minerals (e.g.,_

hypersthene) to form chlorite (chloritization); and the feldspars (e.g., orthoclase,

: albite) to form clays (kaolinization). The chemical analyses exhibit these trends indi-

cating that some decomposition due to weathering has occurred.

A-3

¢

--- " oooooool-- sao'

Page 5: Lunar Module (LM) J ! Soil Mechanics Study I

I'

A-4V

O000000;I_TSB06

Page 6: Lunar Module (LM) J ! Soil Mechanics Study I

8. Moisture Content

All tests were run on alr_dried material. Oven-drying of the air-dried soil at 230°F

yielded moisture contents commonly in the x.ange of 0.2 to 0,6% (percent of dry weight

of soil).

9.. Grain Size Distribution

Figure A-2 shows the range and average grain size distribution of this soil. The table

on this figure lists some of the grain size parameters investigated in this study. All

data shown is for unused, undegraded material.

10. Density and Relative Density

The average relative density of Soil No. 1 is zero. Figure A-3 ,_hows the relationship

between soil unit weight (density) and relative density for the RS soil as determined

by the method of test suggested-by D. M. Burmister (c, pp. 175-177). The solid line

represents the average of several tests on unused, undegraded soil, and the dashed

lines indicate the 95% confidence limits for the data.

11. Direct Shear Test Results

/ Figure A-4 shows the relationship between angle of internal friction and relative density

obtained from the direct shear tests. This figure indicates that the angle of internal

friction for Soil No. 1 is about 41°. The complete data obtained from the direct shear

tests is given in Appendix C.

12. Sonic Velocity Test

The values of initial tangent modulus yielded for Soil No. 1 by this test is--shout 5500 p_si

at a confining pressure of.4 psi (no cornection made for Poisson's Ratio). A detailed

description of the test apparatus and procedures is given in Appendix B.

13. Soil Test Bed Placement Procedure

! Soil No. 1 was placed using the hopper method.

! A-5

00000001-TSB07

Page 7: Lunar Module (LM) J ! Soil Mechanics Study I

Q _) Q 0 0 _ Q Q

,,8/c ........... "1: . , ,, ...... _ •''"..j _.._11' ' .:_: .I :!i: )!I-' ,;: - _ : : _

............ : , , ',_ _ /_ ........ i ,_] . ...... ,,.; ............. o

' :t' .:)_i!_il_i,_il_i!_]i • ):" I..__. _.• : : . :._1 .. , I.!I'i,:_:)i ..... i._

o#14_ :_c,:-I-__rg-q_:,, ,_._.., _.,,; i-.._ "; ";;l: ' . -- ; I ] [ ! ; " i : : : I ] : : i'--J-', : : l:: :,| " ,,-g_ ,-...,

........ _.....',_........r_:l.,__+___-t-_ ....I ............ .. ,i-_ _i -_..... t _.... -t .... _ .... _ . =_.

r, _ £_1 ",,'m 'r--, ','a ,: : _ _ - _ (_)

o_#_ _. _ '.'-_.-._,-r-i.-_._.--i_.-i--.- : ._

o.. .=1•.,u,_-: u--'" "_ I ' I I__:-:I:::.:1. : ' ¢_

!_t' "i .,_ I I ."_ H_t_!:LeF_-:.!:'_-:+_/:_ ; __ ."

! :_ ,t:i r_ I I e "-" +'-: : I _-:-:I: LI-r.:-l:_.i : ; t ; ; : : _ _i

:': : :. '._ "_ ._ _ _ 4-_'_':;:!_t:_-:- _ l"I'_ I-_-.."-_..:'.'| :-'" " •.... _ '_ C'_.q_l_(_'--- i .......... t ..-;-i i .;..."

"0,_ _ I I i::l "_ _ _ _,_ :_::_-:, !-_:_-:1', ;- t " :

_ .4.-_- I I _.l _ .-, _ _,_._.,__ _-_k_-_-t.l.... 1.... _ "

Illll | II II III I I

;t[_!a_ &fl ueq,.T,._OUl.,rluaoxod: _= ='==' I

A-6 I

It

00000001-TSB08

Page 8: Lunar Module (LM) J ! Soil Mechanics Study I

25 25

I

30,m.I , .

u_

O_

35 35

'40 _40, _41.3 -- '---- -"'----42.5 _'-_ _-"-_''--- ""-

I45 _""--_'_ _ _ ..._ .45

"" _'_ -'_" -''- "50! 50 _ _- _.. _- 51.8

"---'_- 52.955 54.0

,i 60 ,,, i •6065 ' _650 0.1 0.2 0.3 0.4. 0.5 0.6 0.7:_ 0.8 0.9 1.0 ........

Relative Density, Dr

FigureA-3. DensityVersus RelativeDensityforRS Soil

A-7

}

............... * ,. . i i ii i ii

00000001-TSB09

Page 9: Lunar Module (LM) J ! Soil Mechanics Study I

5O

45 Jf

o_(D

k0

_'40-

°='t

¢9*r,,(

¢,,,N

_35

0 . . .

p.ib.o

30

0 ................. 0.2 0.4 0.6 0.8 1.0 ....

Relative Density, Dr '

Figure A-4. Angle of Internal Friction (as determined by the direct shear test)Versus Relative Density for RS Soil

A-8

00000001-TSB11

Page 10: Lunar Module (LM) J ! Soil Mechanics Study I

!

I 14. Special Comments

The RS soil is susceptible to particle breakdown or degradation due to handling and

testing,;. Such degradation leads to changes in some soil properties, unit weight in

particular. If the handling method is such that this process cannot be prevented,

orAhe soil cannot be _.eplaced when these effects become prominent, periodic

sampling of the soil test bed shou)d be made in order that the effects be known quan-

titatively.

I A-9

00000001-TSB13

Page 11: Lunar Module (LM) J ! Soil Mechanics Study I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL __2__ 1

i

I. PendLx Designation:PS Loose (

2. Description: White narrowly-graded crushed pumice (volcanic cinders), i

3. Source: James H. Rhodes and Company,

1026 W. Jackson Boulevard,Chicago,Illinois60607 !

4. Source Name: Navajo Pumice

5. Chemical Analysis:*

Silic on Dioxide (Si0 2) 7 4.2%

Ferric Oxide (Fe20 S) 1.6%

Alm_inum Oxide (AI203) 12.5%

Calcium Oxide (Ca0) 0.4%

Magnesium Oxide __ (Mg0) 0.2%

Phosphorus (P) Trace

Alkalies not tested for--

Sodium Oxide (Na0) 11.0%

Potassium Oxide (K20) 11.0%

Moisture 11.0%

*Provided by the supplier.

A- i0

, _.j......... i i , i i •

00000001-TSC01

Page 12: Lunar Module (LM) J ! Soil Mechanics Study I

6. Petrological Description

Very highly porous volcanic (extrusive) rock of "acid" or rhyolitic composition. The

chemical analysis is typical of a pumice. The supplier reports that this material is

mined in the area of Santa Fe, New Mexico, Pumice is formed when very silicic

volcanic ejects is deposited in water. The rapid cooling is responsible for the highly

porous nature of this rock. Figure A-5 is a photomicrograph of the PS soil.

7. Mineralogical Description

No mineralogic analysis of the pumice has been done, but the chemical analysis would

indicate that it was composed primarily of orthoclase and quartz.

8. Moisture Content

All tests were run on air-dried material. Oven-drying of the air-dried soil at 230°F

yielded moisture contents commonly in the range of 0.2 to 0.6% (percent of. dry weight .........................

of soil).

9. Grain Size Distribution

Figure A-6 shows the range and average grain size distribution of this soil. The table

on this figure lists some of the grain size parameters investigated in this study. All

data shown is for unused, undegraded material.

10. Density and Relative Density

The average relative density of Soil No. 2 is_zero. Figure A-7 shows the relationship

between soil unit weight (density) and relative density for_PS-soil as determined by the

method of test suggested by D._IVL_Burmister (c, pp. 175-177). The solid line represents

the average of several tests on unused, undegraded soil, and the dashed lines indicate

the 95% confidence limits for the data.

11. Direct Shear Test Results

Figure A-8 shows the relationship between angle of internal friction and relative density

obtained from the direct shear tests.

A-If

00000001-TSC02

Page 13: Lunar Module (LM) J ! Soil Mechanics Study I

A-12

/

• ............... I I I I ($ i I I I I ----_

00000001-TSC03

Page 14: Lunar Module (LM) J ! Soil Mechanics Study I

I

A-13 I

l

' -4k ........ • , , , I I I I I i' i -- i I --_

00000001-TSC04

Page 15: Lunar Module (LM) J ! Soil Mechanics Study I

23.3 _ -,23.8 _ __.._ .24.3

"_---_'"-_ 2525 " - ""--_ _, ._--

'_ 30 - 30 _-

_.. 30.24-)

_ "_ul

¢= 35 35

,o45 45

i ,H

50 • 50

55 ' 55

60 , ,, ": 60

65 650 0.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Densltyj Dr

Figure A-7, Density Versus Relative Density for PS Soil

A-14

t ___

_- ....... ' ' TSC05.... 00000001

Page 16: Lunar Module (LM) J ! Soil Mechanics Study I

5O

0 0.2 0.4 0.6 0.8 1.0

Relative-Density, Dr

i Figure A- 8. Angle of Internal Friction (as determined by the directshear test) Versus Relative Density for PS Soil

A-15

tL

• ........... • , , ,8 i i i i i i i I i • I I inn

00000001-TSC06

Page 17: Lunar Module (LM) J ! Soil Mechanics Study I

This figure indicates that tile angle of intel:nal friction for Soil No. 2 is about 43 °.

The complete data obtained from the direct shear tests is given ill Appendix C.

12. Sonic Velocity Test

The values of initiaLtangent modulus yielded for Soil No. 2 by this test is about 4500

psi at a confining pressure of 4 psi(no correction made for Poisson's Ratio). A

; detailed description of the test app&!:a_US and procedures is given in Appendix B.L

13. Soil Test Bed Placement Procedures

Soil No. 2 was placed using the hopper method.

14. Special Comments

The PS soil is susceptible to particle breakdown or degradation due to handling and

testing. Such degradation leads to changes in some soil properties, unit weight in

particular. If the handling method is such that this process cannot be prevented, or

the soil cannot be replaced when these effects become prominent, periodic sampling

of the soil test bed should be made in order that the effects be known quantitatively.

A-16 ......

00000001-TSC07

Page 18: Lunar Module (LM) J ! Soil Mechanics Study I

iI

LM-SOIL MECHANICS STUDY

SP_ECI FICATION_EOIUSOI L_0._3

1. Bendix Designation: RS, Intermediate

2. Description: Red narrowly-graded crushed andesitic volcanic scoria (volcanic

cinders).

3. Source: Cinder Products Company

3450 Lakeshore Avenue, Oakland, California 94610

4.... Source Name: Volcalite.

5. Chemical Analysis:

Volcalite* Hypersthene Andesite (a, pp. 456-466)t

i Silica _ (Si02 ) 54.22 56.88

Aluminum Oxide (A1203) 25.04 18.25

: Ferric Oxide (Fe20 S) 4.28 2.35

Calcium Oxide (Ca0) 8.II 7.53

Magnesium Oxide (Mg0) 5.58 4.07

Sodium Oxide (Na0) 1.61 3.29

Potassium Oxide (K20) 0.41 1.42

99.25

*Chemical analysis provided by producer.

A-17

.............. a == i i i mini I .... _ i li i il in I -- _

00000001-TSC08

Page 19: Lunar Module (LM) J ! Soil Mechanics Study I

6. Petrological Description

Highly porous volcanic (extrusive) rock of "basic" composition, "om,nonly termed

volcal_c scoria. A comparison of the chemical analysis provided by the producer

witit other published analyses (a, pp. 456-466; b, pp. 1264131) indicates that the rock

type is all andesite. Figure A-9 is a photomicrograph of the RS soil.

7. MineralogicalDescription

No mineralogicanalysisofthetestsoilhas been done,buta noranativeanalysisofthe

hyperstheneandesitereportedby Clarke (a,p. 458)givesthefollowing:

Quartz 9.1%

Orthoclase 8.3%

Albite 27.8%

Anorthite 30.9%

Diopside 5.3%

Hypersthene 13.2%

Magnetite 3.5%

llmenite 0.8%

The reddish color of the RS soil would indicate that this material contains iron hydrox_ _

ides (e.g.,. limonite) rather than the magnetite and ilmenite referred to in the norm

and probably constitutes a larger percentage of the RS material than the iron minerals ....

used in the example.

Decomposition due to weathering tends to decrease the percentage of silica, calcium

oxide and sodimn oxide and increase the percentage of ferric oxides and aluminum oxide

(leaching, chloritization and kaolinization). The iron oxides (e.g., magnetite, ilmenite)

tend to from iron hydroxides (e.g., limonite); the femie minerals (e.g., hypersthene) to

form chlorite (chloritization); and the feldspars (e.g., orthoclase, albite) to form clays

(kaolinization). The chemical analyses exhibit these trends indicating that some decom-

position due to weathering has occurred.

A-18

00000001-TSC09

Page 20: Lunar Module (LM) J ! Soil Mechanics Study I

,%.-19

00000001-TSC10

Page 21: Lunar Module (LM) J ! Soil Mechanics Study I

8. Moisture Content

All tests were run on air-dried material. O_e,_-drying of the air-dried soil at 230°F

yielded moisture contents commonly in the range of 0.2 to 0.6% (percent of dry weight

of soil).

9. Grain Size Distribution

Figure A- 10 shows the range and avel'age grain size distribution.of this soil. The table

on this figure lists some of the grain size parameters investigated in this study. All

data shown is for unused undeg!Lad_ed material.

10_ Density and Relative Density

The average relative density of SoiLNo. 3 is about 0.45.. Figure A-11 shows the rela-

tionship between soil unit weight (density) and relative density for-the RS soil as dete= ........

mined by the method of test suggested by D. M_ Burmister (c, pp. 175-177). The solid ..............................................

line represents.the average of several tests on unused, undegraded soil, and the dashed

lines indicate the 95% confidence limits for the data ..........................................

11. Direct Shear Test Results

Figure A- 12 shows the relationship__between angle of internal friction and relative density

obtained from the direct shear tests.

This figure indicates that the angle of internal f=iction for Soil No. 3 is about 43.9 ° . The

complete data obtained from the direct shear tests is given in Appendix C.

12. Sonic Velocity Test

The values of initial tangent modulus yielded for Soil No. 3 by this tesLis about 8600 psi

at a confining pressure of 4 psi (no correction made for Poisson's Ratio).

A detailed description of the test apparatus and procedures is given in Appendix B.

A-20

i. ...... i II ii I i I I / I I I III | -- --

O0000001-TSCli

Page 22: Lunar Module (LM) J ! Soil Mechanics Study I

A-21

• n • i a i _lI ii in iIil|i I | II I I Ilil I I I I I I ----

00000001-TSC13

Page 23: Lunar Module (LM) J ! Soil Mechanics Study I

25 25

30 30

35 35

"_ _

N 40

_ 45

50 _ _'-- _" 51.8_- _ 52 9

55 .0

60 6065 65

0 0,I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Density_ Dr

!

Figure A-11. Density Versus Relative Density for RS Soil

A-.22

00000001-TSD01

Page 24: Lunar Module (LM) J ! Soil Mechanics Study I

!

I

5O

_. 45 J

4O

0

_ 35

30

0 0.2 0._ 0.6_ 0.8

_iatJ.ve Density, Dr

FigureA-12. Angle o£InternalFriction(asdeterminedby thedirectshear test)Versus RelativeDensityforRS Soil

A-23

ii| I r_ m_ i

0NNNNNNq_T_NN')

Page 25: Lunar Module (LM) J ! Soil Mechanics Study I

13. Soil Test Bed Placement Procedure

Soil No. 3 was placed using a hopper and compacted with 2 pas__sc_of a ro!!.e_z:.

14. Special Comments

The RS soil is susceptible to particle breakdown or degradation due to handling and

testing. Such degradation leads to changes in some soil properties, unit weight in

particular. If file handling method is such that this process cannot be prevented, or

the soil cannot be replaced when these effects become prominent, periodic sampling

of the soil test bed should be made in order that the effects be known quantitatively.

A-24

t..... • , t , i | --- --

00000001-TSD03

Page 26: Lunar Module (LM) J ! Soil Mechanics Study I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL NO. 4

1. Bendix Designation: RS, Dense

2.__Description: Red narrowly-graded crushed andesitic volcanic scoria (volcanic

cinders).

3. Source: Cinder Products Company

3450 Lakeshore Avenue, Oakland, California_94610

4...___Source Name: Volcalite ........

5. Chemical Analysis:

Eolcalite* Hypersthene Andesite (a, pp. 456-466)

Sllica (Si 02) 54.22 56.88

Aluminum Oxide (A1203)__ - 25.04 ..... 18.25

Ferric Oxide (Fe203) 4.28 2.35

Calcium Oxide (Ca0) 8.11 7.53 _I

Magnesium Oxide (Mg0) 5.58 4.07

Sodium Oxide (Na0) 1.61_ 3.29i

Potassium Oxide (K20) 0.41 1.42i m

99.25rChemical analysis provided by producer.

A-25

_ . - ...... ; , --- J

00000001-TSD04

Page 27: Lunar Module (LM) J ! Soil Mechanics Study I

6.____Petrological Description

Highly porous volcanic (extrusive) rock of "basic" composition, commonly te_med

volcanic scoria. A comparison of the chemical analysis provided by tile producer

with ether published analyses (a, pp. 456-466; b, pp. 126-131) indicates that.the rock

type is an andesite. Figure A-13 is a photomicrograph of the RS soil.

7. Mineralogical Description

No mineralogic analysis of the test soil has been done, but a normative analysis of the

hypersthene andesite reported by Clarke (a, p. 458) gives the following:

Quartz 9.1%

Orthoclase 8.3%

Albite 27.8%

Anorthite 30.9%

Diopside 5.3%

Hypersthene 13.2%

Magnetite 3.5%

Ilmenite 0.8%

The reddish color of the RS soil would indicate that this material containsironhydrox-

ides (e.g., limonite) rather than the magnetite and ilmenite referred-to in the norm

and probably constitutes a larger percentage of the RS-material than the iron minerals

used in the example.

Decomposition due to weathering tends to decrease the-percentage of silica, calcium

oxide and sodium oxide and increase the percentage of ferric oxides and aluminum

oxide (leaching, chloritization and kaolinization)._ The iron oxides (e.g., magnetite,

ilmenite) tendto form iron hydroxides (e.g., limonite); the femic minerals (e.g., hyper-

sthene) to form chlorite (chloritization); and the feldspars (e.g. orthoclase, albite) to

A-26

J

4

........... i n n n i I

00000001-TSD05

Page 28: Lunar Module (LM) J ! Soil Mechanics Study I

d

.... _ .... I I lib I I I i I I • -- --

00000001-TSD06

Page 29: Lunar Module (LM) J ! Soil Mechanics Study I

forn_ clays (kaolinization). The chemical analyses exhibit these-tzends indicaling that ....................

some decomposition due to weatheriug has occurred.

8.... Moisture Content

All tests were run on air-dried ,naterial. Oven-drying of the air-dried soil-at 230°F

yielded moistur_ contenis commonly in the range of 0.2 to 0.6% (percent of dry weight

of soil).

9. Grain Size Distribution

Figure A- 14 shows the range and average grain size distribution of this soil. The

table on this figure lists some of the grain size parameters investigated in this study.

All data shown is for unused, undegraded material.

10. Density and Relative Density

The average relative density of Soil No. 4 is about 0.8. Figure A-15 shows the rela.

tionship between soil unit weight (density) and relative density for the RS soil as deter-

mined by the method of test suggested by D. M. Burmister (c, pp. 175- 177). The solid.

line represents the avea'age of several tests on unused, uadegraded soil, and the dashed

lines indicate the 95% confidence limits for the data.

11. Direct Shear Test Results

Figure A- 16 shows the relationship between angle of internal friction and relative den-

sity obtai;md from the direct shear te_s.

This figure indicates tha! the angle of internal friction for Soil No. 4 is about 47.9 °.

The complete data obtained from the direct shear tests is given in Appendix C.

12. Sonic 'Velocity Test

The values of initial tangent modulus yielded for Soil No. 4 by this test is about 10,900

psi at a coldining pressure of 4 psi (no correction made for Poisson, s Ratio). A detailed

description of the test apparatus and procedures is given inAppendix B.

A-28

I

4

00000001-TSD07

Page 30: Lunar Module (LM) J ! Soil Mechanics Study I

A-29

00000001-TSD08

Page 31: Lunar Module (LM) J ! Soil Mechanics Study I

25 ,25

.--.

B

,r-t

- _ 35 35 -

4o.. "_._ "-,._.L _ 45

42.5 " -" -'__"-_

50 _ _- -""-- _'-

55 .0

60 60

65 650 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Density, Dr

Figure A-15. Density Versus Relative Density for RS Soil

A-30

t

00000001-TSD09

Page 32: Lunar Module (LM) J ! Soil Mechanics Study I

5O

0 0.2 0.4 0.6 0.8 1.0

Relative Density, Dr

Figure A_16. Angle of Internal Friction (as determined by the direct shear test)Versut3 Relative Density for RS Soll

A-31I

l

t

O0000001-TSDIO

Page 33: Lunar Module (LM) J ! Soil Mechanics Study I

13, Soil Test Bed Placement Procedure

Soil No. 4 was placod using a hopper and compacted with 16 passes of a roller.

14. Special Comments, mw_

The RS soil is susceptible to particle breakdown or degradation due to handli!_g and

testing. Such degradation leads to changes in ,_ome soil properties, unit weight in

particular. If the handling method is-such that this process cannot be prevented, or

the soil camlot be replaced when these effects become prominent, periodic sampling

of the soil test bed should be made in order that the effects be known quantitatively.

A-32

L

..... _ | i I i • • ' _ ...... III In I

00000001-TSD11

Page 34: Lunar Module (LM) J ! Soil Mechanics Study I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL NO. 5

I. Bendix Designation: RSM - a Loose.

i 2. Description: Mixture of red narrowly-graded crushed andesitic volcanic scoria

(volcanic cinders) and white narrowly-graded crushed marble.

3. Source:

(a) Volcanic Cinders

Cinder Products Company

3450 Lakeshore Avenue, Oakland, California 94610

(b) Crushed Marble

Terrazzo Marble Supply

5700 S. Hamilton Street, Chicago, Illinois 60636

4. Source Name:

(a) Volcanic Cinders- Volcalite

(b) Crushed Marble - #10 Georgia special white marble chips

5. Chemical Analysis:

(a) Volcanic Cinders

I A-33

I

......... • ..... , , • , , i r i i i iiii i ---

00000001-TSD13

Page 35: Lunar Module (LM) J ! Soil Mechanics Study I

Volcalite* Hypersthene andesite (a, pp. 456-466)

Silica (Sl02) 54.22 56.88

Ahunilmm Oxide (A1203) 25.04 .... 18.25

Ferric Oxide (Fe203) 4.28 2.35

Calcium Oxide (Ca0) 8.11 7.53

Magnesi_nn Oxide (Mg0) 5.58 4.07

Sodium Oxide__ (Na0) 1.61 3.29

Potassium Oxide (K20) 0.41 1.42

99.25

(b) Crushed Marble. No chemical analysis available but it is primarily

calcium carbonate (CaC03).

6. Petrological Description_ ...........................

(a) Volcanic_Cinders.

Highly p_orous volcanic (extrusive) rock-of "basic" composition. Commonly

termed volcanic scoria..A comparison of the chemical analysisprovided by

the producer with other published analyses (a, pp. 456-466; b, pp. 126-131)

indicates that the rock type is an andesite.

(b) Crushed Marble.

Marble-is a crystaline compact variety of metamorphosed sedimentary lime-

stone.

The volcanic cinders and crushed marble are mixed in the ratio of 5:7, respectively,

by weigh£_ Figure A-17 is a photomicrograph of the resulting RSM soil.

*Chemical analysis supplied by producer.

A-34

00000001-TSF01

Page 36: Lunar Module (LM) J ! Soil Mechanics Study I

A-35

9 ....

00000001-TSF02

Page 37: Lunar Module (LM) J ! Soil Mechanics Study I

7. Mineralogical Description

(a) Volcanic Cinders.

No mineraloglc analysis of the test soil has been done, but a normative ana-

lysis of the_hypersthene andesite reported by Clarke (a, p. 458) gives the

following:

Quartz 9.1%

Orthoclase 8.3%

Albite 27.8%

Anorthite 30.9%

Diopside 5.3%

Hypersthene 13.2%

Magnetite 3.5%

Ilmenite 0.8%

The reddish color oLthe RS soil would indicate that this material contains iron hydrox-

ides (e.g., limonite) rather than the magnetite and ilmenite referred.to in the norm

and probably constitutes a larger percentage of the RS material than the iron minerals

used in the example.

Decomposition due to weathering tends to decrease the percentage of silica, calcium

oxide and sodium oxide and increase the percentage of ferric oxide s and aluminum oxide ....

(leaching, chloritization and kaolinization). The iron oxides (e.g. magnetite, ilmenite)

tend to form iron hydroxides (e.g., limonite); the femic minerals (e.g., hypersthene)

to form chlorate (chloritization) ; and the feldspars (e.g., orthoclase, albite) to form

clays (kaolinization). The chemical analyses exhibit_Ihese_r_endsAndicating that some

decomposition due to weathering has occurred.

A-36

....... ,, , ,;,, , ,_ _..,i

00000001-TSF03

Page 38: Lunar Module (LM) J ! Soil Mechanics Study I

(b) Crushed Marble.

No.mineralogic analysls of the marble-was done but i! consists primarily of

calcite.

8. Moisture Content

All tests were run on air-dried material, Oven-drying of the air-dried soil at.2S0°F

yielded moisture contents-commonly in the range of 0.2 to 0.6% (percent of dry weight

of soil).

9. Grain Size Distribution

Figure A- 18 shows the range and average grain size distribution of this soil. The table

on this figure lists some of the grain size parameters investigated in this study. All

data shown is for unused, undegraded _aterial.

10. Density and Relative Density

The average relative density of Soil No. 5 is about zero. Figure A- 19 shows the rela-

tionship between soil unit weight (density) and relative density for the RSM - a soil as

determined by the method of test suggested by D. M. Burmister (e, pp. 175-177).

The_solid line represents the average of several tests on unused, undegraded soil, and

the dashed lines indicate the 95% confidence limits for the data.

11. Direct Shear Test Results

Figure A,20 shows the relationship between angle of internal friction and relative den-

sity obtained from the direct shear tests.

This figure indicates that the angle of internal friction for Soil No. 5 is about 37 °. The

complete data obtained from the direct shear tests is given in Appendix C.

A-37

........... i i i i i" .li •

00000001-TSF04

Page 39: Lunar Module (LM) J ! Soil Mechanics Study I

I

i

d

0500000;-'tsFn._

Page 40: Lunar Module (LM) J ! Soil Mechanics Study I

I

55 "5L,

I5%35%9 _ _ %

60 \ _ _'"" _'- '60

"\ _. _

65 " '' "_'- _5

® ¢l

80 .8o '_

85

90

95 ,

,i00

105 ' ' •105,i

ii

110 , .110II I

11 "1150.0 0.1 "0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relatt_ Density_ Dr

Figure A-19. Density Versus Relative Density for RSM 8oil

j A-39

t

0000000'/-TSF06 i

Page 41: Lunar Module (LM) J ! Soil Mechanics Study I

5O

i .._.45

40 J

_35e-

Q

30

0 0.2 0.4 0.6 0.8 1.0

RelativeDensity_D r

Figure A-20. Angle of Internal Friction (as determined by the direct shear_test)Versus Relative Density for RSM Soil

A-40

.......... ()O00000-1--TSFO-7

Page 42: Lunar Module (LM) J ! Soil Mechanics Study I

12. SonicVelocityTest

No determinationofinitialtangentmodulus was_made for SoilNo. 5. However, based

on datafor theothersoilsthe sonicmodulus at 4 psi confiningpressure isestimated

to be 7800psi.

13. Soil Test Bed Placement Procedure

Soft No. 5 was placed using the hopper method.

14. Special Comments

The RSM - a soil is susceptible to particle breakdown or degradation due to handling

and testing. Such degradation leads to changes in some soil properties, unit weight

in pazticular. If the handling method is such that this process cannot be prevented,

or the soil cannot be replaced when these effects become prominent, periodic sampling

of the soil bed should be made in order that the effects be known quantitatively.

A-41

00000001-TSF08

Page 43: Lunar Module (LM) J ! Soil Mechanics Study I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL NO. 6

I. Bendix Designation: RC2 Loose

2. Description: Red broadly-gra¢_ed crushed andesitic volcanic scoria (volcanic

cinders)

3. Sour____ce-- Cinder Products Company

3450 Lakeshore Avenue, Oakland, Califo. _ia 94610

4. Source Name: Volcalite

5. Chemical Analysis:

Volcalite* Hypersthene Andesite (a, pp. 456-466)

Silica (Si02) 54.22 56.88

Aluminum Oxide (A1203) 25.04 18.25

Ferric Oxide (Fe20)3_ 4.28 2.35

Calcium Oxide -(Ca0) 8.11 7.53

Magnesium Oxide (Mg0) 5.58 4.07

Sodium Oxide (Na0) 1.61 3.29

Potassium Oxide (K20) 0.41 1.42

99.25

*Chemical analysis provided by producer.

A-42

00000001-TSF09

Page 44: Lunar Module (LM) J ! Soil Mechanics Study I

6. Petrological Description

Highly porous volcanic (extrusive) rock of "basic" composition, commonly termed

volcar_c scoria, A comparison of the chemical analysis provided by the producer

with other pu_blished analyses indicates that the rock type is an andesite. Figure A.21

is a photomicrograph of the RC2 soil.

7. Mineralogical Description

No mineralogic analysis of the test soil has been done, but a normative analysis of the

hypersthene andesite reported by Clarke (a, p. 458) gives the following:

Quartz 9.1%

Orthoclase 8.3%

Albite 27.8%

Anorthite 30.9%

Diopside 5.3%

Hypersthene 13.2%

Magnetite 3.5%

Ilmenite 0.8%

The reddishcolonofthe RS soilwould indicatethaLthis-materialcontainsironhydrox-,............. '

ides (e.g., limonite) rather than the magnetite and ilmenite referred to in the norm _

and probably constitutes a larger percentage of the RS material than the iron minerals

used in the example.

Decomposition due to weathering tends to decrease the percentage of silica, calcium

oxide and sodium oxide and increase the percentage of ferric oxides and aluminum oxide

(leaching, chloritization and kaolinization)._ The iron oxides (e.g., magnetite, ilmenite)

tend to form iron hydroxides (e.g., limonite); the femic minerals (e.g. hygersthene) to

form chlorite (chloritization); and the feldspars (e.g., orthoclase, albite) to form clays

(kaolinization). The chemieaLanalyses exhibit these trends indicating that some decom-

position due to weathering has occurred.A-43

00000001-TSF10

Page 45: Lunar Module (LM) J ! Soil Mechanics Study I

A-44

O0000001--TSFll

Page 46: Lunar Module (LM) J ! Soil Mechanics Study I

8. Moisture Contents

All tests were run on air-dried material. Oven-drying of-the air-dried soil at 230°F

yielded moisture contents commonly in the range of 0.2 to 0.6% (percent of dry weight

of soil),

9, Grain Size Distribution

Figure A-22 showsthe range and average grain size distribution of this soil. The table

on this figure lists some of the grain size parameters investigated in this study.

10. Density and Relative Density

The average relative density of Soil No. 6 is about zero. Figure A-23 shows the rela-

tionship between soil unit weight (density) and relative density for the RC2 soil, as deter-

mined by the method of test suggested by D. M. Burmister (c, pp. 175- 177). The solid

line represents the a_erage of several tests on unused, undegraded soil, and the dashed

lines indicate the 95% confidence limits for the data.

11. Direct Shear Test Results

Figure A-24 shows the relationship between angle of internal friction and relative density

obtained from the direct shear tests.

The figure indicates that the angle of internal friction for Soil No. 6 is about 43°. The

complete data obtained from the direct shear tests is given in_Appendix C.

12. SonicVelocityTest

The valuesofinitialtangentmodulus_yieldedforSoilNo. 6 by thistestisabout8000psi --

ata confiningpressure of 4 psi (nocorrectionmade forPoisson'sRatio).

A detaileddescriptionof thetestapparatusand procedures is givenin AppendixB.

13. Soil Test Bed Placement Procedure

Soil No. 6 was placed using the hopper method. Howeverj the soil handling was done by

shovel rather than the vacuum system.

A-45

d

................. 00000001-TSF13

Page 47: Lunar Module (LM) J ! Soil Mechanics Study I

.8/_I --

A-46 !

l

i

00000001-TSG01

Page 48: Lunar Module (LM) J ! Soil Mechanics Study I

53.6 _.

55 \ 55

\

\\

4\ 60

. X._61.4 ,,.

",,,, " 65

69.2,,,,. "" 70

".,.. ,,.,,, -,,.,,,., 80

\\ "-,._'_,_ 85

90 ,, 90

\95 95

I00 " IO0O.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Density, D ri

Figure A-23. Density Versus Relative Density for RC2 Soil.... . .........

A-47

00000001-TSG02

Page 49: Lunar Module (LM) J ! Soil Mechanics Study I

JJ

5o j

° ./e_$..,

45

0

'_ 40

0

_35 -

30

0 0.2 0.4 0.6 0.8 1.0

Relative Density, Dr

Figure A-24. Angle of Internal Friction (as determined by the direct shear test) .Versus Relative Density for the RC2 Soil

A-48

.............. -- ..... i liB i i • I I

00000001-TSG03

Page 50: Lunar Module (LM) J ! Soil Mechanics Study I

r14. Special Comments_

The average curves in Figures A-22 and A-23 are combined values of used and unused

soil. Since the soil was not handled using the vacuum system, no appreciable degrada-

tion effects were noted. The greatest variation_in soil properties (e.g., grain size

distribution-and unit__eight)was due primarily toun.avoldable segregation of particle

sizes (i.e., nonuniform grain size distribution with a soil bed and from test bed to test

bed). This.variation accounts for the_wide_range_a__d confidence limits exhibited by this

soil in Figures A-22 and A-23.

A-49

- _ i I I i I i I I -- -- I I00000001-TSG04

Page 51: Lunar Module (LM) J ! Soil Mechanics Study I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL NO. 7

i. Bendix Designation: SS Loose

2. Description: White narrowly-gr_tded silica sand.

3. Source: Wedron Silica Company

135 S. LaSalle Street_ Chicago, Illinois 60603

4. Source Name: Wedron 4040 sand.

5. Chemical Analysis: *

Silica (Si02) 99.9%

Ferric (Fe203) Trace

Aluminum Oxide (A1203) 0.1%

Titanium Oxide (Ti02) Trace

Calcium Oxide (Ca0) Trace

Magnesium Oxide (Mg0) Trace

6. Petrological Description

Essentially pure quartz (silica) sand grains, rounded to subangular. It is mined from

the St. Peter Sandstone formation in Wedron, Illinois.__

Figure A-25 is a photomicrograph of the SS soil.

' P d by ppli• rovide su er,

A-50

00000001-TSG05

Page 52: Lunar Module (LM) J ! Soil Mechanics Study I

A-51

00000001-TSG06

Page 53: Lunar Module (LM) J ! Soil Mechanics Study I

7. MineralogicalDescription

Essentiallythe onlymineral presentinthissoilisquartz(silica),

8. Moisture Content

Alltestswere run on air-driednmterial.Oven-drying of theair-driedsoil_at230°F

yieldedmoisture contentscommonly inthe range of0.2 to0.6% (percentofdry weight

of soil).

9. Grain SizeDistribution

:-- Figure A-26 shows the range and average grain size distribution ui this soil. The table

on this figure lists some ot the grain size parameters investigated in this study.

10. Density and Relative Density

The average relative density of Soil No. 7 is about zero. Figure A-27 shows the rela-

tionship between soil unit weight (density) and relative density for the SS soil.as deter-

mined by_the method of test suggested by D. M. Burmister (c, pp. 175-177). The solid

line represents the average of several tests and the dashed lines indicate the 95% confi-

dence limits for the data.

11. Direct Shear Test Results.

_ Figure A-28 shows the relationship between angle of internal friction and relat£ve den-

sity obtained from the direct shear tests. This figure indicates that the angle of internal

friction for Soil No. 7 is about 29.8°__.The_complete data obtained from the direct shear

tests is given in Appendix C.

12. Sonic Velocity Test

The values of initial tangent modulus yielded for Soil No. 7 by this test is about 10,000

psi at a confining pressure of 4 psi (no correction made for Poisson's Ratio). A detailed

description of the test apparatus and procedures is given in Appendix B.

#

A-52

00000001-TSG07

Page 54: Lunar Module (LM) J ! Soil Mechanics Study I

,,8/_i _R _

A-53

00000001-TSG08

Page 55: Lunar Module (LM) J ! Soil Mechanics Study I

55 55

60 60

-. _ ..

85 " 65

90 -90

9595, -'_=_ ,--

"_ "_ -I00lOOl _-_.

_'_ _ _ 105105 _ _

11o 11o"_ _ 35

115 "0.0 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1.0 114.8

Relative Density_ D r

Figure A-27. Density Versus Relative Density for SS Soil

A-54

q

........ 00000001-TSG09

Page 56: Lunar Module (LM) J ! Soil Mechanics Study I

I

50

{D

_ 45

0

"_ _•r, 40

t...,

- /0

_ 35

30 _

25

0 0.2 0.4 0.6 0.8 1.0.

Relative Density, Dr

z

i Figure A-28. Angle_of Internal Friction (as determined by the direct shear test): Versus Relative Density for SS Soil

A-55b

i'

4

, j

O0000001-TSGIO

Page 57: Lunar Module (LM) J ! Soil Mechanics Study I

t

13. Soil 'rest Bed Placement P.rocedurc

Soil No. '? was placed using the hopper method.

14. Special Conditions

This soil was notappreciably altered hy degradation effects created by testillg or 4-

handling with the vacuum system.

A-56

OObOOOO1-TSG11

Page 58: Lunar Module (LM) J ! Soil Mechanics Study I

!II!

LM SOIL MECItANICS STUDY

SPECIFICATION FOR SOIL NO. 8

1. Bendix De$ignatiom SS Intermediate, el L

2. Descl_ption: White narrowly-graded silica sand.

3. Source: Wedron Silica Company

135 S. LaSalle Street, Chicago, Illinois 60603

4. Source Name: Wedron 4040 Sand.

5. Chemical Analysis:* t/

Silica (Si02) 99.9%

Ferric Oxide (Ee203) Trace

Aluminum (A1203) 0.1%

Titanium Oxide (Ti02) . Trace

Calcium Oxide (Ca0) Trace

Magnesium Oxide (Mg0) Trace "

6. Petrological Description

Essentially pure quartz (silica)sand grains, rounded to subangular. It is mined from

the St. Peter Sandstone formation in Wedron, Illinois. Figure A-29is a photomicrograph

" of the 8S soil.

*t'rovided by supplier.

A-57

0000000'/-TSG 13

Page 59: Lunar Module (LM) J ! Soil Mechanics Study I

/:

A-58

00000002

Page 60: Lunar Module (LM) J ! Soil Mechanics Study I

II

7. _ Mineralogi_cal Description

Essentially tile only mineral presentAn_this_soiLts.._tuartz (siiicaL

8. Moisture Content,i

All tests were l'un onair-dried material. Ovem.drying.of the air-dried _soil at 230_F

yielded moisture contents commonly in the range of 0,2 to 0.6% (per.cent.of dry weight

of soil).

9. Grain Size Distribution

Figure A-30 shows the range and average grain, size distribution of this soil._ The table

on this figure lists some of the grain size parameters investigated in this study.

10. Density and Relative Density

The average relative density of Soil-No. 8 is about 0.53. Figure A-31 shows the relation-

ship between soil unit weight (density) and relative density for. the SS soil as determined

: by the method of test suggested by D. M. Burmister (c, pp. 175-177), The solid line

represents the average of several tests and the dashed lines indicate the 95% confidence

limits for the data.

11. Direct Shear Test Results

Figure. A-32 shows the relationship between angle of internal friction and relative den-

sity obtained from the direct shear tests.

This figure indicates that the angle of internal friction for Soil No. 8 is about 36.8 °.

The complete data obtained from the direct shear tests is given in Appendix C.

12 .... Sonic Velocit_ Test

The value ofinitial tangent modulus yielded for Soil No. 8 by this test is about 18,000

psi at a confining pressure of 4psi (no correction made for Poisson's Ratio). A detailed

description of the test apparatus and procedures is given in Appendix B....

!

A- 59t

00000002-TS, 03 "

Page 61: Lunar Module (LM) J ! Soil Mechanics Study I

g o _ ° g o o o o o

A-60

....... i vj ........ i.......

000'06'002-:1-SA04

Page 62: Lunar Module (LM) J ! Soil Mechanics Study I

.

55 ..... 55

I .!

I60 60

65 85

-_ .7O ,570*r'q

m 75_t,,O

•_80 ,80_._

85 .85

90 -90

95

95.8 _

105 -_ _-._-.__ 105

ii0 -

-'_ 112.7115 114.9_

0.0 0.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Density, DrFigure A-31. Density Versus Relative Density for SS Soil

i A-BZ

00000002-TSA05

Page 63: Lunar Module (LM) J ! Soil Mechanics Study I

50

u_

45

I

0

_ 40

0

_ 35

30 _

0.2 0.4 0.6 _ 0.8 1.0 ...................

Relative Density, Dr

Figure A-32. Angle of Internal Friction (as determined by the direct shear test)Versus Relative Density fpr SS Soil_

A--62

k ........ i i i i i i i i I

00000002-TSA06

Page 64: Lunar Module (LM) J ! Soil Mechanics Study I

13. Soil .Test Bed Placement Procedure

Soil No. 8 was placed with a hopper and compacted with 8 passes of a roller.

14. Special Conditions

This soil was not appreciably altered by degl'adation effects created by testing o1"han-

dling with the vacuum system.

A-63

....... • , , , ,, , , , | i i l iiii

00000002-TSA07

Page 65: Lunar Module (LM) J ! Soil Mechanics Study I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL NO, 9

1........ Bendix Designation: SS Dense

2. Description: White narrowly-graded silica sand.

3. Source: Wedron Silica Comp_any

135 S. LaSalle Street, Chicag_% !l!inois 60603

4. Source Name: Wedron 4040 Sand.

5. Chemical Analysis:*

Silica (Si02) 99.9%

Ferric •Oxide (Fe20 S) Trace. 1!

Altuninum Oxide (A120S) 0.1% 1

Titanium Oxide (Ti02) Trace

Calcium Oxide - "a0) Trace

Magnesium Oxide (Mg0) Trace ,

6. Petrological Description

EsSentially pure quartz (silica) sand grains, rounded to subangular. It is mined from

the_St. Peter Sandstone formation in Wedron, Illinois. Figure A-33 is a photomicrograph

of the SS soil.g

*Prov._ded by suppli'er.

A- 64

- i...... ooboooo2-ts ,o8-

Page 66: Lunar Module (LM) J ! Soil Mechanics Study I

A-65

k_ ,, * * • .. * ,* i. i n i • mn I I I I I I I llll

00000002-TSA09

Page 67: Lunar Module (LM) J ! Soil Mechanics Study I

7. /vlincralogical Description

Essentially the only mineral present in this soil is quartz (silica).

8. Moisture Content

All tests were run on air-dried material. Oven-drying of the air-dried soil at 230°F

yielded moisture contents commonly in the range of 0.2 to 0.6% (percent of dry weight

of soil).

9. Grain Size Distribution

Fig_are A.34 shows the range and average grain size distribution of this soil. The table ...................

omthis-figure lists some of the grain size parameters investigated in this study.

lfl.__Density and Relative Density

The average relative density of Soil No. 9 is about 0.69__l_igure A.-35 shows the rela-

tionship between soil unit weight (density) and relative density for the SS soil as deter-

mined by the method of test_suggested by D. M. Burmister (c, pp. 175- 177). The solid

line rep_:esents the average of several tests and the dashed lines indicate the 95% con-

fidence limits for the data.

L1. Direct Shear Test Results.

Figure A-36 shows the relationship between _,,:.t:le of internal friction and relative den-

: sity obtained from the direct shear tests. This figure indicates that the angle of internal

friction for Soil No. 9 is about 39 °. .The Jcomplete data obtained from the direct shear

tests is given in Appendix C.

12. Sonic Velocity Test

The values of initial tangent modulus yielded for Soil No. 9 by.this testis about 24,000

psi at a confining pressure of 4psi (no correction made for Poisson,s Ratio). A detailed

description of the test apparatus and procedures is given in Appendix B.

A-66

00000002-TSA11

Page 68: Lunar Module (LM) J ! Soil Mechanics Study I

¢_ Q _D Ca) e.a ¢..) 0 Q ¢__ ;0 t"- ¢,0 u_ .tit o'a, ¢q ,._ 0

, -.-|----_-_- ....... : , ,, [ _ _

g# :,_2_., = -=)--,--.,-,,r_,'._,m--_1 ......

t± ............ ....... _ _g_ __ A

:i::i::::l: :|:::[::::I:,: _ _ . • ."_01# ::I: ............ I... ....... I': N_ _, (a_ _ ---" o

,.:: .................. ..: _ "..I I..._ .... _.... )-':-.. -, _ _ _ o

q t: ti: ..... g '°--T]: _ 2 : t _ J : : "- :_" : " ,.4 "

' ki_ .... I ............... r.o.1_,., o _ - .

o,#>> o

o_,,._._.>->_v :)___.=____. .=. <

[:,_gi_.|;::!'_ t_:T;: -)- "--"'-'_'"'_'-"" .....' :'"_- oa00_# _--.._.,m._ .-:-m- =...-'e-m-.. :-"__l=_-+" _'-i--_F-_'_+_-4-4-/.,_ -L=,.+_4_ _ _

!::!-i.:i/: :;".:_:i::L=i_7_. : t"-: :5:F5: :: ":-_::: : : : : : " : i "8' .,,

.................... _ l .:-J

lq_TaAi.,{fl treq._,aauI.,.I_uaaaad _" '--"

A-67

= = -- di '_-- I I II I i II III III I II I1 i -_ I i

00000002-TSA13

Page 69: Lunar Module (LM) J ! Soil Mechanics Study I

55 55

6O

65

M.-I

'70QO,.(

FI ' _i

E1 8O

85 ,85

90 ,90

95

I00 _ _. .I00

1o5 ._ _= _ = •zo_

110 "_ _"--- .... _ "--'--'-112.'I

115 114.90.0 0.I ,0.2 0.3 0.4 0.5 0,6 03 0.8 0.9 1.0

RelativeDensity,D r

Figure A-35. Density Versus Relative Density for_SS Soll

A-68 !

9

O0000002-TSB01

Page 70: Lunar Module (LM) J ! Soil Mechanics Study I

I]

50 u

_45

g4

•_ 4o

0

_35

/30_

0 0.2 0.4 0.6 0.8 1.0

Relative Density, Dr

f, Figure A-36. Angle of Internal Friction (as determined by the direct shear test)Versus Relative Density for SS Soil

,t A- 69

I............ • . in d In i I i I I i i ......... i ............. _ --

O0000002-TSB02

Page 71: Lunar Module (LM) J ! Soil Mechanics Study I

13. Soil Test Bed Placement Procedure

Soil No,._gA_as placed by a hop_per and compacted wi_th 24 passes of a roller.

14. Special Conditions

This soil was not appreciably altered by degradation effects created by testing or han-

dling with _l_e vacuum systen_.

A-70 ..................

O0000002-TSB03

Page 72: Lunar Module (LM) J ! Soil Mechanics Study I

III

LM SOIl, MECHANICS STUDY

I SP_ECIEICATIQN FOR SOIL NO. i0

............. !.__ Bendix Designation: LSM intermediate

2. Description: Mixture of red broadly-graded crushed andesitic volcanic scoria

= (volcanic cinders) and light gray kaolin-type clay._

3. Source:

(a) Volcanic cinders- Cinder Products Company

3450 Lakeshore Avenue, Oakland, California 94610

(b) Clay- Cedar Heights Clay Company

50 Portsmouth Road, .Oak Hill, Ohio

4. Source Name:

(a) Volcanic cinders - Volcalite

(b) Clay - Cedar Heights Airfloated Bonding Clay

5. Chemical Analysis:

(a) Volcanic cinders.

Volcalite* Hypersthene Andesite (a, p. 458)

Silica (Si02) 514.22 56.88

;. Aluminum Oxide (A1203) 25.fl4_ 18.25_

-" *Chemical analysis provided by supplier.

A-71 i

%f

!

.... , , , i i i i I II I

O0000002-TSB04

Page 73: Lunar Module (LM) J ! Soil Mechanics Study I

(a) Volcanic cinders (Continued)

Volcalite* Hypersthene Andesite (a, p. 458)

Ferric Oxide (Fe203) 4.28 2.35

Calcitun Oxide (Ca0) 5.58 4.07

Sodium Oxide (Na0) 1.61 3.29

Potassium Oxide (K20) 0,_41 1.42

99.25

(b) Clay

Ignition loss 9.4%

Silica 57.3_m_

Alumina 28.5%

Iron Oxide 1.1%

Titania 2.0%

Lime 0.1%

Magnesia 0.2%

Alkalies 1.2%

Sulphur 0.2%

Total "100.0%

6. Petrological Description

(a) Volcanic cinders.

Highly porous volcanic (extrusive) rock-of "basic" composition commonly ........

termed v-olcanic scoria. A comparison of the chemical analysis provided

by the producer with other published analyses (a, pp. 456-466; (b, pp. 126-131)

indicates that the rock type is an andesite.

*Chemical analysis provided by supplier.

A-72

4

......... : .... -- _J

O0000002-TSB05

Page 74: Lunar Module (LM) J ! Soil Mechanics Study I

I 1

Ji (b)clay.

The supplier-repor-ts that this nmterial is essentially a kaolin-type clay.

The volcanic cinders (RC2 type) and clay are mixed 1: L(by weight) to pro-

duce the LSM soil. Figure A-37 is a photomicrograph of the LSM soil.

7..... Mineralogical Description

(a) Volcanic cinders.

No mineralogic analysis of the test soil has been done, but a normative analy-

sis of the hypersthene andesite reported by Clarke (a, p. 458) gives the follow-

ing:

Quartz 9.1%

Orthoclase 8.3%

Albite 27.8%

Anorthite 30.9%

Diopside 5.3%

Hypersthene 13.2%

Magnetite 3.5%

Ilmenite 0.8%

The reddish color of the RC soil would indicate that this material contains iron hydrox-

ides (e.g., limonite) rather than the magnetite and ilmenite_referred to in the norm

and probably constitutes a larger percentage of the RC material_than the iron minerals

used in the-exam lp.__.

Decomposition due to weathering tends-to decrease the percentage of silica, calcium.

oxide and-sodium oxide and increase the percentage of ferric oxides and aluminum oxide

(leaching, chloritization and kaolinization). The iron oxides (e.g.,magnetite, ilmenite)?

tend to form iron hydroxides (e.g,, limonite); the femic minerals (e.g., hypersthene) to

O0000002-TSB06

Page 75: Lunar Module (LM) J ! Soil Mechanics Study I

A_74

O0000002-TSB07

Page 76: Lunar Module (LM) J ! Soil Mechanics Study I

form chlorite (chloritizatlon); and the feldspars (e.g., orthoclase, albite) to form

clays (kaolinization). Tim chemical analyses exhibit these trends indicating that_some

decomposition due to weathering has occurred.

(b) Clay

No mineralogie analysis of the clay was done but the supplier reports that

the major component of the clay is_kaolin.

I 8. Moisture Content

I -All test were run on air-dried material. Oven-drying of the air-dried, soil at 230°F

yielded moisture contents commonly in the range of 0.2 to 0.6% (percent o£ dry weight

of soil).

9. Grain Size Distribution

Figure A-38 shows the range and average grain size distribution of this soil. The table

on this figure lists some of the grain size parameters investigated in this study.

10 .......Density and Relative Density

The averag_ relative density of SoiLNo. 10 is about 0.5. Figure A-39 shows the rela-

tionship between soil unit weight (density) and relative density for the_ LSM soil as deter- ]

mined by the method of test suggested by D, M. Burmister (c, pp, 175-177). The solid

line represents the average of several tests, and the dashed lines indicate the 95% con-

fidence limits for the data.

11 ........Direct Shear Test Results

Figure A-40 shows-the relationship between.angle of internal friction and relative den-

sity obtained from the direct shea_ tests. This figure indicates that-the angle of internal

friction for Soil No._10 is about_42 °, The complete data obtained from the direct shear

tests is given in AppendixC.

A-75

i 2 i , -

O0000002-TSB08

Page 77: Lunar Module (LM) J ! Soil Mechanics Study I

A-76

, J-- ---- . iii, , i ii i ii ii

O0000002-TSB09

Page 78: Lunar Module (LM) J ! Soil Mechanics Study I

I

I

55 55

.=,

6O 60

I ....

l

65 65

66.6

69.0 __ "-, ^a

C-,\ ge

80 \." "- 80,_ _. '_ ._,

_ 8585 _, -,,,

__ _ _ --88.190 _-_ _ _.2

--92.3

| "-I00i00 .,

105 105

110 110

ll h 1150.0 0.1 0.2 0.3 0.4 0.5 0.6 0.? O.B 0.9 1.0 ..........

RelativeDensRy, D r

: Figure A-39. Density versus Relative Density for LSM Soil

: A-_7.7..........................

..4

O0000002-TSBIO

Page 79: Lunar Module (LM) J ! Soil Mechanics Study I

5O

._ 40k

o 35

3O

t

0 0.2 0.4 0.6 0.8 1.0

RelativeDensity,Dr

Figure A-40. Angle of Internal Friction (as determined by the direct shear test)Versus Relative Density for L_c_VlSoil .........................................................

A-78

00000002-TSB11

Page 80: Lunar Module (LM) J ! Soil Mechanics Study I

t2. Sonic Velocity Test

The_value of il_ttlal tangent modulus was not obtained for Soil No. 10. Tests on LSM

soil will_ Dr = 0,77 gave values of initial tange- * modulus between 5,000 and 6,000 psi

at a confinil_g pressure of 4,psi (no cor_ction made for Poisson's Ratio). The esti-

mated initial tangent modulus for this soil is 4000 psi. A detailed description of the

test apparatus and procedures is given ir Appendix B.

t3. Soil Test Bed Placement Procedure

Soil No. t0 was placed with a hopper but was handled by shovel rather than the vacuum

system. Each layer (covered with a strip of cardboard) was rolled two times (one pass

back and forth in the bin).

14. Special Conditions

The values of angle of internal friction obtained for [he loose and dense LSM soil in the

direct shear test were essentially the same - about 40 ° to 45 °. This was dae_t__theAact

that the loose soiLtended to densify upon application of the normal load.

For this reason it was not possible to construct_a @ vs. Dr curve. The scatter band

shown in Figure A-40 is the estimated range of ¢ for Dr values ranging from .40 to

1.00 based on examination of the direct shear test results.

A_//9 ...................

' i........ I a I I I II I i I I I I HI I

O0000002-TSB13

Page 81: Lunar Module (LM) J ! Soil Mechanics Study I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL NO. 11

1. Bendix Designation: LSM Dense

2. Description: Mixture of red broadly-graded crushed andesitic (volcanic cinders)

and light gray kaolin-type clay.

3. Source:

(a) Volcanic cinders - Cinder Products Company

3450 Lakeshore Avenue, Oakland, California 94610

(b) Clay - Cedar Heights Clay Company

50 Portsmouth Road, Oak Hill, Ohio

4. Source Name:

(a) Volcanic cinders - V-olcalite ......

(b) Clay - Cedar Heights Airfloated Bonding Clay.

5. Chemical Analysis.

(a) Volcanic cinders

Volcalite* Hypersthene Andesite (a, p. 458)

Silica (Si02) 54.22 56.88

Aluminum Oxide (A1203) 25.04 18.25

*Chemical analysis pr_o_ided by supplier.

A- 80

......... • ,. in n i i I ...... _. i I I I i --

O0000002-TSC01

Page 82: Lunar Module (LM) J ! Soil Mechanics Study I

II] (a5 Volcanic cinders (Continued)

Volcaltte* Hypersthene Andestte (a, p. 458)

Ferric Oxide (Fe203) 4.28 2.35

Calcimn Oxide (CaO) 8.11 7,53

Magnesium Oxide (Mg0) 1._1 3.29

Potassium Oxide (K20) 0.41 1.42

99.25

(b) Clay

Ignition loss 9.4%

Silica 57.3%

Alumina 28.5%

Iron Oxide 1.2%

Titania 2.0%

Lime 0.1%

Magnesia 0.2%

Alkalies_ 1.2%

Sulphur 0.2%

Total 100.0%

6. _.__Petrological Description

(a) Volcanic cinders

Highly porous volcanic (extrusive) rock of "basic" composition termed vol-

canic scoria. A comparison of the chemical analysis provider by the pro-

ducer with-other published analyses-(a, pp. 456-466; b, pp. 126-131) indicates

; that the rock type is an andesite.

i *Chemical analysis provided-by supplier.

• A-81J

I

...... , .- , i i i i i i I II

00000002-TSC02

Page 83: Lunar Module (LM) J ! Soil Mechanics Study I

(b) Clay

The supplier reports that this material is essentially a kaolin-type clay..

The volcanic cinders (RC2 type) and clay are mixed 1:1 (by weight) to produce the- LSM

soil, Figure A-41 is a photomicrograph of the LSM soil.

7. Mineralogical Description

(a) Volcanic_ cinder_

No mineralogic analysis of the test soil has been done, but a normative ana-

lysis of the hypersthene andestte reported by ClarKe (a, p. 458) gives the

following:

Quartz 9.1%

Orthoclase 8.3%

Albite 27.8%

Anorthite 30.9%

Diopside 5.3%

Hypersthene 13.2%

Magnetite 3.5_%____

Ilmenite 0.8%

The_reddish color of the RC soil would indicate that this material contains iron hydrox-

ides (e.g., limonite) rather than the magnetite and ilmenite referred to in the norm-

and probably constitutea-a larger percentage of the RC material_ than the iron minerals

used in the example.

Decomposition due to weathering tends to decrease the percentage of silica, calcium

oxide and sodium oxide and increase the percentage of ferric oxides and aluminum oxide

(leaching, chlorittzatiomand kaolinization). The iron oxides (e.g., magnetite, ilmenite)

tend to form iron hydroxides (e.g., ltmonite); the femic minerals (e.g., hypersthene)

A-82

- i ; fl -.... ]

00000002-TSC03

Page 84: Lunar Module (LM) J ! Soil Mechanics Study I

A-83

L

-- + , l l , I I I

00000002-TSC04

Page 85: Lunar Module (LM) J ! Soil Mechanics Study I

to form chlorite(chloritization);andthefeldspars(e.g.,orthoclase,albite)toform

clays (kaolinization). The chemical analyses exhibit these trends indicating that some

decmnposition due to weathering has occurred.

(b) Clay

No mineralogic analysis of the clay was done but the supplier reports that

the major component of the clay is kaolin.

8. Moisture Content

All-tests were run on air-dried material. Oven-drying of the air-dried soil at 230°F

yielded moisture contents commonly in the range of 0.2 to 0.6% (percent of dry weight

of soil).

9. Grain Size Distribution

Figure A-42,shows the range and average grain size distribution of this soil. The table

on this figure lists some of the grain size parameters investigated in this study.

10. Density and Relative Density

The average relative density of Soil No. 11 is about 0.70. Figure A-43 shows the rela-

tionship between soil unit weight (density) and relative density for the LSM soil as

determined by the method of test suggested by D. M. Burmister (c, pp. 175- 177). The

solid line represents the average of several tests and the dashed lines indicate the 95%

confidence limits for the data.

11. Direct Shear Test Results

Figure A-44 shows-.the relationship between angle of internal friction andzelative den-

sity obtained from the direct shear tests. This figure indicates that the angle of internal

friction for Soil No. 11 is about 38.3 °. The complete data ootained from the direct shear

tests is given in Appendix C.

A-84

00000002-TSC05

Page 86: Lunar Module (LM) J ! Soil Mechanics Study I

I

,,B/ci -_ -

A-B5 ....

l

i I , I I,

00000002-TSC06

Page 87: Lunar Module (LM) J ! Soil Mechanics Study I

55 55

J ....... a.

60 60

_ 6566.6

69.0.. _ '%.

E 70 \ N ,_ ,_

",/\ ",,,i,,4

--\ \ _85

. \ 88.190 • "_.\ 90.2

.... _ 92.3

95

I0(] I00

105 105

II0 " II0

115 i 115 ..0.0 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Density, Dr

Figure A-43. Density Versus Relative DenSity for LSM Soii

A-86 t

d

L ..................... , ,,,, n i m- -_

00000002-TSC07

Page 88: Lunar Module (LM) J ! Soil Mechanics Study I

5O

30 -

0 0.2 0.4 0.6 0.8 1.0Relative_ Density, Dr

Figure A-44. Angle of Internal Friction (as determined by the direct shear test)Versus Relative Density for LSM Sol:

A-87

....... , , , , I i III I

00000002-TSC08

Page 89: Lunar Module (LM) J ! Soil Mechanics Study I

12, _Sonic Velocity Test

The values of initial tangent modulus for Soil No. 11 by this test 6,000 psi at a confining

pressure of 4 psi (no correction made for Poisson's Ratio). A detailed description of

the test apparatus and procedures is given in Appendix B.

13.__Soil Test Bed Placement Procedtu'e

Soil No. 11 was placed with a hopper but was handled by shovel rather than the vacuum

system. Each layer (covered with a strip of cardboard) was rolled six times (three

passes back and forth in the bin),

14. Special Conditions

The values of angle of internal friction obtained for the loose and dense LSM soil in the

direct shear were essentially the same - about 40 ° to 45°. This was due to.the fact that

the loose soil tended to densify upon application of the normal load.

For this reason it was not _ossible to construct a 4_ vs. Dr curve. The scatter band_

shown in Figure A-44 is the estimated range of q_ for Dr values_ranging from .40 to

1o00 based on examination of the direct shear test results.

A-88

J

00000002-TSC09

Page 90: Lunar Module (LM) J ! Soil Mechanics Study I

I

LM SOIL MECHANICS STUDY

SPECIFICATION FOR SOIL NO. 12

I. Bendix Designation: RSM-b Dense.

2. Description: Mixture of red narrowly-graded crushed andesitic volcanic scoria

(volcanic cinders) and white narrowly-graded crushed marble.

3. Source:

(a) Volcanic Cinders, Cinder Products Company

3450 Lakeshore Avenue, Oakland, California 94610

(b) Crushed Marble- Terrazzo Marble Supply

5700 S. Hamilton Street

Chicago, Illinois 60636

4. Source Name:

(a) _rolcanic Cinders-Volcalit__

(b) Crashed Marble o #10 Georgia special white marble chips

5. Chemical A.nalysis:

(a) Volcalite Cinders

Volcalite* Hypersthene Andesite (a,._pp. 45_-466)

Silica (Si02) 54.22 .... 56.88

Aluminum Oxide (A1203) 25.04 18.25

Ferric Oxide (Fe203) 4.28 2.35i ,m i

*Chemical analysis supplied by producer.

A- 89

O0000002-TSCIO

Page 91: Lunar Module (LM) J ! Soil Mechanics Study I

(a) Volcanic Cinders_ (Continued)

Volcalite* Hypersthene Andesite (a, pp. 456-466)

Calcium Oxide ._. (CaO) 8.11 7.53

Magnesimu Oxide (Mg0) 5.58 4.07

Sodium Oxide (Na0) 1.61 3.29

Potassium Oxide (K20) 0.41 1.42

99.25

(b) Crushed Marble:

No chemical analysisavailablebutprimarilycalcium carbonate(CaC03).

6. PetrologicalDescription

(a) VolcanicCinders.

Highlyporous volcanic(extrusive)rock of"basic"composition.Commonly

termed volcanicscoria. A comparison ofthe chemicalanalysisprovided

by theproducer with otherpublishedanalyses(a,pp. 456-466;b,pp. 126-131)

indicatesthatthe rock typeisan andesite.

(b) Crushed Marble.

Marble is-acrystalinecompact varietyof metamorphosed sedimentarylime-

stone ..........

The volcanic cinders and crushed marble are mixed in-the ratio of 1:3, respectively,

by weight. Figure A-45 is a photomicrograph of the resulting RSM.

7. Mineralogical Description

(a) Volcanic Cinders.

*chemical analysis supplied by producer. ".............

A-90

• __ , ,, O000000-2 TSc1 -

Page 92: Lunar Module (LM) J ! Soil Mechanics Study I

I

I

II

A-91

- " 00000002-TSC13

Page 93: Lunar Module (LM) J ! Soil Mechanics Study I

No mineralogic aualy_is of the test soil has been done, but a normative

analysis of.the hyperSthene andesite reported by Clarke Ca, P. 458) gives

the following:

Quartz 9.1%

Orthoclase 8.3°/o

Albite 27.8%

Anorthite 30.9%

Diopside 5.3%

Hypersthene 13.27o

Magnetite 3.57o

Ilmenite____ ..... _fi__o___.

The reddish color oLthe RS soil would indicate that this material contains iron hydrox-

ides (e.g., limonite) rather than the magnetite andAlmenite referred to in the norm

and probably constitutes a larger percentage of the RS material than the iron minerals

used in the example.

Decomposition due to weathering tends to decreasethe percentage of silica, calcium

oxide and sodium oxide and increase the pezcentage of ferric oxides and aluminum oxide

(leaching, chloritization and kaolinization). The iron oxides (e.g., magnetite, ilmemte)

tend to form iron hydroxides (e.g., lim3nite); the femic minerals (e.g., hypersthene) to

form chlorite (chloritization); and the feldspars (e.g., orthoclase, albite) to form clays

(kaolinization). The chemical analyses exhibit these trends indicating that some:decom-

position due to weathering has occurred.

(b) Crushed Marble.

No mineralogic analysis of the marble was done but it consists primarily of

calcite.

A-92

..... , , nlil n m n ( I i I I I i _

00000002-TSD01

Page 94: Lunar Module (LM) J ! Soil Mechanics Study I

}

8. Moisture Content

All tests were run on air-dried material. Oven-drying of the air-dried soil at 230°F

yielded moisture contents commonly in the range of 0.2 to 0.6% (percent of dry weight

of soil).

9. Grain Size Distribution

Figure A-46 shows the range and average grain size distributiol_ of this soil. The table

oll this-figure lists some of the grain size parameters investigated in this study. All

data shown is for unused, undegraded material.

10. Density and Relative Density

The average relative density of Soil No. 12 is about 0.?5. Figure A-47 shows the rela-

tionship between soil unit weight (density) and relative density for the RSM soil as

determined by the method of test suggested by D. M. Burmister (c, pp. 1.75=-177).

11. Direct Shear Test Results

Figure A-48 shows the relationship between angle of internal friction and relative den-

sity obtained from the direct shear tests.

This figure indicates that the angle of internal friction for Soil No. 12 is about 37 ° .

The complete data obtained from the direct shear tests is given in Appendix C.

' 12. Sonic Velocity Test

No determination of initial tangent modulus was made for Soil No. 12. Based on the

results of tests with other soils the mocl, flus is estimated to be in the vicinity of 20,000

psi.

13. Soil Test Bed Placement Procedure

Soil No. 12 was placed by shovel and rolled with 10 passes per two inch layer using the

lawn roller equipment.

! A-93

, nm, • i m m I I i I I I • _ ............

00000002-TSD02

Page 95: Lunar Module (LM) J ! Soil Mechanics Study I

Q,_ e 0o _- _ _ ,_ ¢_ ¢_ ,., o

,,8/¢ r:-t , , h J_ fi 1__*-]_, . _- ..___.- : H 1. I _ H ,H ......._,, i_; . 1_: _l _ l i; ;I._ _ :_ :i : _:-.............. T ....... ..:.-.

.... ! ':L .q

_,_ . . - , ' : : • . . . , , _ • _ • : . - . . __ •

. " : : ! ! , i : , : _ _ _ _ _,_ _ : _ , : : : '.. : . ./ .

, _ _i_ m_ _ •

!

_-i _-"1 .... _ ': " " : , " ...... _'_

" . .1......... _--4-_--.---_-_ ......... _ " _11 ' j - "1 I,llil, I _ I: "._L. _,

/V_IIII I I ; q I I .... _ I _ . ; .l_l __ . • /

.... _ _ • I_ - T " 7C" " I • ? "- _-7-"'_ ..... : I l '"

-_-_ i_ ", "", __ ___L_k-_ _-_-_- .... _ o

__,.__ _ _ _ , _-._,___,___= ' _01,#

_ -- _ i_ ^., _ _.-. L-L[_.;--L-_-...I-.............. , ..

01,# _ • ............

_ o_# '- "_ _'?_-___--_-__ _';:?:'I _"OOI#':- _ '_ ' ' . _ .

7]LX. , _ _ o o _ ":. _ .-.-'- .......... =.........O_I# _ _ _ _ _ ...................----I:_.-'_-h_. "_

_, . 0 -- ._==: .:: -..

--m-_ W-< _,..').,-,' ',.' ___ -t + + -: . + +__U: "':±

-, r..>-+......... ++ ........iiii

o o o o o o o o o o o c_

_qgTaA_ _EI_'_R.I.,_aul.,T luaa,tacI '---

A-94

00000002-TSD03

Page 96: Lunar Module (LM) J ! Soil Mechanics Study I

Ii] 55 55

i 65 I ' 65

,e,1

___._

"_ _ 80 N-80 _ _*#=.I

..... _. _--_ _

.... _ '89.490

i

95 ,'

I00 , '"i

105 ," 105, ,,

llO Ii0

I15 1150.0 0,1 0.2 0.3 0.4 0,5 0.6 O,'T 0.8 0.8 1.0

RelatiVeDensity,D r....................................

Figure A-47. Density Versus Relative Density for RSM Soil

A-95 .............

NNNNNNNg_T_nnA

Page 97: Lunar Module (LM) J ! Soil Mechanics Study I

J

50 /

JJ45

- JO

•_ 4o

O

_ 35

3O

0 0.2 0.4 0.6 0.8 1.0

Relative Density, Dr

Figure A-48. Angle of Internal Friction (as determined by the direct shear test)Versus Relative Density for RSM Soil

A-96 I

............ I I i i i i I " i I I II I m _

00000002-TSD05

Page 98: Lunar Module (LM) J ! Soil Mechanics Study I

t

E14. Special. Commehts

The RSM-b soil is susceptible to particle breakdown or degradation due to handling and

testing, Such degradatiol_ leads to changes in some soil properties, unit weight in par-

ticular. If the handling method is such that this process cannot be prevented, or the

soil cannot be replaced when these effects become prominent, periodic samplil_g of

the soil bed should be made in order that the effects be known quantitatively.

A-97/A-98

.-- 4

: .J

00000002-TSD06

Page 99: Lunar Module (LM) J ! Soil Mechanics Study I

APPENDI× B '_

The determination of the sonic modulus_oF the test soils was subcontracted

by Bendix to the IIT Research Institute at Chica_o, Illinois. Appendix B

.:... is a complete reproduction of the final report prepared by IITRI, which

explains the test equipment and procedures used and the results obtained,

b. A _ _ _

d| |i ill ..... i III - i ,,, . A_

NNNNNNnO T_ F_7

Page 100: Lunar Module (LM) J ! Soil Mechanics Study I

IITRI Final Report M6175P.O. No. 5800191M

DETERMINATION OF THE

INI'fIAL TANGENT MODULUSfo=

Bendix Products Aerospace DivisionThe Bendix CorporationSouth Bend, Indiana

January, 1967

- 4I

00000002-TSD08

Page 101: Lunar Module (LM) J ! Soil Mechanics Study I

iliT RESEARCH INSTITUTETechnology Center

Chicago, Illinois 60616

Report No. M6175

(Final Report)

DETERMINATION OF THE INITIAL TANGENT MODULUS

P. O. No. 5800191M

November 9, 196_6to January 6, 1967

by

J. D. Nelson

for

Bendix Products Aerospace DivisionThe Bendix CorporationSouth, Bend, Indiana

January, 1967

i

JI

,,i m _

UUUUUUUL louu_

Page 102: Lunar Module (LM) J ! Soil Mechanics Study I

i__.

I

IT FOREWORD ........

This report represents the final report on IF Research

Institute Project No. M6175 for Bendix Products Aerospace

Division under P. 0. No. 58001R_.. The work reported herein

was performed during the perlod November 9, 1966 to January 6, .............................

1967. Persons who contributed to this work are J. D. Nelson,

R. D. Rowe and E. Vey.

Respectfully submitted,

liT _SEARCH INSTITUTE

Research Engineer

APPROVED :

E. VeyAssistant Director of ResearchMechanics Research Division

JDN:is

f

1 liT RESEARCH INSTITUTE

d

• ..... , .... _- J

00000002-TSD30

Page 103: Lunar Module (LM) J ! Soil Mechanics Study I

I

I

TABLE OF CONTENTS

Section

I iA INTRODUCTION. • . . • • . • . • • • ' ' • ' " " "

B APPARATUS AND EXPERIMENTAL PROCEDURE. . • . • . • I

C RESULTS • • . . . . . . . . . . . . . . . . . . 2

D DISCUSSION OF RESULTS • • . • • • . . • • • • • ' 3

! liT RESEARCH INSTITUTE

iii

00000002-TSDll

Page 104: Lunar Module (LM) J ! Soil Mechanics Study I

DETERMINATION OF THE INITIAL TANGENT MODULUS

A. INTRODUCTION

The measured initial tangent modulus ofsoil is highly

dependent on the manner in which it is measured. Values

measured directly by static triaxial compression tests will generally

differ hy an order of magnitude from those obtained indirectly

by the measurement of stress wave propagatlon velocities.

Furthermore, the determination of the stress-strain curve under

dynamic loading I yields values of the modulus that may differ

by as much as a factor of 4 fromthose computed from the velocity

of wave propagation.

It is diffieul=, therefore, to ascertain the actual

value of the initial tangent modulus for soil, but it is

generally believed that the value computed from the stress wave

velocity represents most closely the actual value.

This report describes experiments in which a stress

wave was passed along a triaxial soil specimen and the wave

velocity measured by stress gages located at each end of the

sample. The initial tangent modulus was then computed from the

measured velocity.

B. APPARATUS AND EXPERIMENTAL PROCEDURE

The apparatus used in this investigation 2 is shown in

Fig. i. The stress wave was generated by a shock tube using

compressed air. The time required for the wave to traverse the

specimen was determined by displaying the output of stress gages

on an oscilloscope and measuring the difference between arrival

iVey, E. and L. Strauss, "Stress-Strain Relationships in ClayDue to Propagating Stress Waves", to be published.

2Sellg, E. T. and E. Vey, "Shock-Induced Stress Wave Propagationin Sand", J. Soll Mech. and Found. Div., ASCE, Vol. 91, No. SM3,Proc. Paper 4332, May 1965, pp. 19-49.

liT RESEARCH INSTITUTE

l

00000002--7"SD13 '

Page 105: Lunar Module (LM) J ! Soil Mechanics Study I

i times at each position. Piezoelectric stress gages were mountedI

r at each end of the specimen. The one at the forward end was

cemented to the outside of the sample (Fig. 2) and the one at

the reaction end was mounted on the inside face of the end plate.

The loose samples were prepared by pouring the soil

through a funnel with a slotted end. To obtain dense samples

the soil was vibrated by means of a small vibrating plate during

preparation (Ref. 2).

The confining pressure wasapplied to the sample by

: applying a partial vacuum to the sample inside arubber diaphragm.

i Several measurements were made on each sample at different con-fining pressures. The axial stress applied to the specimen was

controlled by pressurizing the driver end of the shock tube to

the same pressure each time. The peak stress applied to the

sample in this way was somewhat less than 2 psi.

C. RESULTS

The initial tangent modulus was computed by the

equation

E = pe 2 (I)

where

E is the initial tangent modulus

p is the mass density

c is the velocity of stress wave propagation.

The values_ so determined were plotted as a function of confining

pressure, 03, and are shown in Fig. 3 through 7 for the differentsoils,

The results appear quite reasonable and show a

decrease in modulus with a decrease in confining pressume and/

or density. The results for the LSM soil may be somewhat

questionable because of difficulties encountered in applying a

uniform confining pressure along the specimen length. The

permeability of this particular soll was quite low and hence,

IIT....RESEARCH INSTITUTE

2

- I f _ . __ll II l • i I Ii i II •

OOOOOO02-TSF01

Page 106: Lunar Module (LM) J ! Soil Mechanics Study I

there appeared to be a pressure gradient from one end of the

specimen to the other. For this reason the actual "effective"

confining pressure could not be determined.

This problem was not encountered in any of the other

soils.

D. p scusSIONoF SUn SThe modulus as computed from Eq. (I) neglects lateral

effects _nd is valid only for a soil in which no lateral straln

is permitted. For a more general case the wave velocity would

be gSven by the equation

(l+v)(l-2v)E = pc2 (l-v) (2)

in which v is Polsson's ratio. The factor"

f(v) (l+v)(l-2v)(l-v) (3)

was plotted as a function of v in Fig. 8. It can ba seen that

for values of v less than 0.20 =he error introduced by neglect-

ing this term is less than i0 percent. However_ it is recom-

mended that measurements be made of v for the various soils to

determine the extent to which this term would be expected to

influence the results.

liT RESEARCH INSTITUTE

3

Page 107: Lunar Module (LM) J ! Soil Mechanics Study I

O

Fig. I APPARATUS FOR MEASUREMENT OFSTRESS WAVE VELOCITY

4

.... , ,, imm i i iii I

O0000002-TSF03

Page 108: Lunar Module (LM) J ! Soil Mechanics Study I

Jl

|

i-_W__ . _ ,_-_b_

Fig. 2 STRESS GAGE AT FOKWARD ENDOF SPECIMEN

5

• , , , i , i ii i

O0000002-TSF04

Page 109: Lunar Module (LM) J ! Soil Mechanics Study I

--- . . ....

18

Dense

D " 0.9917 - r.....

16

I0

9

7 -I l I I ,I, - Io 2 .......4 6 8 10 12 u

Confining Pressure, _3' psiI

Fig. 3 E VERSUS (_3 FOR RS SOIL

6

A

........ • , ,m m i i i ii I I I I I

O0000002-TSF05

Page 110: Lunar Module (LM) J ! Soil Mechanics Study I

I

i0

8

3

I

m

O' I 1 I I I I

0 2 4 6 8 i0 12 14

Confining Pressure, 03, psi

Fig. 4 E VERSUS _3 FOR PS SOIL

b

7

O0000002-TSF06

Page 111: Lunar Module (LM) J ! Soil Mechanics Study I

40

Dense

_nr = o.84

35

30

15 " i

I0

5 i0 2 4 6 8 I0 12

Confining Pressure, c3, psi

Fig. 5 E VERSUS _3 FOK SS SOIL

8

I

O0000002-TSF07

Page 112: Lunar Module (LM) J ! Soil Mechanics Study I

29 ......

23

21

ii-

9-

d

50 2 4 6 8 i0 12 14

Confining Pressure, sS' psi

Fig. 6 E VERSUS 03 FOR RC SOIL

9

• i d

Page 113: Lunar Module (LM) J ! Soil Mechanics Study I

ii

i0

[] Dr = 1.04

9

O

Dr = 0.995[]

8 O

Dr = 0.77

21

1

I

I I I , I I I ICO 2 4 6 8 i0 12 14 16

Confining Pressure, _3' psi

Fig. 7 E VERSUS _3 FOR LSM SOIL

i0d

O0000002-TSF09

Page 114: Lunar Module (LM) J ! Soil Mechanics Study I

0.9[

0.8[

0.7[

0.6[_,_ o._ .

, 0.4 I

0.3[

0 I ,, I ,

0 0.I 0.2 0.3 0.4 0.

Poisson!s Ratiq,

Fig. 8 DEPENDENCY OF f(V) ON v (E,=pe2 f(_) )

ii

O0000002--TS'F10

Page 115: Lunar Module (LM) J ! Soil Mechanics Study I

APPENDIX C

DIRECT SHEAR TEST DATA

The direct shear test data presented in this appendix was obtained from tests performed

by the Civil Engineering Department of the University of Notre Dame under the super-i

visio:_ of Dr. Bruce B. Schimming, Associate Professor. One exception on Figure C-5A

is noted.

Figures C51A through C-7B are the data sheets and failure envelopes for the original

series of tests performed on the test. soils. Figures C-8 through C-15 present the failure

envelopes plotted by the Univac 1107 computer on a CAL-COMP PLOTTER at Notr_ Dame.

Where more than one series of tests were performed on a given soil, the figures are

numbered "A;' "B," "C ;' etc., and the last figure in the series represents a combined

plot of all tests.

Finally, Figures C-16 through C-22 show the relationship between angle of internal fric-

tion and relative density indicated by the direct shear tests for each soil. Figure C-23

plots the average relationshi p for all soils except soil number 10.

%

C-1

me m i i liH i a li - -- i

O0000002-TSF11

Page 116: Lunar Module (LM) J ! Soil Mechanics Study I

llS SOIL

0 )'= 40.7 to 47.4 Lb./Ft. 3 (D r = .50 to .57)

• Y= 49.2 to 51.1 Lb./Ft. 3 (D r = .73 to .88)

A y= 53 to 55.4 Lb./Ft. 3 (D r . 1.0 to 1.16)6000

5000 /

2000 /_,v_I000 "_

0

0 1000 2000 3000 4000

(PSF)

Figure C-IA...Failure Envelopes (Maximum Shenr Stress vs. Normal Stress)

C-2.

O0000002-TSF13

Page 117: Lunar Module (LM) J ! Soil Mechanics Study I

6000

RS Soil

5000-- Y--46.7to 47.4Lb./Ft.3 (Dr = .5to .57)-

a(psF) 7 (PcF

+100 I

_ _ _ o _ ¥61 _ + ,_' + + v + Same

_._ ).ag +a ,,, , * c Notationo_ o+,A_-_x,Ox_*" x*" x_a _ m x*a x* x*_x '_ _ x As Above

-I0( J0 50 100 150 200 250

6r X 103. (in.)....

Figure C- lB. Direct Shear Test Data. Shear Stress vs. Shear DisplacementDilation Displacement vs. Shear Displacement

}

i' C-3

iL

k

OOOOOOO2-- SGO'

Page 118: Lunar Module (LM) J ! Soil Mechanics Study I

r Ir

6000

RS Soil5000

),= 49.2 to 51.1 Lb./Ft. 3 (Dr = .73 to .88) I(r (PSF) (r,cF'

Cx__::"-x"-x'"x_'-x_. 3520 49.54000

/_._ -"_"'* -,.-: ...*.----- 2935 49.7<

_" _. +_*""+-"+ 2345 49.2

+,_- . 1760 50.3

��'_._.. __ _,_ _"'_'---v'-1172 49.4

_'_" ".a,....A....,.587 51.1!.000

"cr'wz)'_)-"°"-'°"--'°"--o 294 49.4

0

+]00 (_o_ A

O A

'P" O A(_

.... ° A o A _ i*¢_ A o '_ ;_ _ _l*x x Same" _ * _ Notation•"_ , ax As Aboveb

- 100

0 50 100 150 200 250

6rx 10-3 (in,) ....

Figure C-1C. Direct Shear Test Data - Shear Stress vs. Shear DisplacementDilation Displacement vs. Shear Displacement

C-4 t

.... i i iii i i I I I II I I I

00000002-TSG02

Page 119: Lunar Module (LM) J ! Soil Mechanics Study I

6000

RS Soil

Y= 53 to 55.4 Lb./Ft. 3 (Dr = 1.0 to 1.16)

•3000.

_._ -72345 55.4

_,'_" v __ 1468 53.02000

i000"_..., "_ _ 587 54.1-'_"'_o 294 54.5

-o-e---e._e__e,._ 0 54.5

0

• 0 _,, A*i00 • o _ "

""' _ _ I] D * xv 6 0 _ #¢ X

'o n ,_,-, n _v _ x Same_ __*_ 'x* - Notation "

_4As Above

-I00

0 50 I00 150 200 250

6rx 10-3 (in.)

Figure C- ID. DirectShear Test Data - Shear StreSsvs. Shear DisplacementDilationDisplacementvs. Shear Displacement

C-5

!

o00oooo2-9 G03"

Page 120: Lunar Module (LM) J ! Soil Mechanics Study I

PS-Soil

O Y= 25.6to26.8 Lb./F_t.3 (D___.33to .53)

6000- O Y= 31.7to33.1Lb./Ft.3(Dr = 1.15to

50( []

0

2000-

i i0

0 i000 2000 3000 4000 5000

(PSF)

Figure C-2A. Failure Envelopes - Maximum Shear Stress vs. Normal Stress ........................

C-6

i

....... i , I i I I I

00000002-TSG04

Page 121: Lunar Module (LM) J ! Soil Mechanics Study I

i6000

_ (PSF) %'(PCF

PS Soil5000 --

)'--. 25°6 to 26.8 Lb,/Ft.3- (D r =o33 to 4_31

.,_4400 25.7

4000 'J*"*"

_./_" _,x ,,.,. x ,,._ __ "-'_' 3660 25.9

._'m_3000 *'/ /_ x._ / I"'_._.o_', ...o_ I----=----s- _2935 26.8

/_j _" A.,_,_._,.._.,,_.,,_.:_..A."''_=_A"--_ 2200 25.6

.O-c_°'x_°

lO00 ! - - . " " - 734 25.6

........

+I00

_,_ Same¢_ , " " Notation

; • 0 ©

° i" ii°!

- i0050 I00 150 200 250

_TX !0'3 (in.)

i

Figure C-2B. Direct Shear Test Data - Shear Stress vs. Shear DisplacementDilation Displacement vs. Shear Displacement

C-7 I

J

, _i..... , , , ,, i i i

O0000002-TSG05

Page 122: Lunar Module (LM) J ! Soil Mechanics Study I

600OPS Soil I I'

a (PSF) T (PCF')'= 3L-7tm 33.1Lb./Ft,3 (Dr = 1.15to 1.3)

50C0 ......... _ - -_.._ _"*-"*"*'*-.......... "_"* 4400 32.8

_..x.._.x-x- _-x 3660 32.1i

4000 - ,/_ _._ _,,.o--..._..,-_;_'_"_'_'_- 2935 31.7

_" 3000 -_/___ n/E l_I_ 2200 32.2#l /

/2000 -_---_ ._o_n 1468 31.8

]_/_/_.'-"-o.. 734 33.1

i000 if

0

+!00

H Same.z . Notation

' 0 !:'_" _ _°_ [ _ _ * As Above

-100

0 50 100 150 200 250

6rx 10 -3 (in.)

Figure C-2C. Direct Shear Test Data - Shear Stress vs. Sliear DisplacementDilation Displacement vs. Shear Displacement

C-8

& ........ • ...... i i i i i I ---- --

00000002-TSG06

Page 123: Lunar Module (LM) J ! Soil Mechanics Study I

RSM-a Soil

O Y= 57.9 to 59.4 Lb./Ft. 3 (D r _0 to 15 _,

m y, 75 Lb./Ft.3 (Dr = 1.0to 1.3)

5000-

4000-

,_ [] /ov

_, 3000-

/°b-0

f2000-

I000- /t/// f

SS

Ss

t l I t0 1000 2000 3000 4000 5000

(PSF)

p

FigureC-3A. FailureEnvelopes - Maximum Shear Stressvs.Normal Stress

i c-91

O0000002-TSG07

Page 124: Lunar Module (LM) J ! Soil Mechanics Study I

5000 I i , ,RSM.-a-Soil

T (PSF))'= 57.9 to 59A Lb./Ft. 3 (Dr = 0 to .15)

7(PCF

' I4000 I

_,. �._.-_4695 57.9

x_,r _i _.3000 +/ ..._o_c S Z 3815 57.9

_* /_ Z _0_, _____--_'--_ 293-4 57.9

_o_'--_ 17gl 57.9+Z D_,, f

I000

_/o- _... A....--. _ __._. _ 734 59.4

0

_/+50

•_ 0Sal]les A

A A A a 5 A a A Notation[] c

o [] _ [] u _ o c [] As Above

0 0 0+ + + _ o _ o o oI- + +

- 150

50 I00 150 200 250

_× i0-3 (in.)

#

Figure C-3B. Direct She_.r Test Data - Shear Stress vs. Shear Dis,placementDilation Displacement vs. Shear Displacement

C-10

4 ., ,

..... O0"O00002--T-SG084

Page 125: Lunar Module (LM) J ! Soil Mechanics Study I

_r

RSM-a Soil

6000 7=.75 Lb./Ft. 3 (Dr = 1.0 to 1,3)](PSF)V(PCF)

,,_ o,..,_, ...,.o._ ° 4695 75.0(/o _o

40( 3815 q5.0

3000_ _/ :_v__. " _: 2934 75.0

_D"m'M3'== If'l,m_. C

2000- ""°_° ""D......__ t 1761 75.0

0

+I00

nn _D_ ,_ • _ v _ _' _ ol same

, _ _ _ _ _ _ _ _ Notation

0 ._ " [] AsAbove

-i00

•50 i00 150 200 250

61-x10-3 (in.)

Figure C-3C. Direct Shear Test Data - Shear Stress vs. Shear Disp/la.cementDilation Displacement vs. Shear Displacement

i C-ll

| . ..

i,

i

......... ' ' ' ,,, , , I I i I i i

00000002-TSG09

Page 126: Lunar Module (LM) J ! Soil Mechanics Study I

$s

8000

RC2 Soil sg

[] )= 81.8Lb,/Ft.3 (Dr = ,95) /s70C(,- O )'= 58.7 Lb./Ft. 3 (Dr = O) [3 rJ

0000- /[]

5000- / 0_' i

_. 4000.

3000-

//1• /o20C0- / 0

i000- /

S#

I I I I0 I000 2000 3000 4000 5000

(PSF)

Figure C-4A. "FailureEnvelopes - Maximum Shear Stressvs. Normal Stress

C-12

• ............. -, ........... r ............. , , i i --

00000002-TSG 10

Page 127: Lunar Module (LM) J ! Soil Mechanics Study I

I

5000

RC2 Soil 7 (PCF)

)'= 58.7Lb,/Ft.3 (Dr = 0) --"+'_/ �œ58.7

/_,+ o _--o---" 3815 58.7

3000 /+_ -'°/c

_-_ /+- o,_ "°_r _..-_ '_"- 2934 58.7

2000 _o_Z,--_.__ 176158.7

_I-_/., -_----_ "--_--'_----_-----_ 734 58.7

0¢.

+50l

0'_ Same

Notationl

,-., AS.

Aboveb D D O [] O O 0 O I 0

t_v,_ _+_ + _+_+_+_ _ 4.-15050 I00 150 200 250

6TX 10-3 (ill.)

i-

Figure C-4B. Direct Shear Test Data - Shear Stress vs. Shear DisplacementDilation Displacement vs. Shear Displacement .

C-13

k

m

00000002-TSG 11

Page 128: Lunar Module (LM) J ! Soil Mechanics Study I

8000 )'_,81.8Lb./Ft.3 (Dr _ .95)

6000 _?'_ \\_.

/ ,#'l'q_,_ _,.-....+ + ,.469581.

"°1'm,__L.o_, 3815 81.8

_,d,_ _ " i'_t_)_[ ""_'_ 2934 81.82000 w 1761 81.8

"V"_'_ ""_ "---_---V-- _ _ --_ _ 741 81.8

0

+I00

A

= v m_v []_ mAY [] v v_. v r_v tz

_ o , o o o , , % Sameo v Q + + Notation

0oia_o_; ASAbove

-i0050 100 150 20( 250

6rx lO-3 (in.)

Figure C-4C. Direct Shear Test Data = Shear Stress vs. Shear DisplacementDilation Displacement vs. Shear Displacement

C-14

00000002-TSG 13

Page 129: Lunar Module (LM) J ! Soil Mechanics Study I

w

SS Soil .....

O y= 95.2 to-97.G Lb./Ft. 3 (Dr.=-.02--to-.13)

[3 y__ 100 Lb./Ft.- 3 (Dr = .30) _ Bendix Report No. MM-65-2

- t Interim/_eport of Lunar

_ )' = 103Lb./Ft'3 (Dr r" .48) Landing Dynamics Specific

A r = 107 Lb./F_t.3_D r = .'/_) Systems Engineering Study

5003. -. i

: It

4000 t

_23000 ,_. %_o "'_J/r ,

" 2000 / jo

I000

f .

0........ 1000 2000 3000 4000 5000

¢ (I_SF)

,, Figure C-5A. Failure.Envelopes --Maximum Shear Stressvs. Normal Stress ....... '

C-15

Page 130: Lunar Module (LM) J ! Soil Mechanics Study I

5000 , •SS Soil .

97._ Lb./Et.3-(Dr =-.02 to-.13).Y= 95.2 tc_

a(PsDr(PcFl4000

..__3000

m "_----+'---'* --' _ +-----+ 4695 .... 96.4

2000 ""O"" _ oo_-v--_'.---_..._ ,'---o_ 3815- 96,4 - "

i+'-- **_'_ __o " "

- _---- - _ 1761 96.41ooo- ---_-- 734 95.2 _ .'

.

+i00.

m . Same

NotationIo 0_.. As_

O Ft. ] O. -0 O [] rl. 0 O. O. r Abowe__ _

-100 . ..-0 50 100 1-5( 200-...... 250-............

aT.x!o:.S(i..,)..........................................................-6

Figure C-5B. DirectShear-TestDa.ta-_-ShearStressvs. Shear Displacgment "I #Dilation_Displacementvs. Shear-Displacement

C-16 ..................

i'

• ' ; n

00000003-TSA03

Page 131: Lunar Module (LM) J ! Soil Mechanics Study I

I

6000 I I

!Ls_ soil_

A y= 66.8to_75.2Lb./-Ft.-3(Dr = o05_t(_ 640_

5000 -- 0 Y_ 71.1to 73 Lb./Ft.3_(D_r=-.19to_.28)

D Y= 9,1to 93.3Lb./Ft.3(D/= 1.03to 1.0.7.)../

4000 _/

3680

r"a--

5 3000

2000 --z/ '-I

II000 I

/ ,I_o-- I."ss_- I-

Io • 1000 2000 _ 3000 .- 4000 5000 ....

3820(pSF)

Figure C-6A. Failure Envelopes - Maximum Shear Stress ...........vs.Normal Stress

!

00000003-TSA04

Page 132: Lunar Module (LM) J ! Soil Mechanics Study I

LSM Soil ......... _r(PSF) _/

-L y_ 71.1 to 73 Lb./Ft.0 (Dr .-.19 to .28) 4695_ 73.0

4000 _A_..._.._o_c 3815- 71.1

_-_ _c

/ ...o_

_- .__,_

2000

_jg. '_" f 9/9"_ .o_O.__c--o----o 1761 71.1f o_O_. _ °_° _=_"

10CO u" oO,."_ I-O /

_'-'+--_ --+ "--_----+--+-- -+"+_ "-4*----_ 7.3-4--_71.1

0

+5O--

.._

i 4- + d + + + + + +_ + Sanle•_ -i00_ Notationco As.

I

AboveO

r,_ . 0 . 0 0 0_- "0 .... O_ O. 0- 200

!_ -

b ,'x A-- & Ix &_ & A ..... d ,'x /x Z_ ._

-3OCt .....

50 100...... 150: 200 250 ..........

_.T._c10"3(in)__

FigureC-6B. DirectShearTeSt:Data-ShearStressvs.ShearDisplacement.........DilatiomDiSl_l_aCe_men_ivs__..She_a_rDis_p_la_ce_me_nt..................................................

C,-18 .............................. , ;

00000003-TSA05

Page 133: Lunar Module (LM) J ! Soil Mechanics Study I

0

-100 . - -50 i0£ __ 150 20C 250

6r x !0 "3 (in)i

Figure C.6C.. LSM Soil• Dense.- Shear Stress vs. Shear DiSplaee___m_e_nt...... JDilation Displacementvs. Shear Displacement r

G. 19

J .... . ,, , , ,, , , , i i | IN I -- --

00000003-TSA06

Page 134: Lunar Module (LM) J ! Soil Mechanics Study I

i r

S

LSM Soil _._C,0C

= 66.&:to_75.2 Lb./Ft, 3_ (Dr =..05 to .40) (r...... 7 -

,+f£,,--'*';_--' #(�Â�¨�4695'/3.0+J

400O- _" -

,.. ._.----_--_,3814 75.2

3occ, )_/

o_m )+.._ f_. , _f_-'e_ ,,,,_,o.__,.=-..=--_--I 2934 66,8

_-.--- t_ ......... r. .

2000 .,

°1°" .oo_ :,0,/ __.o_,0 _ •

100C _g'-_o-...'I,_ n_ °_"_°_"°'_-cO/ ...... r

0 ^_^__.¢,_A___zx.._._..et._=_-,, "_--_--_'A--A'_'A--_'_"_ 14'/' 71.9 !

l_igureC-6D, DirectShear.Test Data.-Shear-Stressvs. Shear:DisplacementDilation.Displacementvs. Shear Displacement..

C-20

00000003-TSA07

Page 135: Lunar Module (LM) J ! Soil Mechanics Study I

!

35 /;

: RSM-b Soil /

" 0___= 8Z Lb/ft3(Dr =-0.53)

30 A "Z-= 89 Lb/ft3 (Dr = 1.0)

• / Ar

20 _/

,._. !o 15

r_

10

/_/

/-,_l'/i............/

00 5 .,.10_... 15- ....... 20. 25 30

Normal Load - PSI

l Fig%ire .C=7A.... Failure -Envelopes ---Maxin_unl_Shea r StressVS.

Normal Shear Stress

C-21 i

I

00000003-TSA08

Page 136: Lunar Module (LM) J ! Soil Mechanics Study I

C'22_

i

00000003-1-SA09

Page 137: Lunar Module (LM) J ! Soil Mechanics Study I

I:

J _-- , , , l _ --

00000003-TSA11

Page 138: Lunar Module (LM) J ! Soil Mechanics Study I

RS LOOSE .

Avg..Density ,,-40.40_. Angle of Friction - 38.63

Tan Theta, .7992' Cohesion ,, 242.12

800.00,................

700 O0 ....

O0000003-TSM3

Page 139: Lunar Module (LM) J ! Soil Mechanics Study I

I

0

.

RS Dense

Avg. Density = 54.20Angle of Friction = 52.55

-- Tall Theta = 1.3059Cohesion = 634.20

800.0(

700 00 .....

"" 600/)0

J _--_'50.0_00

//_ 40-0,00 .......d

i_ _oo.oo jI _oo,oo /

z100.00 A/

/

0 2. 2 .......

00- 100.00 200.00 300.00 400.00 500.00-- _ 600.00 700.00 ...........

Ji Normal Stress (PSF) (x i01)Figure C._gA._RS_Denae

[d

L ...... i = i , , . J _ l, I I I II I II I I I _ I II I i --

O0000003-TSB01

Page 140: Lunar Module (LM) J ! Soil Mechanics Study I

I

ARS •DENSE,

Avg. Density--54.40 Tl

Angle-of Friction•= 46.65 ..Tan Theta-= 1.0594 _.Cohe_3ion =-698;23

6oo.oo -;

"T

I700.00

|600.00

_-_'_500.00.

_ 400.00

300.00

200.00 /

7

'*" I

L

0O-00- I00.00 200.00 300.00 400.00_ 500..0.0.600.00 .?00.00

Normal Stress (PSF)_(x 101)Figure-C--9B. RS Dense

tC-26- '_

I

• .- _ A......... l ] 1 II m 1 I I if I I I II I I I I I II I I --

O0000003-TSB02

Page 141: Lunar Module (LM) J ! Soil Mechanics Study I

RS DENSE .

Avg. Density'= 54.30

I Angle of Friction= 49.39Tan Theta = 1.1663Cohesim_ = 700.44

800 00'

fi

700_00 1i

_- 600.00'r-k

500.00 &

mo_,_ 400.00 /300.00 t

/200.00 ---, /

100,_00 //- ,

O0 _ _

O0 1-00.00 200.00 aoo.oo_ 400.00_ 500.00 600.00 .... 700.00

Normal Stress (PSFJ (x I0I)

Eignr_e_c- gC. RSDense ...............................................

C-27

4

_J

O0000003-TSB03

Page 142: Lunar Module (LM) J ! Soil Mechanics Study I

P8 Loose -

Avg. Density:=, 25.90Angle of Friction I 43.44T_n Theta J, .9471Cohesion = 488.69

800.00.....

7o0.0a

00 .... ioo 100.00..... 200,00..- ,_00.00.... 400.00 500_00.... 000,00 700.00.........

Normal StreBs .(PSE). (x !_._}_2........ il_gur.eC_- iON. _PS.Loos e.................................. _

il iI

. . ; jl i ---- i

O0000003-TSB04

Page 143: Lunar Module (LM) J ! Soil Mechanics Study I

I

t

PS Loose _

Avg. Density---24.60Anglo olFrictionm 43.40TaIL-Theta= .9459Cohesion N 169.22

800.00

700.00

i .-._601L00-0

[

L. _'-_:-500 O0 :_

m-400.1IO

g

300,00

/200.00 / ,.

i00_00 //:,

L00

O0 i00.00- 200.00 300,.00. 400.00_ 500.00...........600.00 .....700.00"

Normal Stress(PSF_,(xi0!)_

Figure C-IOB. P_S_Loose: ....................

C-29

t

O0000003-TSB05

Page 144: Lunar Module (LM) J ! Soil Mechanics Study I

PS Loose ..

Avg. Density =25.40Angle of Friction • 43.70Tan Theta ,,.955BCohesion = 359.69

800.0C

700.00 .-

I

600.00 _

500.00 ;j

)

400.00 J

I /A

300.00 f

// ,

100.00/A

00.

00. I00.00 200.00 _.300.00_ 400.00 500.00...........600,00 700.00 -,

Normal Stress(PSF) (x I01-) i

Etgure. C_ !0C, PS. Loose .............................

C-.30. - . _

i]t

I

- ; A_ . i , , ¢ mm I I[ --

00000003-TSB06

Page 145: Lunar Module (LM) J ! Soil Mechanics Study I

1

t ,,,

', RSM Loose

Avg. DenSity = 58.20Angle of Friction= 35.92.Tan Theta u .7244

i Cohesion= _444.69-800-. 00, I I

j 700.00 ,.,

I/ "

..... Odooooo3-TSB07

Page 146: Lunar Module (LM) J ! Soil Mechanics Study I

..._l mlll i ..... . m

i RSM Loose _ IAvg. Density =58.30Angle of Friction = 37._LB !1Tan.Theta._ .7641 " IICohes Lon= 785.77

800.00 L I

!g

700.00 (

!

,..600.0CO

rn 500.00

,,b=o,

400.00

3oo.oo _,i

/200.00 /

I00.00 _,

O0

O0 I00.00......200.001- 300.00 400.00 500.OL 600.00 700.00

Normal Stress (PSF.)(x10.!_) ..... ¢

Figure C_llB. RSM Loose-

C:-32.....

I

4

_l ..... - .. • , , # ...... i , --

O0000003-TSB08

Page 147: Lunar Module (LM) J ! Soil Mechanics Study I

#

t

e;,

i:

If SS Loose_

Avg. Density m 95.20Angle of Friction- 29.76

I TanTheta = .5718Cohesion.--_1.87800.00

i 'mo.oo _.

_I 600.00[ °Im,,,l--

_-500.00

|" _

[ °_" 400.00

4-

[ °30.0,00

i 1.1_,,oo.oo._.I J/

I 00I oo ....too.oo 200.00.3oo.oo.400.00_500:00..........6o_.oo 700.00

NOrmal Stress(PSF) (xl0!)......

I FigureC.13. SS Loose .........

I C-35

I-4

O0000003-TSB09

Page 148: Lunar Module (LM) J ! Soil Mechanics Study I

$

t

o.

RC2 Loose-

Avg. Density ,,-58.00Angle of Friction =43.07Tan Theta = .9349Cohesion = 145.B1-

800.00 _,,

700.00.. - , _

600.001,,',4

_TL500.00 ' iJc_

m 400.00

300400

200.00 / "

/: i

. i !

OO ! , . _

00 1OO.O0 200.00- 300.00- 400.00 500.00 600.00 _ 700,00

Normal StreSs (PSF)::(x__!O_!) tJ

Figure C--12_RC2 Loose

C-34

&

00000003-TSB10

Page 149: Lunar Module (LM) J ! Soil Mechanics Study I

t

RSM LooselAvg. Density-, 58.20

* =- Angle of Friction = 37.07, Tan-Theta m .7556" Cohesion ,, '584.29

800.00 .....................

&

700.OG_ ..............

i: 600.00 .............

_,.=(

500 O0..................

y°200.00 ................

i00_0.0.....

O0 ' --

O0 I00.00 200.00 300.00- 400,00•_ 500.00____600.00 700.00

Normal Stress (P.SF) (x 10!_

Figure. C-11C._ RSM Loose.

I C-33

"li

• .. .. - .- .

- I

.... O000000 =rsgll'

Page 150: Lunar Module (LM) J ! Soil Mechanics Study I

LSM Loose

Avg..Density,, 75o20Angle-of Friction.-. 43.95.Tall Theta.,, ._642

800.00 Cohesion .-- 108.8'?

700.00-

600.00

&

_,500.00 - - _ ,.,.c:..$.,.

{_400.00

o°300.00

200.00 _ "

/ " i100.00 ., i

' i

!

O0 i00.00 _00.00 300,00 ..... 400_00 50O.(IL 600.00 _00.00 .....

NormaLStress .(P-SF) _'( i0

Figure C- 14. LNVLLooSe__ ..............

¢.g6-- :

00000003-TSB13

Page 151: Lunar Module (LM) J ! Soil Mechanics Study I

#

FI

LSM DenBe

I Avg. Density.= 91.20Angle of_Friction _-41.05Tan Theta u-.8710Cohesion _ 213.26

800.00

700.00

i. ! ,-. 600,00 ......,-_

N

500.00

° /z400_00

[- _ /300.00_ t

, /t 200.00

i00.00

/ AF

00 - -O0 100.00 200.00 300.00 400.00_ 500.00 •600.00_ "/00.00

NormaLStress_P.SFl (xlO1).

Figure C-15. LSM.DenBe

t C-37

I, ., * ,,

r'_ _,,,_,m • m , ,, • _I_ _ i I I I I I I II I II I I "I " II

O0000003-TSCO1

Page 152: Lunar Module (LM) J ! Soil Mechanics Study I

P

p •

ti '

!d

30 . _i

_v

; ii

T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.8...._.9..___.0

Dr

Figure C-16. Angle of Internal Friction vs..Relatlve..Density-

C_-38

........ ._I _ .. i i i i I i I . I Ill I -- =

00000003-TSC02

Page 153: Lunar Module (LM) J ! Soil Mechanics Study I

3_

3O

1

0 0.i- 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1.0

Dr

Figure C-!7. Angle o£ Internal Frtetton.vs._RelatNe Density

C-39

i

, , ,, 4 ' = '' - ' ---- i

00000003-TSC03

Page 154: Lunar Module (LM) J ! Soil Mechanics Study I

]

l_M-a Soil. i

i 0 0.1 0.2 0.3 0.4 0.5- 0.6 03 O.B 0.9 1.0 __

D r .

Figure C-18. Angle of Internal F_rtctiorL vs..Relative Density

i• A-

00000003-TSC04

Page 155: Lunar Module (LM) J ! Soil Mechanics Study I

7

it

: RC2 Soil-- /

. /

k 40

I_ °I

35

Ii

30

I.

0. 0.1.._0.2......0,3:.,,0.4,0.5 0.6 0.7-0.8 0.9 1.0

I Fi_9. Angle o_Internal Friction vs. Relative Density

I C-41

I I

4• ....... _ ii i , i i ii i i _ i • i --

00000003-TSC05

Page 156: Lunar Module (LM) J ! Soil Mechanics Study I

.g

#

m

SS.Soil(

50 ..... "

(I.

i 45 .

0.......0.1 0.2......0.3.......0.40.5 0.6 0._0.8 0.9 ....l..0......Dr.

Figure C-20. Angle of InternahFriction_s._RelatlveDensity

C __42..................................

- " ' ..... o-ooooo--_c06'o3-T

Page 157: Lunar Module (LM) J ! Soil Mechanics Study I

LSM Soil

.40

G_ _

35_ ""

30

, !

0..........0.1 0.2 0.3 0.4 0_.5 0.6 0.7: 0.8....0.9_. 1.0_ _!

D z

,

Figure C-21_-Angle of.Internal F_ction._s. Relative Density

C-43

|

|

ii.i . i i ..... i I - i T i "- im | II _ --- i I00000003-TSC07

Page 158: Lunar Module (LM) J ! Soil Mechanics Study I

I_iVL-b.Soll

/ :///

45 /"_ /

'40 /1 •

35

30 ....

0 0.1 0.2. 0,3: 0.4..0.E O.E. 0.? 0.8 0.9 1.0

Dr--

, _, _

Eigure C-22. Angle of. Internal.Friction vs. Relative Density

r

C-44 ............ !

i

• ' 00000003 TSC08-_ -'

_m ...... / • = • , , ---

Page 159: Lunar Module (LM) J ! Soil Mechanics Study I

L_t

I

II

I

/

_°- 7 /" ...r.

_-40

/ '35

I /•_o / _

,

I 0 0.1 0.2 0.3 0.4 0__.50.____0_7__0.8 0.9 1.0

i Dr ... . .................... _ ................

I Figur_eC--23.Angleo_InternalFrictionVersus RelativeDensity_(From DirectShearTestResults) .....

I C.45/C-46

Ii

...... ' ....... odooooo_hsco9

Page 160: Lunar Module (LM) J ! Soil Mechanics Study I

I'

APPENDIX D

FULL-SCALE LM FOOTPAD DRAG TEST FACILITY_DESIGN

D.I INTRODUCTION

A detail design study was perfomned for the construction of a large drag test facility to .......

accommodate tests on a full-scale simulated LMfootpadin selected soiLmaterials.Because of changes from the orig!nalpr_ogram requirements, this. effort was. not carried

through actual hardware.fabrication. However, each of the_hree basic equipment-corn-

el pp.nents was designed_to.a state-that would permit hardware to be procured or fabricated

with a minimum of necessary, additional_design.expenditure. This Appendix describes

|:1- the eq_pment design that resulted from this study.

_! The. full-scale testfacility was intended to complement the sub_.cale drag test equipmentused during the prgg_am.- The requirements, included providing the- capability for- con-

ducting e:i'ther_ constant penetration or constantAoad footpad drag tests at any ateady_smtevelocity between 2 and 15 feet/second, with footpad penetrations up to two feet.

I Figure. D. 1 portrays an artist's impression of the facility-installed over a soiLtest bed.

The figure oLa six-foot technicianpermitsa, realistic evaluation.of scale. Floor_space

t recLqi_te_ments are-approximately 60 feet by 12-feet, _while maximum height_r_equired.is

less than 12 feet. Multiple test .stations or additional, soil test. beds would_increase the

width requirement proportionally. Figur-e D-2 is a design layout of this same installa-tion..

I D-1

Id

...... t , ,, • ...... m --

O0000003-TSCIO

Page 161: Lunar Module (LM) J ! Soil Mechanics Study I

D-2 _ti

I

............ 7 ...........

O0000003-TSC11

Page 162: Lunar Module (LM) J ! Soil Mechanics Study I

lilil w _

D-3

I

- O0000003--TSC 13

Page 163: Lunar Module (LM) J ! Soil Mechanics Study I

#

Tile major components of the facility are:

* l ___The. hydraulic power/control unit including_ actuator and electrical_controls,

2, Tile carriage and gantry structure to support and guide tim instrumented strut

and landing pad _over tl)e soil test beds, andf

3. The instrumented strut and fulL-scale simulated LM footpad.

The soil bed consists of a rectangular concrete pit approximately 10 feet wide by 2.4 feet

long and 5 feet deep. Massive foundations form the.ends and-serve as supports_for the

gantry. Other:hardpoints, located in line with the pit, are:used to anchor the.power cylin_

derand related contr_ol system. For multip!e installations, several pits_may be individually

located adjacent one to another or may be formed from a single wide bed with longitudinal

partitions. The-pits:would be filled to floor level with sF._cific granular materials and

renovated or-recompacted prior to each test run by means of the appropriate soil bed

p r eparatiol,_equipment.

General requirements of strength, rigidity, safety, serviceability, and convenience of

operation formed the basis for design of all major components of the-facility. In addition,

detail requirements were established to govern the design_ of the power/control unit based

on desired test system operational capabilities. Those requirements that reflect the

system performmme-are summarized below.

1. System to be capable of propelling the test carriage horizontally over a pre-

scribed (test run) distance _.t any desired constant velocity between 2 feet/

second and 15 feet/second. The.carriage velocity attained during the test

run is to be maintained within _0.1 foot/second.

i

*Design of the Power/Control Unit was accomplished by the Bendix MisSile SystemsDivision,.Mishawaka, Indiana, to meet technical requirements established by the Energy

Controls DiviSion. This work was performed between June and_Oz_her 1966_ under, a_ _ ,w_orki_ment between.thetwo Bendix Divisions._

D.-4.... I

J

_ _ . .., i i i [ • _-- [

00000003-TSD01

Page 164: Lunar Module (LM) J ! Soil Mechanics Study I

I

2. The:steady-state velocity actually attained during any test ru,] is to be within

0.25 foot/second of the velocity dcsi_red (programmed).

3. The maximum axial (drawbar) london the actuator is 7,000 poundswith a

superimp0sed_:10 percent load fluctuation.

4. Total actnator, stroke (carriage travel) to be 21 feet..Acceleration and._

I deceleration to be accomplished within-the first and last three feet ofcarriage-travel, respectively, with the constant velocity test run using the

remaining 15-foot distance.

5. Smooth transition to be effected between acceleration and steady-state

I velocity oonditions.

_; Although a hydraulic power and control system was originally_propps_ed as a means of r_

pr0p._e!iing the drag test carriage_ final choice, of this particular method resulted from a

|" feasibility study that also considered various electrical and mechanical drive arrang_e--.|: ments. The selection was based chiefly on-factors-relating to availability and size of

hardware to handle the extreme power requirements p_lus anticipated development problems

and.their cost in dollars and schedule in view of the velocity control and accuracies de-

Sired.

IThe design of each of the major facility components was carried-as far as practicaLfor_

t study _urposes.and is .believed consistent with the scope of effort intended.by the NASA _._

1 Work Statement requi_ements. Although certaimareas of the system require some :further

definition, this can best be accompli,_hed after installation site.and fabrication_sources

and methods are.established. The more sign_fi_cant 0f these:.az:_eas:.are_ note_!__n_::t_he:_x:e_.......................i

spective sections.

It should.also be noted-that during early_phases of the full,scalesystem design, a aurvey

of a_number of existing large drag test facilities was made tQ determine their_availability:

l and their.adap_bility to the full-scale footpad=test requ!rements_ Of those contacted,

t none_available could accommodate the specific test requirements without significant1

1 modification_

D-5

t

00000003-TSD02

Page 165: Lunar Module (LM) J ! Soil Mechanics Study I

The following paragraphs, D.2, D.3,. and-D.4 describe each of the threemajor system

components; D.5 describes operating procedures_for the equip_ment and..- imparticular -

the power/control system; D.6 lists design and manufacturing drawings that resulted

from the study; and D,7 presents analytical predicti0ns of system performance.

D.2 DESCRIPTION AND OPERATION 0FTHE POWER/CONTROL UNIT

The hydraulicpower/controlunitprovidesand controls/he drawbar force thatmoves

the strut/footpadand carriageassembly throughtheacceleration,constantvelocity,and

decelerationphases of itstransitacross thesoilbed. The unitconsists,essentially,of

a_21--footstrokehydraulicactuatorpowered by a hlghpressureoil supplytankwith-

relatedaccessoriesand flow controls,integrallymounted ontoa_singlemobile frame-

work. The flow controllingelements-_ofthe system_were developed throughanalysisto

meet theperformance requirements summarized inparagraph D.I.

Fig.ure D-3 illustrates the general configuration of the unit. The roller platform_arrange,

ment permits precisealignment of the.power/control unit and gantry/carriage-interface

and facilitates-repositioning the system to any of several adjacent soil beds. The plat-

form md subframe structure are designed to prevent excessive loading and deflection of

the power cylinder and other critical components during movement from one bed to

another. During_tests the unit is secured in position by anchoring the actuator to the - "

floor_at the.three saddle supports shown. A fourth anchorage (not shown) would extend

horizontally fx0m the end of the power cylinder to restrain the system against the draw_- _.

baLload_ .......

Except_for.ad_.ustmentofthe-high.pressurenitrogenstoragecylinderregulatorvalve,a11

operationalfunctionsof.thesystem are effectedat the main.controlpa.nel,_

The_actuator (or p_ower cylinder) is of relatively conventional design except for its length.

The steel cyl_inderpr_ovideaa_21-foot usable stroke for the five-inch diameter_piston,is.

cushioned.at the blind end, and adapted for high flow rate inlet and outlet, connections.

The piston_rod extends thronghh a. standard high.pressure- seal and terminates in a fittingq

[1--6,

tl

00000003-TSD03

Page 166: Lunar Module (LM) J ! Soil Mechanics Study I

Jr

J

i F

D-7 iII

[ !I

00000003-TSD04

Page 167: Lunar Module (LM) J ! Soil Mechanics Study I

i that allows quic__kdisconnect from the-drawbar which is attachedto tile carriage_ After.r

a test runthe :carriage__ustim disconnected and manually: returned to its starting posi,

tlon_ since the actuator.is designed.to power the system only during its compression _

stroke._____

The p0wer/control system is essentially self_contained with all hardware.- including

plumbing, gaging, relying and electrical components - mounted on the wlmeled support

structune. Whe_:eve= possible, standard off_the-shelLand commercially available_hard- ..

wane is .used to minimize cost,.pl_curement, and servicing problemS. All components -

whether_purchased or designed - conform to indust2:y accepted-safety and pe_'formance

standards..or codes, such as APLvalve-and pipe ratings, ASME unfired pressure vessel

code, or.:UL.approval on electrical fittings.

A schematic diagram of.£he pgwer/controlunit hydraulic system is shown.in. Figure D-4.___

The aztuator ol_erating: force, is ge.nerated by: compressed nitrogen gas at 2,000 psi acting

upon .khg surface of hyd.raulic_oil w2thin a 20-cubic:-foot pressure storage tank (9). Duning , l

operation, oil flows from the pros_sure tank through a control valve (6) to the actuator ..

inlet port.tapower the:piston. Displaced oil in the actuator discharges_through the

"Annin" val_e- (!4) into the-supply/(discharge tank (!). AA,gpm electric powered pump

(8) drawsoil from thexiischarKedank to extend the pistonand refill the pressure storage

tank after test. To:_ceduce .potential hazard, the hydraulic system is normally kept un-

pressurized except immediately prior to_and during-a test run_L

The operational phases of actuator piston motion (i.e_ acceleration, constant velocity,

and deceleration)are governed by two separate --but interdependent.-:flow control-units ....

Accelerationand deceleration is_accomplished by the programmed opening, and closings_

respectively, of the air operated Annin valve (14)._The required footpad velocity xersus

displacement profile (i.e., steady-state velocity) is_achieved by the high-_resp0nse aontroL

valve- (6)whichprograms the rate of oil flow to the actuator. Fiow-_rate is governed by

both the: control valvepneumatic setting and. the metering orifice_ selection.

D-8

k -- I I I i .... I I I _ i llli IIII I I II I I i i ----

00000003-TSD05

Page 168: Lunar Module (LM) J ! Soil Mechanics Study I

00000003-TSD06

Page 169: Lunar Module (LM) J ! Soil Mechanics Study I

The •deSign of the-controLvalve is-based on a prewiously develope_l high-_'esponse fuel

flow regulator that was_successfully_employed+by Bendix in a missile fuel controLSystem.

This reg_.l_ator_is too small to accommodate the test facility actuator flow requirements,

howe_er, the p_oven concepts and analysis techniques dev.eloped, duril_g its desigt_.were ...................................

applicable to the control val d_e_.d_n_ a..n_.d,to: t!xe detailed analytical, study of.the__syStem.

Although no_attempt is made.here to-describe details, of the_analytical procedures used, ,,

it is noted that both analog and digital computer., simulations were. empl0yed using-a, care-.

fully developed mathematical model.of.the open-loop control system. This analysis.was

directed toward evaluating the hydraulic system dynamics, predicting.system-performance,

calibration_ and optimizinghardware, including critical sizing and arrangement of the

controlvalve components.

The analytical study was carried as-far as t ractical without_benefit.of exper_imental.r e-

suits and, as shown in paragraph. D.7:, p_0vides g0od-indication.that the desired performance • " :

req.ui.rements can be met. However., •this can be fully realized only through a subsequent i,'

development phase:when the actual control valwe and other hardware components_.are -.-

made available. At_that time, any deviations between hardware test t_esuits and charae- - .

teristics assumed in_.the, mathematical model w_ould be evaluated and incorporated-into

the+ model for further detailed analysis.. An.important output oLthe final.analysis:will be• +

the calibration data for use-inselecting the proper metering: orifice and control valve

pneumatic-setting necessary for-programming the control valve to accommodate specific ...

test•velocity and load requirements.. " "..................................................................... .................................................

4.

Thecontrol system is essentialllt ope_n,l.oop in that there is .no. direct signal feedback .to .. -

the valve from the_moving carriage.. However, closed-loop featureS_are emplpyed from •

the standp0.in_t that. flow :to+the pow___er=cyl_nder,_which. is prop.or_.ional to-carriage +move ment__ . :

is..Sensedand used to regu_te the-control v.alve. This app_rgach, followed in the interest.

of economy=andsimplicity3 appears adequate based on.analysis results.thus far. If ex-

perimentaLreSults disagree either of.several closed-loop-designs could be+ incorporated

without_major redesign+of the system.

D-10 ...........

,|

ti

=- + _ i....... = . _al . I II II i i " , , I .= , "_'_ l

00000003-TSD07

Page 170: Lunar Module (LM) J ! Soil Mechanics Study I

I

,?IB

[!is

I

FAgurc_ D-5 illustrates the.schematic-arrangoment of-the control valve, ..A functional

description of this anit andother active elements of the flow control.system.can best be

I presented if a_typical test run is assumed. In order to preserve-continuity, some re-

dundancy with p3:io_:_discussions is ,mcessary, and refel_ence-is-made to both Figures-

_|" D-4 and D-5.

Immediately prior to test, the entire hydraulic- system (Figure-D-4) is charged to-2,000 ..............psiby.pressurizing the high pressure storage tank (9). -At this time the actuator pistou

is fully extended, the Annin valve (t4) is closed, and the control valve.ports (-Figure D-5)are held open by the regulated air pressure acting on-the .constant force_piston ........

I The following conditions would exist after, pressurization and at-any time prior to the

moment of actual "firing."

[Full hydraulic pressure exists an both faces of.the actuator piston (!8). Due to the

L piston_rod cross section there is_an area.differential between the head and rod faces of'S "the p_iston. This inequality results in a force unbalance-across the pl ton tending to •hold ........

it in the extended position (to the right, in FiguI ._.D-4) .............

The controLvalve .(6)_is situated.between the pressure storage tank and the p_o_w_ercylinder

] Supply-port: A fixed metering orifice is.located immediately, downstream from thecontrol valve. It is.one of a set of four.which_can be selected and assembled into the-

" circuit to meet specific velocity r._quirements.

I The: control.valve consists of. a sliding tubular-element with.eight .identically .c_ontoured .......ports _tercing the walls and forming.variable orifices in con]unction with the_lip_of an

annular_groove inside the_valve sleeve, The valve.is• hydraulically balanced or nonpres-

sure: sensitive, since, the driving web is per_forated to allow pressure equalization.

l

] Two separate control devices Serve to position the control valve. The first consists ofa constant force-pneumatic _piston and PUS.!_rod which, tends to-hold the valve against-its_

" wide open or maximum flow stop. (The air pressure to the-constant force•piston is set

I" D_-11

j.J

k '

00000003-TSD08

Page 171: Lunar Module (LM) J ! Soil Mechanics Study I

D-12

I

I.... r

• ; J

00000003-TSD09

Page 172: Lunar Module (LM) J ! Soil Mechanics Study I

I at the air p!essu_c regulator.-('/) during test preparations-and remains constant through-

out_the run.) The.second is a-_'elatl_ely small diameter control valve piston, solidly

[ attached to the-control valve. Iris sensitive to the differential pressure between the valve- *

chamber upstream of the metering orifice and, through a secondary "feedlmck orifice,"

to the conduit below the metering orifice._ This p,:essure differential, modified by the

scheduled leakage or:circulation past the pisto,_.itself, is transmitted.as a force tendi_g.. _,

to modify the-eonirol valveposltion during operation.

Althongh the controLvalve is subjectto-full hydraulic, p_essure and, in addition, is.heldin the wide open position by the pneumatic_pLston prim:to "firingz,' the forces across.the--

control pistonare ze_osince there is-neither oil flow nor pressure drop in the circuit.

A-pneumatically'loaded accumulator (!5) and a solenoid actuated, programmed, quick

I"i operating (Annin) valve (14)_are located beyond the discharge, or retraction end of thepower_cylinder. This valve is the comp0nentwhich maintains the system under p__ssure ___

i before firing and initiates the entire operational sequence after firing ....

- The following sequence-is.initiated immediately upon firing or beginning a drag test

"run." (Refer to Figure D-4.)

i The (12), activated by the firing:, circuit, high pressure-nitrogen.solenoid valve releases

to a.valve operator_ cylinder which, in turn, opens the: Annin valve (14) through its full

t scheduled range in a matter of milliseconds. The prpgrammed flow of oihth_ough thevalve to the discharge dram (1) results in a. rapid.pr=essure reduction ir_ the actuator ...

cylinder below the power piston (18).. The differential .caused by the_deterioriating pres-sure at the piston_face and_the sustained-high p.ressune atthe rod face causes a force .

transition across: the power:piSton. As the.differential increases,_the-p0wer_p!s_tpn starts

I to accelerate toward the retracted end of travel and to dr_w_the gantrycarriage and foot-

pad across the soil-test bed. The.pov_er piston acceleration response is slower than the

differential p_essure_rate_of change across the piston..-To p!ev-ent eavi_tion and reaultlng _

instability of thecylinder.,the p,;essure d*:op is modified b_/the.influx of..a_measured

I volume of oil discharged from.the.pneumatically-loaded.accumulator (15_"....

i °

|

00000003-TSD10

Page 173: Lunar Module (LM) J ! Soil Mechanics Study I

Initially, the motion of tile actuator piston is determined by the programmed opm_ing .of !

the Annin_valve (14),but within a few milliseconds the control valve (6) becomes func- . .

tioual and assumes regu_la__io_of__tim steady.-st_a_te travel phase.

Simultaneously with the start of power piston travel, pressurized oil from the supply

tal_-begins to flow through the control valve-and metering orifice toward the actuator

supply port. A.s .the rate flow increases, there.is a corresponding pressure drop across

the_metering orifice. Althottgh this deorease_in pressure is communicated-to.the rod

face-of the power piston, the pressure on the opposite face is decreasing at a still faster ..............

, rate and thepow.er piston continues to accelerate.F

i: The precise diametrical fit between the contr-ol.valvepiston-and its body.form_ a constant

area orifice and leakage .path for.pressurized eli flowing thl:ough..the control valve. The

oil pre_ssure drops as .oil leaks past. the piston and continues through the_feedback orifice

:.__. to-discharge into thelower pressure flow of-the main_conduit t'_elow the metering orifice.

The pressure drop across the control piston applies a closing, force to the control valve

oppo,zing the opening force exerted by the constant,force pneumatic pi_ston.- Thus, as oil

flow through.the control valve increases to accelerate the power piston, the control .valv_e

piston tends to-reduce the valve.opening (and retard the flow)to approach a steady-state

rate of actuator piston travel.

The transition of flow control from Annin valve to control valve occurs during_the initial

two or three feet of acceleration s/ten which the control valve maintains-the carriage and.

footpad at a constant rate:_f transit as programmed by the metering orifice: selection and

the constant-force pneumatic 9i_stonRressure setting.

At the termination of 15 feet of piston-carriage steady-state travel (1_8feet of total

tray.el), the moving comp2_nents.are decelerated following a sequence in-the-reverse order

of acceleration, as described below.

As the gantry carriage_passes the 18-foot total travel position, it breaks_an electrical.

circuit to_the programmed (Annin)valve s___ql__.l___.The_uled rate of valve closure.

D-14

00000003-TSD1

Page 174: Lunar Module (LM) J ! Soil Mechanics Study I

causes the pressure to rise_ahead of the moving _wer piston, teudi_g to decrease the

differential pressure across the pistom

Rate-of oil flow-throug!t the metering orifice and control valve decreases.as the.power

piston decelen, ates. The control valve senses the reduced drop across the metering

orifice and moves toward its open pq.s__ltionto maintain the rate of-oil flow. Since. the

rate of pressureAncrease ahead of the power p_iston-is higher than the capability of. the

control piston to increase the flow beh_.nd the piston, the differential pressure continues

to approach zero and to further decelerate the mo_,ing con_onents. _

The.rising pressure_ between the actuator piston and closing Annin valve diverts a portion

! of the oil volume to the accumulator to minimize hydraulic: shock.

1 Differential pressure degradation, friction, and drag loads combine-to bring the systemto a.full stop in less• than three feet.of decelerated travel For additoual safety other

t, hydraulic and/or mechanical damph_g devices _vould also be installedon the-gantry or atend of the soil bed to assist deceleration and limit the travel of lhe_carr2age.

During the constant velocity phase of carriage mction the steady-state velocity control

is effected as follows.

t.Load fluctuations_on_the moving footpad are transferred as velocity '_ariatlon impulses to

i the actuator piston, with increased drag loads momentarily decreasing the piston velocity.• This results in a-slight decrease in_pressure differenttal.across_the metering orifice

which is sensed by _e control valvepist_on. The:piston moves towardits open positionto increase control valve flowand,• corresp0r_dingly, to_increase and restore the actuator

p.jston velocity toward its .previous steady-state value.

iThe increased flow-results in p.roportiollate increase_in pressure differential across the___

' !r ° ° ° °

! metering_orifice with a corresponding closing movement of the-control_v-alv-e-pist0n tostabilize the oil flow at its programmed value. ...........

II D-15

i .

1

00000003-TSD13

Page 175: Lunar Module (LM) J ! Soil Mechanics Study I

Paragraph.D.5.of this Appendix-descrrbea the procedures_ for activating and.operating

the ppwer/control system based on.the _ystemxiescription given.-ParagrapJLD.7 presents

results, of analytical studies .that pr#dict system pe_:formance, howeyer, as noted earlier,

furthe= development of the system is necessary before actuaLperformance to the design

requirements can be-assured. Control valve and. other system hardware should be pro-

cured, tested and exp__erimental results used to refine the computer: analysis._ Further

analytical studies could then be-directed toward determining actual performance charac-

teristics, system optimization, and final sizing of hardware.

[1.3 THE: CARRIAGE. AND.GANTRY STRUCTURE-

The.gantry, shown in Figure.D-6, is a strut ural bridge which spans the sail.teat

beds_and provides a sturdy track and_sliding:_carriage to support and guide the strut.and.

footpad during test operations. A 31-foot long structure is requirefi to accommodate a

24-foot soil test bed which allows 22-foot maximum transit for the footpad.

Each of;the two_main side frames of the gantry is made up of three-longitudinal steel

beams. The upper:and middle elements have an angle cross section and are 3-1/2 inches

wide by-5 inches, deep while the.lower element has a channel cross.section and is 3 inches

wide_by !2 inches-deep to insure a rigid suDport for the guide rail The rail consists of

a_31-foot long _ 5-inch diameter seamless steel.tube bolted through "T" section stand-offs

to the channel inner surface. A system of vertical and diagonal three-inch steel angles

complete the truss.

The.side_frames are s_aced 36 inches apart and are jot.ned by ahorizontaI truss system

of three-inch aug!es:at_the middle channel_to insure lateral stiffness. _The top.channels .......... :

are_connected.by_ a series of l-wo-inch, diameter pipes incorporating welded-one.-inch

diameter threaded.studs projecting from either-end. Double nuts on the studs permit the._

introduction of sufficient deflection into the.side trusses to establisha 27-inclLmean center-

line_spactng between the guide rails. This-verniering capability during fabrication:will .....

enable rail alignment to insure free_passage-for the carriage...

i

. _ t j, = , , ( , i a _-- ii I

000C)C)f)O."4_T.£I=N'1

Page 176: Lunar Module (LM) J ! Soil Mechanics Study I
Page 177: Lunar Module (LM) J ! Soil Mechanics Study I

The carrlag_ is a rectangular five-font long frame of welded 2-3/4-by 10,.inch steel

channels.. Eacl__corner is_carried on a spring-loaded, elastomeric,isolated, tubular__

bronze slide. Pivoted, for seif-alignment, oaa 1-1/2-inch diameterpin. The slides en-

circle a 300 ° arc of_the guide rail circumference and incorporate appropriate lubricant

grooves and wipers. (Refer to Figures D-_ and D-8.)

¢Arecta1_ular 16- by 18-inch opening through the center of the carriage furnishes

facilities for securing the upper end of the strut and allows spacefor instrumentation

cableaand air hoses. A substructure below the carriage provides a ypke forthe.power

pistondrawbar couplingand a secondary strutattachment.

The •ends-ofthegantrybridgeare supportedon a pair ofangle-reinforcedsev.en.--foot, .-_

eight,inchwide bipodsfabricatedfrom_l/2_inch atructuralplate.A .normallyretracted .

eight-inch diameter wheel is located.near each corner. Each wheeLis equippedwith ,.

needle bearings and is mounted_on an eccentric shaft._ The shaft itself is mounted on

needle bearing_through a welded boss on the end plate_

During normal testoperations_with thewheels retracted,thegantrystructureisanchored

to•thetestfacilityfloorby boltsthr.oughplateswelded adjacent.to_thewheels. Mobility

of the structure.canbe achieved,when shiftingtestsites,by removing _hehold-down bolts

and rotating_theshaftsthrough180°. The 1/8-1richeccentricityinthe shaftsbrings,the.

wheels incontactwitha gr_oovedtrackembedded inthe testfacilityfloorand elevatesthe

assembly clear_offloorcontact..A 1-1/2-1richsquare drivenon the_endofthe shaftis

providedfor wrenching rotationand a 5/8-inch-diameterknurledpin,dropped intoa set

ofindexingholes,serves as an anti-rotational_lock.....

i

Since_afull-scale_facility,was notconstruc£edas part of±hisprogram,,no attempthas

been.made=durlngthe designstudy_to_finalizeallthosedetailsnormally common to actual

equipment fabrication_[ndinstallation.

IMI__-..

i

i i I|II I i i i I i i • | l•i _ __ i |

O0000003-TSF03

Page 178: Lunar Module (LM) J ! Soil Mechanics Study I

i

!

Page 179: Lunar Module (LM) J ! Soil Mechanics Study I

'II"

I

I

.... r--Tl I

' - I@ i _.I!I '_.;-_i,,.-

•.;'J, ,, '. Ii

/I

......ii=__ ii _

.... i - .r o I - i ,

i IL ' " 'g') I q' "..___ ......

i

i ..... j , -i_

" _,,, ,_i, T -

,e. - i£,4, -_--, I--' .............. t-- -_--m--r-_-'_ __ .. ',

"_ ,' -_- :1 / "_

I

I . ._ •

/ L1m. ! = ,s-_i, , i_ _ I1

! 1 .....• ' Iit= ;i

--i (( t--r--)_t_'i, i,,t+._-4A:-- 4_-_i?tr'l_7_titII \ I 1" /i# ! _1"_4.. .I.I , ; ,I, ,I, I ill iu i 7 t--i-- -_r1-1I-1-

% .........,I li# l i _ -_-i'--FI'T'-';'-_-"_]

D.20.................................

............ , t d n| -- --

O0000003-TSF05

Page 180: Lunar Module (LM) J ! Soil Mechanics Study I

P

,

t Those areas which would require further definition prior to fabr.ication.include:=

t Actual requi._ements and locations for limit and/or safety switches mounted onthe-gantry, and triggered by carriage/strut location.

] Cable reels or cable travelle_-rings for instrument wirin_ leads. __ ,,

I Strut/carriage interface and brackets.

I: Strut/footpad retraction.mechanism.

r Flexible pneumatic__connections from the gantry to the strut or carriage-mounted

: pressure tanks.

Provision for either electrical or lanyard "firing,' of the strut/footpad release.

D.4 THE INSTRUMENTED STRUT AND FOOTPAD

%

I Figure D-9 il)_strates the.full-scale instrumented strut.andfootpad assembly_suspended.I from the carr['_,ge. The fully-extended length of theassembly is. about 88Anches ......

The support strut is basically a_pneumaticallyyloaded piston mounted rigidly w_ithin.the:

gantry canriage and terminates at the lower end_w.ith an instrumented_load: cell and clevis.

A similar c-levis on the upper surface of the footpad_t0gether with a-pair of large: diameter

intersecting pins for mir_ a cross, constitutes a.rugged_univers__l jo_intJo_Ihe/ootpad

i attachment .......................... ,

The :strut. comppnents consist of a.pair of _elescoping- tubular elements ,_the outer (about

ten_inches_in diameter) servhlg as a_suppgrt cylinder, while the -hmer (about eight, inches

in diameter) acts as_a piston. The cylinder is capped atthe upper end:and_provides a

tube/adapter_fitting for-air preSSurization, Thefootpad loadingschedule_is-established -

by the degree of cylinder.pressurization during tests (refer to Figure D-10).

I D-2i

I

O0000003-TSF06

Page 181: Lunar Module (LM) J ! Soil Mechanics Study I

I

/

a

)t

O0000003-TSF07

Page 182: Lunar Module (LM) J ! Soil Mechanics Study I

1_ _ ...... •..... • _ •

D_

• " " ' 00000003-

Page 183: Lunar Module (LM) J ! Soil Mechanics Study I

I

Bothtlle upper_endof-the piStomand the gland:end of the cy:lindor are fitted with leaded .

bronze bushing rings tn.minimizc.friction and.w_ar w.hen the p!sto!_ is extended. An L'O'!-

rin¢-ba,"ked.Teflon seal within :the.cylinder_gland. prevents _air leakaEc. The .cylinder

gland-n.l_ incorpnrates.a.felt wiper to protect the seal from mineral debris during no_:-

real te,_!._ Provision :m._ bee_l made so that drag tesl._ may be _un.-with the-cylinder

manualb:.lnc_,;ed rather than pneumatically loaded.. This may_ be acc_,mplished hy replacing .__

the felLwipev rin_ with ,z set of/our tapered Sectors el: collets_which. _,hempu!led-snug

with.a box -'rench, wedge between.the.tapered inner diameter of-the cylinder glandring

and thc_m:¢er-_diamete_of the. piston and prevent pist_on.movement. The rings can be easily___

unlocked-b/backing_off the-clamping bolts and then tightening a set of extractor screws

which withdraw the sectors from the taper, of the gland ring.. The pistnn can be locked

at any height within its stroke range,

Total stroke of.the strut has been optimized at.30 inches. This provides for a maximum

footpad-,_oil penetration.of 24 inches.under either pneumatic loading. (for Lonstant load), or .................. i

manually locked (for constant penetration) test conditionS .....

The piston.._ nd cylinder:are :linked by a_pair of hinged torque-arms which pre,¢ent relative ..

rotation betvteen-the strut piston_and .the,cyl_inder. This,coupled with the design of. the .....

footpad uaiversaLjoint,prevents footpad yaw and.assures_instrumentation orientation. _!

The torq_).e arms limit the maximum-piston extension.and the common hinge-joint provides

a convenient location for mounting a retort potentiometer'to sense strut length or depth

of footpad penetration."T

A mechanism on the outen cylinder wall: incorporates.a toggle latch which locks the piston

in_the_'.'ceeked'! position (refer to. Figure D-11). With the.trigger lever Jn the_safety posi- -_

tion, the latch_cannot disengage .to_.release or "fir-e'._ .the.strut..During dra_ tests, the- ...

trigger wilLbe fired.by:a.trailing lanyard after a_specified distance of_footpad-carriage-

travel across_the soil test pit...Firing.is accomplished by raising the:trigger lever, to

disengage the positive, lock, then, by furthers'cerement, to cam the latch over the-toggle

dead-cent_m. Once.over.dead center, the.latch swings violently free _and:comes to r_St

on±he •inner surface- of the lower torque arm.

D-24 ......... ,

t,

O0000003-TSF09

Page 184: Lunar Module (LM) J ! Soil Mechanics Study I

i +

• + • , , _ , ., ,

- - J + + . , _ I I I -- -- iS i

O0000003-TSFIO

Page 185: Lunar Module (LM) J ! Soil Mechanics Study I

I

f

A second location for the latch prgvides a_"parklng, position. In this state the footpad

is ralsed_six inches off the soil bed or partitions, andthe latch is engaged over a solid,

nontripping pin. A_pivotedretaining ring drops over the.latch end to prevent disengage -_

ment with the pin. Provision is made to lock the retainer__tiflt_either_a_boltmrK_padlock

to prevent any but intentional release.

The footpad attachment clevis extends from a cylindrical sleeve_that forms, the inner ,'

element of the three-axis instrumented load cell._.The-load.cell is designed to measure

verticaLloads andbothArag and.lateral horizontaLloads acting, on._he.footpad.. Except.

for _hysical_size-oLits compo_nent_s, the basic/lesign of this unit and theload sensing

principles used are identical to those developed for the subscale drag_t_est: _equipment. ,.

The.footpa_dusedlor-full--scale drag .tests_shownAn Figure. D:-12, is identicaLto the LM i "

footpad in physical diameter,height, contour radii and inside-perip.bery,_but-it differs

radically: in conStruction due to the rigorous and recurrent service schedule to.whichit ]JL.

must be subjected.

The-footpad isanepoxy/glass.fiber'comp0site,.generated over a disppsableform,_.cured, l

and then machined to precise, contour. This. method of construction is simplified by T

simultaneously forming two identical, footpads, as indicated in Figure D-12, and then 1_:

separating_them at the intersecting plane. The mounting c!evis-i$ actually embedded

into. the structure during fabrication. A spun-aluminum skin is bonded over the ]ower-__ l!

surface to__rovide frictioual.characteristics similar to those*of the actual LM footpad.

Thefootpad mounting .¢.[evis attaches to the mating load cell clevis through a rotating -_

c_oss-_pin arrangement that forms a sturdy nonyawing universal joint. Mechanical stops

are_machinedinto the clevis and .U-joint to restrict/ootpad pitch motion to +25 ° , and.

:= foot ap__ roll_motion to__17-.-1/2 ° to simulate:the.motion restraints.of t_M foot-

pad *• ........... i

• (The-actual LM footpad is a freely rotating structure, mounted on a ball joint and capable

of 25 °. roll and pitch. Instrumentation and durability_ requirements for a test tier.ice idictated the nonyawtng universal Joint concep_t _md reduced rolLtravel,. An identical foot---

_ pad has survivedappr0ximately 20 full-scale impact cycles without failure or measurable

i deterioration.)D-,26

IO0000003-TSF1

Page 186: Lunar Module (LM) J ! Soil Mechanics Study I

t

I D,-27......... !....

O0000003-TSF13

Page 187: Lunar Module (LM) J ! Soil Mechanics Study I

Pitch and/or roll_attitude.of the footpad during-test is measured, by two rotary potentiom,

eters located at 9(]°- to each other on_one-end of each of the U-joint cross_pins. The cross-

pins are-aligned ill the drag and lateral axis. of the system suchthat each_potentiometer

measures footpad motion in only one plane.

During tests a heavy plaAstic-boot would p_otect the U-iointand all instrumentation

components.from abrasioxt and im_i_gement of dust-and soil_particles. With the boot

installed the. lower end of the strut/footp&d.assembly simulates the_shape, and silh..ouette .............................................

of thefulLscale LM footpad/strut assembly.

D.5 OPERATION OF THE FULL SCALE. DRAG. TEST_ FACILITY

The purpose ofthissectionistn-describetheprocedures necessary forproper and-....

safe operationofthefull.scaledrag testequi'p_ment..Sincetestsystem operationand

contr_l is_effected_by the-hydraulic power/.control unit,.this equipment is covered in ....

detail with attention .directed to both the preparation and activation phases of its operation.

In_addition, comments_pertinent to the general setup and arrang_ement of the mechanical ..

equipment are givem Although not procedures, these are noted as_precautions_ or guides

to help insure that test runs are both nonhazardous and prqduct!ve of- meaningfuldata.

The soil test bed and associated handling equipment does not fall within the scope-of_

this_section, however, its proper preparation and maintenance is essential to any useful

test program. This includes.the correct selection of soil material and use_of proper bed

p_'eparation-procedures followed by appropriate, soil control tests. Soil material physical.

properties, and_ esp_ecially, health hazards must be known so that adequate safety measures

for-handling and dust control can he implemented.

The footpad should be:checked forfreedom of motion and U-jointlubrication, and for

instrumentation read-out_and calibration. Any-loose.soiLfrmmprevio_,._ tests should be

removed and the dust protector (plastic boot), inspected-for tears and tightness. The strut .....

should stroke smoothly and its inflation pressure be:.verified for footpad_constant load. _

tes �requirements.If the. strut length is. locked for constant penetration tests, the.locking _

features should be checked for:tight_ an____dpd rope*: _tdjust_.ment... Tl_e_strutl.trip:.latch: ....................

D-28

•. , . • . , ..... . ,,

00000003-TSG01

Page 188: Lunar Module (LM) J ! Soil Mechanics Study I

J

s

should be examined tor "cocked" readiness and tile trippigg lanyard set to p_'ovide tile

required drop-p0int.. All instrumentation circuitry should be carefully checked and loose

wiring cables secured to preheat damage.

The gantry bridge nmst be-properly positioned over the soil: bed, aligned with thehydrauliC

actuator-,_and.securely_anchored to its _ttachment points..The tubular rails must_be wiped ,_

cleanand lubricatedimmediately_prior to each teat run. B0th the str.ut and drawbar

attachments to the carriage and the drawbar to p0wenpiston couplij_g should-be inspec.ted.-

' The-footpad, Strut, carriage,:and _antry rails must be free of any loose tools or other

t. objects that could become lethal missiles during the test run,

t_.rior to.first-time usage of the hydraulic power/contr_l unit there _should be positive

assurance, that all components have: been carefully and securely, assembled; that the

[ system has .been thorough!y-purged of_all foreignmaterials, chips, grease moisture, etc.and. completely oil. flushed; and that all gages, seals, controls,, etc-,,, ha_ e be.en tested and

r certified,[i

r The hydraulic unit is powered by the stored energy of high pressure nitrogen introduced .........

' _ above and acting upon the surface.of the oil in the pressure storage-tank which, in turn,

supplies the force to drive the actuator piston. A separate electrically-d_'iven oil__ump

• is. used:tot oil transfer through the.syStem. Shop_air Rressure and nitrogen pressure: are

employed for. the operation of certain valves and .regulators

A specific test schedule is controlled by the metering_orifice (located below the control

valve assembly) and by_the air pressure setting on.the-constant force pn.eumatic-piston

1 in the .control valve assembly. The air. pressure is regulated from_the control panel_

immediately pX_iorto test._ However, the metering orifice can be installed, or_changed.

only! when the.system is unpr.essurized, since disassembly is. required. Accordingly_

this operation should be performed prior to filling, bleeding, and pressurizing the system.

i i D-29

,I iL • ,

t

00000003-TSG0"2 '

Page 189: Lunar Module (LM) J ! Soil Mechanics Study I

f

J

i:

The hydraulic_Power�control unit cannot be activated or "fired" unless the following

safetyprecautipnsare satisfied.The.limitswitchor switcheson thegantry,carriage

must be.inclosed,position,a keylockswitchat thecontrolpanel must be manually_unlocked

1and activated, and_the '!firing" button •must be manually tripped.

The following procedures cover the hydraulic;system charging, filling, bleeding, pressur- |

izing:_ivation, and Shutdown operations (_refer to schematic diagram Figure D-4). | r

D.5.1_ Charging the System with Hydraulic Oil I

Close all valves and regulators. Insure that all electrical circuits are-"off" and thatthe 4&

keylock switch on the control panel is locked and-the key removed,

t

Transfer approximately fifty (50) gallons of MIL-H-5606 hydraulic oil into the supply .

and dischargedrum (i). ._

Open main valve (2),__fill and drain valve (3), tank bleed valve (4) and isolation valve (5).

Open the control valve <6) by turning on the shop air pressure and.adjusting the pressure

regulator (7) to apply approximately five psi to the valve actuator,

Energize the .hydraulic pump (8) and transfer approximately 45 gallons of oil (six cubic

feet) into the pressure storage tank (9) and cormecting lines. The oil volume transferred

may be readily determined by observing a.drop of 26--.27 inches in the supply_tank level.

There will be a tendency for the_power piston to creep toward the extended position if

charging is initiated with the piston retracted.

Add.an_additionaL20 gallons (3.7: cubic ieet) of oil to the supply and discharge-dru m (1)t

This can be measured by a 12,13-inch_level rise at the drum.

Shut off the.hydraulic pump (8)_, close main_alve (2) and Shut off air pr_essure regulator:

(7) to relieve, the control valve constant force piston and close the controLvalve (6).

D-30

--. - , i i ( ..... --- d- -.t )

00000003-TSG03

Page 190: Lunar Module (LM) J ! Soil Mechanics Study I

I 4

!i D.5.2 Filling the Power_Cylinder

I_ Open the power_ cylinder low-pressure_bleedvalve (10)and high-pressure bleed,calve (1)..Energize the solenoid valve (12) and adjust the nitrogen pressure regulator (13) to open

I the programmed (Annin) valve (14). The valve position ca,] i.x_,determined visually.

Start mid_run hydl?aulic_pump (8). When oil is observed to.discharge il_to the drum (!) ..........

I de-energize the solelmid to close theprogrammed_valVe (14).

i Continue running the hydraulic pump until the piston travels to the fully extended.position.Shut off the pump and crack isolation_valve (5) momentarily to .relieve the pressure buildup

i inthehydraulicaccumulator (15).

Close allvalv.esand shutdown.thenitrogenregulator(13).

D.5.3 *Bleeding the System

.......i The entire system must be "bled" to remove all trapped air or gas (except in the pres-

sure storage tank (9) and the-accumulator (15)) which_would cause '_softness'Landerratic

operation.

I" Open the main valve (2), fill and drain valve (3), high-pressure (113,bleed •valve isolation

valve (5) and low-pressure bleed valve (10).-

Adjust air:pressure regulator (7)_to apply approximately five psi air pressure signal to

i open the control valve (6).i

Slowly o_en.the tank_rt.l:essurizing valve-(20) until nitrogen pressure_gage-(16)indicates

appx_qximately 50 psig applied to the surface of the oil in the pressure:storage tank (9)..

The.flaw-of oil from the storage tankwfll flush any air trappec! in the System into the

supply_an..d discharge drum (1).

*Note: This operation should be performed prior to each test run until sufficient_experi-ence has been gained to warrant reducing its.frequency.

I' D-31

I •

.... _ 9

i f i la aa I I - -- " I

00000003-TSG04

Page 191: Lunar Module (LM) J ! Soil Mechanics Study I

I

As soon as the intermittent oil discharge i_nto the drum becomes a_steady flow, closeAhe

low-pressure bleed valve. (10), and then_all remainilkg valves and regulators.

7_

I_.5.4 Pressurization i£

Open thetankpressux_izationvalve (20)to charge,the.systemwith 15 cubic-feetof nitrogen

at 2000 psi. Tank pressure Is-lndicated_onnitrogenpressure gage-(16).Tank bleed- .i. p

valve-(4)_isprovldedto,bleed-down-oreom01etelyreleasetankpressure when required.

A_sep__ratenormally_closed-solenoidvalve-(17)ismounted_o_l_t_pthepressure-storage_J

tank/o_provideinstantdepressurlzationoR demand..

i Cautlon_ Once the system is pressurized extreme care_must be exercised, since the

forces-generated within the equipment and by the piston are very high.

D.5.5 The Drag Test "RurY

After the hydraulic-system has been charged, the-power.piston positioned, and the system

= "bled" and pressurized, the hydraulic power/control unit is functionally ready :for use.

At this time, final checks should be made.to insure that all of the mechanical equipment

and instrumentation is in order and ready for test. Immediately prior to test, any area

safety regulations and warning devices would be activated.

The test run is accomplished as follows:

Open the main valve (2).

Adjust: t_he air pressure regulator: (.7) to the_setting required_for:the control valve.constant

forcep.iston_(6_ The correct pressure setting is obtained from/he system calibration

sheets.

Check and record all valv-e:position_-and gage pressures as_requlred and insure_that elec-

trlcaLcircuits_are_energized. Determine thatalldata-recordingdevicesare ready for

activation. "_:!

D-,32...

.i

00000003-TSG05

Page 192: Lunar Module (LM) J ! Soil Mechanics Study I

Ir

Unlockthe key-locked.safety switch.

Activate-data recording systems and immediately depress the "-firing'.' button,_ The

complc.te test run-from acceleration through deceleration is then controlled bythe.

hydraulic system_ After the carriage and footpad have deee, lerated to a iull S{ofi, relock ..........................

the safety switch.

Retraction of the strut and footpa_d_wlll probably not be_performed beforea thorough

visual or photographic, examination of the-test bed has been made.

Release the strut_loading pneumatic pressure, and raise the strut and footpad clear _f

the soil teat bed:and.lock in the "parked" position. Uncouple the.power-piston drawbar

and_return the carriage toAts starting position on the gantry,. This. should be done manu-

ally to avoid the possibility of backling the drawbar. To avoid interference_with test bed ......

renovation,:the power cylinder should remain retracted. -

D.5.6 System:Depressurization ._

In the interest of.safety _the. equipment should.not remain pressurizedfor extended periods

when .not scheduled for immediate re-use•

Open_tank bleed .valve. (4) to permit the gradual escape of. nitrogen, until the -nitrogen gage--

(16) dropsto 200 psi. Close the bleed valve•

In_an emergency: the_ nitrogen pressure can be instantly "dumped!' by firing the normally

closed Solenoid valve (17), ..

D.5.7 Draining the System

Normally, _the.hydraulic system would be. drained only. for major maintenance operations ..........

Change of the orifice:requires only_that the main valve (2_.and bleed_valves (i0). and_(1-1)

be closed in addition tcLaciivafing the-solenoid.valve (.i_2)to open the programmed (Annin)

valve (14L__T_he system, must be "re-bled" .after orifice-change,

j00000003-TSG06

Page 193: Lunar Module (LM) J ! Soil Mechanics Study I

I

Complete drainage can be accomplished by ope_aing the system bleed valve (19).and.the

fill_and drain valve (3). The:oil.will discharge into tim supply and discharge drum (1).

The auxilliary discharge=drum must_be employed to receive the entire:charge of oil.

When the system is completely, drained (i,e., no further oil flow_into the discharge drum

is observed), close the_bleed valve and fill and drain valve.

The_preceding operational.procedures-are based on currently conceived hardware and.

would be-subject to expansion and possible .change-to accommodate variations dictated by

• actuaLp.rPc_urement items and _niclue facility installation. However, as given, they would.

form the_basis for a detailed "Operational Guide'" or "Manual" for the system as it is

finally ev_ Iv2_L

D.6 LISTING.OF DESIGN DRAWINGS

Listed below are:the engineering design and/or manufacturing, drawings of major, com-

p0n_ents, that.were prepared..during this desfgnstudy. Some of these, are reproduced in

• • A •reduced size in appropri_ate sections of.this ppendtx. Although these drawings are. not

included as_a direct attachment to this re_ort, copies of each will be furnished to NASA-

MSC in a separate-package.

Bendix Applicable DrawingItem __ Drawing Figure Size. (in.)

Complete-System

Drag: Test Facility, Perspective View *VXE--30828 D-1 34 x 44Drag Test.Facility, 1/20-Scale Layout *VXE-30826 D-2 34 x 44 - ,x

Hydraulic. Power -Unit_

Schematic Diagram *VXD-30827, D_4 22 x. 34.Semischematic, ControlValve Assy. *VXD-30830 D--5 22x_34 ..... _._Lay_out,=pp_wer/Control Ass:-. VXR-_30594__l. - 34 x7.6 i " i

VXR-30594-2.-- 34x 66Control Valve VXR-30588: 34 x232

Hydraulic Cylinder Adapter VXD,30589 22 x 34-Orifice-Plate, Control Valve: .... VXC-30590 17:x_22Piston,_ControlValve VXC-30591 17 x 22 ---Sleewe_ Control Valve VXC-30592 . 17 x 22 ............... dPlatform .................... VXR-30593 34 x 84-

D-34

I

_+_

00000003-TSG07

Page 194: Lunar Module (LM) J ! Soil Mechanics Study I

Bendix Applicable DrawingItem Drawing Figure Size (Ill)

I Gantry StruCtureDrag Test Equipment, List of Material VXE-.30564_ 34 x 44Ga,_try Structure, Bridge *VXE-3056_ _ .34 x 44

I Gantry Detail__.End Plates VXE-30566 34 x 44Lift Rolls. VXD,30.567 22 x 34Carriage Details and Bearings *VXE-30568 D-7. 34 x 44

I Carriag=eaAssembly___ .... *VXE-30569 D-8 34 x 44Strut and Footpad_ ..

S£rut, Instrumented *VXE-307-71. II-10 34 x 44Torque.Link and Release Mechanism *VXE-30_73 ......... D-11 34 x 44Installation, Strut *VXC-30775 D-9 17:x_22Footpad, Glass Fiber *VXE,30642 D-12 34 x 44

I. Clevis and Plug= VXD-30643 22 x 34

*Drawings reproduced in the-text..

!:[ D.7 ANALYTICAL PREDICTIONS OFSYSTEM PERFORMANCE "

ReSults of.analytical studies._that predict performance-of the full-scale drag test facilityare summarized in this.section. The studies were conducted as part_of the power/control

unit_design effort to. investigate control, system dynamics-and to optimize the hardware

i design.

l 'Ehe analysiswas carried as_far as practical during.the control ,zystem design p.hase andwould.necessarily continue through a development phase when-experimental data from.

actual control system_hardware was made available..However,.the techniques-used were .....

based on.previous experience with.related types of systema, and the-results shown here- ......

are believed to reflect the performance.that can. be expected from the full-scale system.• =

The theoretical results indicate that, except for one extremesituation, essentially full

compliance withAhe specified performance requirements_ (see paragrapl:L D.1): can be.2x--pected. The exception involves a worst-on-worst conditiomof carriage velocity_ (1f-feet/ ....

I second), maximum drag- _oad:(7000 pounds), and peak break-away load fluctuation

' D-35

00000003-TSG08

Page 195: Lunar Module (LM) J ! Soil Mechanics Study I

(_-10 percentor-+700 pounds), in which the carriage reaches a peak velocity o.f 0139

foot/secondgreater- thamthat obtalnecLwith no load fluctuatiom. However, under less

stringent condition (i.e., sliglttly slower speed, or smaller constant_2oad, or smaller

load fluctuations), therspecifiedjnaximum ve]ocity deviation of _-0.1 foot/second is ex, .:

pected to be.met.

Table D-1 presents tlmparametric: desig_ specifications for the hydraulic_powel'/control

system. The table lists nominal criteria (phus tolerances, in several cases) for 28.

parameters which were _letemnined .to be-most inflUentialArktheir_effects.on overall

system performance. These parameters w_ere optimized to the values_shown via_earlier

detailed studies.

Eigure D-13 indicates the programmed:(Annin) valve design requirements (item 27. of

Table D- 1)_in_terms-of required flow performance asa function, of time. From valve

supp!_er specifications• a size two-inch valve with 900 to 1500 pound ASA body rating .

appears.to_be adequate.. Although opening and elosing_ characteristics of this unit are not

available, these would be experimentally-determined-and then op_mized during the

development phase. Figure D-23 indicates the acceptable range for opening and closing_

flow performance; the analysis assumeda linear opening and closing in 0.2 second (along

the upper and lower, bounds_, respectively, of Figure D-13).

Figure D-14 illustrates the throttling.pyifice design requirements, all_dimensions being• \

nominal.

Figure D-.15p_resents control valve calibration, data-fnom which the metering orifice

selection and.constant -.:force pneumatic-piston air pressure_setting is determined. _ ,..

The:calibration-pr_c!ictions are based on nominal velocity and nOminal load requirements

(i.e., no tolerance-included). -:

Figure D-16 indicates the exl__e._ctedsteady-stateperformancevariationwith constant load

using the calibration data from Figure D-15._ The performance variations shown are over

the entire- range- of specified.loads, i.e., zero to -7000_pounds_, and.are-considered 3 a

variations.

D-36---

00000003-TSG09

Page 196: Lunar Module (LM) J ! Soil Mechanics Study I

I

I

I

<...._ ,_ _ ,_,___ ............

i

[ D-3_

[i

00000003-TSG 10

Page 197: Lunar Module (LM) J ! Soil Mechanics Study I

T

tI

D-38

I

O0000003-TSG 11

Page 198: Lunar Module (LM) J ! Soil Mechanics Study I

Ir

t

/

i

.......... - . _ '_ _

- _'_'0 _o _- _0 _ _ ,-_

I! _-_°I"

• - . . • /6

, ____.j

00000003-TSG 13

Page 199: Lunar Module (LM) J ! Soil Mechanics Study I

0_._o

D-40

........ *,, , , i i ii i i i

00000004

Page 200: Lunar Module (LM) J ! Soil Mechanics Study I

r, I

0

(_)-0 ,o .m,_

,._-.,- ._ Q

",=." _ • _ ._ _=_=

0_'< _ ,., 0 • "_

•,)-' _ _ 0 ,,=,-,,=,

I _'_ e_--_ _ _ _

0 0 0 "_,_

O.u P. _ '_,'_, _ 0

-. )_ _ _ _ _ m_ ).( m_ 0 _ ,'_ _

D_41 ..........................

................ * , , in i i i ii I II i --

00000004-TSA03

Page 201: Lunar Module (LM) J ! Soil Mechanics Study I

D-42

.......... i i i I I I II I _ i I I

00000004-TSA04

Page 202: Lunar Module (LM) J ! Soil Mechanics Study I

_'- -- D/R. - _. Q...................... '.......

Note: Eight identical, symmetrically spaced ports machined

through surface of hollow, metallic cylinder.

Figure D-14. Throttling Orifice Design Requirements

D-43

............ • . mlnl • .... . ii i _ _"

00000004-TSA05

Page 203: Lunar Module (LM) J ! Soil Mechanics Study I

480 _J

/

_40 % /- /

400 - / --

360 -- _ ........

,320- _--

o_ a8o /

/240a

160 I_ / 3. Specified available FB range

V requirement is I00 ibs FB480 Ibs.

1202 4 6 8 10 12 14

XDSS (Constant Steady-State Carriage Velocity) - ft./sec.

Figure D-15. System CalibrationP:ediction

D-44

I

• ., i . i , • m i a . l I I i .... I ....... I -_

00000004-TSA06

Page 204: Lunar Module (LM) J ! Soil Mechanics Study I

_3 0 .... r ] II

7ooo,,,I _/ I4_oLo.<,"f_....... ik___7oo0••ib_.

__. Zero I Load! Load Ii _ ^ ,,

450 --- _ _ Load ........

rl l 7000-lb. _._j ..,_ Zero

• 410 ............

: i II iJ,.o Ir"+ I' l I

370 Zero_oo0lb._J/'- Loa_Load //

330 ...... '

0

_ 29G /

° /0

_, 250 . -21o

/_ _,egend: '

AJVlO = 0.107 in 2AMO _ 1.21 in 2

130 d/ Note:.

The performance variations- shown are overthe entire

90

il7/, ....o,....,,.,.,i,e. zero to '/000 lhs,Therefore,theyshouldbe conside

3a variations,i

502 4 6 8. 10 ...... 12 14 ..... 16....

XDSS (Constant Steady-State Carriage Velocity) - ft./see.

Figure D-16. Expected Steady-State Performance Variation With Constant Load

D-45

- -- = -- - i • • i I I i I I I Ill I II I I I I II I I I I - -- "

00000004-TSA07

Page 205: Lunar Module (LM) J ! Soil Mechanics Study I

The data presented in Table D-2 was obtained-by cross referencing the curves presented

iu Figures D-15 and D-16. Note that tim predicted 3_ variation in steady-state perfor-

mauce (i.e., the actual velocity obtgined) with constant load is relatively small.

Figures D-17 and D-18 indicate the expected dynamic response of the nomiual system

under no load conditions, (i.e., with no soil impcding the motion of the fffotpad), although

a nominaLinerttal load of 1500-pounds was assumed. All three phases of the test run

(acceleration, constant velocity, deceleration) are slmwn, with Figure D-17 representing

a 15-foot/secondconstant velocity run and Figure D-18 a two-foot/second run. In Figure

D-18, the theoretical test run distance was shortened only to reduce computer time.

The next four figures show the predicted dynamic response of the system under conditions

that simulate both low an.fl high drag loads with break-away load fluctuations superimposed.

The frequency of load fluctuation was assumed to be uniform, beginning just after steady- t

state velocity was reached and ending with initiation of the deceleration phase. The load

pulse period and shape was arbitrarily established to effect fluctuating load buildup to

full value as a first order time constant then drop sharply off as shown.

Figures D,19 and D-20 present expected system response at steady-state velocities of

15 and 2 feet/second, respectively, under a small (500 pound) load with +10 percent (or

_-50 pounds) break-away loads superimposed.

Figures D-21 and D-22 are similar predictions but under maximum load (7000 pound)

conditions with the +10 percent (or +700 pound) load fluctuation superimposed.

Figure D-21 is the test condition noted earlier in which the maximum steady-state

velocity variation of ±0.1 foot/second is exceeded. This variation is not felt to be of

particular significance, since the analysis does indicate that drag system load variations

can be effectively accommodated by the control valve.

D_46

= = m i , m,_, ,,, i | ii i ii ml ml i I I I I I

00000004-TSA08

Page 206: Lunar Module (LM) J ! Soil Mechanics Study I

II

TABLE D-2

PREDICTED 3_ VARIATION IN STEADY-STATE PERFORMANCEDUE TO SPECIFIED RANGE OF CONSTANT LOAD

Prediction of XDSS Obtained (nom. ±3_Tolerance) (Nominal predicted from Figure ,-

XDSS AMO (in 2) FB (lbs) D-16. Tolerance due to total specifiedDesired from f_om constant load range, i.e., 0 < load -<(ft./sec.) Figure D-15 Figure D-15 7000 lbs.)

2 0.302 125 2 ± 0.05 ft/sec

3 .......... 0,302- 273 3 • 0.05 ft/sec

4 0.453 219 4 • 0.07 ft/sec

5 0.453 338 5 ± 0.05 ft/sec

6 0,807 160 6 ± 0.12 ft/sec

7 0.807 215 7 ± 0.11 ft/sec

8 0.807 279 8 ± 0.1 ft/sec

9 0.807 352 9 i 0.09 ft/sec

10 0.807 433 10 ± 0.08 ft/sec

11 1.21 242 11 ± 0.17 ft/sec

12 1.21 286 12 + 0,15 ft/sec

13 1.21 335 13 ± 0.14 ft/sec

14 1.21 388 14 ± 0.11 ft/sec

15 ...... 1.21 444 15 i 0.ift/sec

Nomenclature: XDSS _ constant steady-state carriage velocity.

AMO @ metering orifice area.

FB @ pneumatic force on control valve piston

. • . • , .• • , n m. • ,m,, i i i | I ||| I I I I

00000004-TSA09

Page 207: Lunar Module (LM) J ! Soil Mechanics Study I

D-48

i i .= i I i ....

00000004-TSA] ]

Page 208: Lunar Module (LM) J ! Soil Mechanics Study I

iI

D-49

I

00000004-TSA13

Page 209: Lunar Module (LM) J ! Soil Mechanics Study I

|

D-50

O0000004-TSB01

Page 210: Lunar Module (LM) J ! Soil Mechanics Study I

II

*1 ,., _ tr"P

D-51ii

..... . ..... mn i I | n _

O0'O00004-TSB02

Page 211: Lunar Module (LM) J ! Soil Mechanics Study I

D-52

O0000004-TSB03

Page 212: Lunar Module (LM) J ! Soil Mechanics Study I

O0000004-TSB04

Page 213: Lunar Module (LM) J ! Soil Mechanics Study I

In the transition from acceleration to steady-state velocity, the "overshoot" evident on

each of the test runs is a result of the assumed linear opening of the Annin valve in 0.2

second mentioned earlier. This cau be accommodated during developmeut by "tailoring"

of the valve opening characteristics within tile range indicated in Figure D--13. The range

was established by considering various other linear valve opeu_ag clm racteristics that

maintained system stability and accelerated the carriage within the first three feet of

travel.

Table D-3 summarizes the highlights of Figures D-17 through D-22 in tabular form.

The predicted nominal dynamic respouse characteristics listed bound the range of system

response expected for the specified carriage velocity range of 2 to 15 feet/second, under

loads ranging from zero to 7000 pounds, and with +10 percent break-away load fluctuations

superimposed.

Table D-4 presents the predicted actual steady-state carriage velocity which should be

obtained (nominal ± tolerance) as a function of the system and operating tolerances.

These predictions are shown for all desired velocities between 2 and 15 feet/second at

one-foot/second intervals. A breakdown of the predicted effects of individual tolerances

is also shown. These were combined using the square root of the sum of the squares of

the individual variations to obtain the overall expected variations due to all tolerances

(columns 7 and 8).

Although many parameters were considered nominal in the analysis leading to Table

13-4, the effects of tolerances on those parameters believed most critical to overall

system performance and stability and/or most likely to vary, have been considered.

Where no tolerances were assumed, either the parameter values shown are design

criteria to be maintained (as near as possible) on the hardware, or - as in the case of

flow discharge coefficients --the values would be determined experimentally and their

effects reassessed during development phase analytical studies. In addition, for certain

parameters, the assumed tolerances used here can be reduced in later studies when

detail hardware sizes are known.

D-54

I

- , ,l, • , i ,,i i i i i i I I II li II ..... I --- i

O0000004-TSB05

Page 214: Lunar Module (LM) J ! Soil Mechanics Study I

.............. • , , i I • i .....

O0000004-TSB06

Page 215: Lunar Module (LM) J ! Soil Mechanics Study I

D-56!

.......... . . ,.. i i i i i i i i i I II

O0000004-TSB07

Page 216: Lunar Module (LM) J ! Soil Mechanics Study I

APPENDIX E

VACUUM/ATMOSPHERIC_ IMPACT TESTER ANDSUBGRAVITY SIMULATOR

This Appendix describes the subscale impact tester and subgravity simulator experi-

mental apparatus and the associated instrumentation systems used for the atmospheric

and vacuum footpad .impact tests and the reduced gravity impact tests. These experi-

ments were conducted-by the IIT Research Institute at Chicago, Illinois during the period

from November 1966 to May 1967. The test equipment was-designed and constructed by

IITRI to meet technical requirements established by Bendix.

The following pages are reproduced from appropriate portions of IITRi_Final Report

No. M6173, submitted to Bendix at the conclusions of the study ..............................

E-1

K Ii i I • i I • i i n • I i I II I I I I I¢ I I I I --

O0000004-TSB08

Page 217: Lunar Module (LM) J ! Soil Mechanics Study I

ILI._EXPER!MENTAL APPARATUS

The apparatus used in the experiments in atmosphere

is shown in Figure I and consisted basically of an impact

drive mechanism to accelerate the footpad prior to impact, a

soil container 24 in. in diameter and 20 in. deep, and the

associated instrumentation. For the experlmen_s in vacuum the

impact drive mechanism was mounted on a slmila_ frame in the

vacuum system as shown in Figure 2.

A. IMPACT DRIVE MECHANISM

_he impact drive mechanism, illustrated in Figure 3,

represented the most significant i£em with respect to program

performance. The purpose of the impact drive mechanism was to

provide controlled motion and controlled orientation for the

scale model footpad up to and during soil impact and penetration.

The mechanism consisted of a shaft riding in two bronze bushings

contained within a rigid frame. Attached to the end of this

shaft was a universal adjustment mechanism on which a scale

model of the LM footpad was mounted. A load cell was inserted

between the pad and the shaft. These four items, weighing

approximately 32 pounds constituted she moving elements of

the drive mechanism.

The energy required to drive the impacting assembly was

provided by the elastic strain energy stored in a helical

compression drive spring. The spring acted upon the upper end

of the shaft, and reacted against an extension to the frame.

The spring and shaft were held in their cocked position by a

sear, fitting into a latching groove in the shaft, and were

released b_ solenoid actiono The axial forces on the sear

were balanced by means of a small balancing spring and an

adjustment screw. The amount of energy stored in the spring

could be varied by means of the preloa d adjustment screw on

the upper end of the shaft.

Page 218: Lunar Module (LM) J ! Soil Mechanics Study I

E-3

............ i •

O0000004-TSBIO

Page 219: Lunar Module (LM) J ! Soil Mechanics Study I

_ _i _

Fig. 2 IMPACT DRIVE MECHANISM IN VACUUM CHAMBER

E-4

" - O0'O00004-TSBll

Page 220: Lunar Module (LM) J ! Soil Mechanics Study I

Drive Spring

._ear_ng _ -Frame

._aln Bearing8

Shaft

Adjustment Mechanism-

Cell

pad

Fig. 3 IMPACT DRIVE MECHANISM

E-5

I

' i i i i i n li _ Ii i I I I I I I IIi I ii II l -_

O0000004-TSB13

Page 221: Lunar Module (LM) J ! Soil Mechanics Study I

Upon release of the sear, the spring drove the shaft and

its attachments downward for the major portion of its travel.

Near the end of its stroke and before impact, the shaft

separated from the spring and experienced "free" travel.

The experiments in vacuum required the adaptation of the

impac_ drive mechanism and its mounting bracket to existing

vacuum facilities. The limited space available within the

vacuum chamber_necessitated the design of a mounting bracket

which could be easily removed permitting the placement and

removal of the soil eontaineu. This bracket consisted of a

stiffened aluminum plate, mounted on a pivot, and constrained

by a bolted lock (Figure 2). Additional stiffness, in the form

of guy wires, was provided, primarily for the oblique angle

impact tests.

B. SUBGRAVITY SIMULATOR

For the exEeriments in a reduced gravitational field a

subgravity simulator was designed D and is shown in Figure 4.

It consisted of a drop tower approximately 20 feet high, con-

taining a drop platform, a counter weight system, a hoisting

and release system, and a means for decelerating and stopping

the drop platform.

The drop platform itself was a stiffneed plate structure

on which a vertical frame was mounted. The soil specimen rested

on the plate and the vertical frame supported the impact drive

mechanism and its mounting bracket. In addition, this frame

provided an attachment point for the hoisting cable and guide

rollers. The guide rollers were rubber tired casters providing

a stable constraint, in a horizontal plane, for th_platform

during its descent. The rollers rode upon the web and flanges of

the supporting columns in a two point support configuration

(across the plate diagonal).

The drop platform rode within four vertical wide

flange beams, arranged in a rectangular configuration, con-

strained at the top and the bottom and braced diagonally along

E-6

L

O0000004-TSC01

Page 222: Lunar Module (LM) J ! Soil Mechanics Study I

!

/

#

Fig. 4 SUBGRAVITY SIMULATOR

E-7

L ................. ,, ,,, I I I I II i --

00000004-TSC02

Page 223: Lunar Module (LM) J ! Soil Mechanics Study I

their length. Across the-top of this structure was a yoke

arrangement, carrying the upper pulleys necessary for the......

hoisting and counterbalance cables. The lawer pulleys for

these systems were contained within the base structure. The

support structure, also, had attached to it, the reaction

members for the friction.deceleration device.

The hoisting system consisted of a winch, cable,

solenoid actuated release mechanism, and associated pulleys.

The release mechanism consisted of a solenoid actuated toggle

linkage attached to the locking hooks (Figure 5). The counter-.

balance system, permitting the simulation of reduced gravity, ..........................................

consisted of a double cable, counter-weights, and associated

pulleys. The double cable was attached to the drop platform

at both the top and the bottom, permitting the use of a single

deceleration device to control both the drop platform and the

counter weights.

The counter weight assembly was composed of a number of

steel slabs, permitting variation of the retarding force. This,

in.turn, permitted the simulation of any gravity field from ........................................

earth normal (no drop) to almost "zero g" (free fall).

The friction decelerator (Figure 5 and 6) consisted of

spring loaded friction pads and.associated reaction members

The friction pads were attached to the stiffened plate structure

of the drop platform by load springs to provide an essentially

constant normal force between the friction pad and the

reaction member during the deceleration phase. The pad was

arranged so that any desired material may be used as the

friction element. The friction element used for these experi-

ments was a commercially available brake lining material.

The reaction members were attached to the main supporting

structure through a parallel bar linkage arrangement. This

linkage permitted the reaction member to rotate away from the

friction pad when the direction of travel of the drop_platform

E-8

00000004-TSC03

Page 224: Lunar Module (LM) J ! Soil Mechanics Study I

" -_, ......_..._ =PreXoad _pring

, _ To_[e Linkn

Lockin@ Hooks

Cable

Solenoid Release _echsniem

FrIQtlon Pad-------_ _: -_.._.__,__Load Springs

L_ 4.-_Atcac},ed to Drop

_"- Frame _I _ latform

Drop Fixture F'ramet |_ - Dlrectlo_ of Potion

T

/ .*---Re_ctton Nember

Release Ltnks

r i, -.- -:

Flg. 5 FRICTION DECELERATOR

E-9

d

k

-lee e e el e , . , _--I

00000004-TSC04

Page 225: Lunar Module (LM) J ! Soil Mechanics Study I

%

Fig. 6 FRICTION DECELERATOR

E-IO

00000004-TSC05

Page 226: Lunar Module (LM) J ! Soil Mechanics Study I

II

was reversed and, thus provided an automatic unle¢king feaLure_

The members themselves were made from a structural, steel shape

and were faced with a steel plate for the frfction surface° A

total travel of four feet was allowed for deceleration.

The required drop height depended upon the time necessary

to conduct the impact experiment while the platform was falling°

The distance required for deceleration depended upon the drop

height; but the friction deceleration was designed for fcee fall

of the loaded drop platform from a height of 16 feet, In the

experiments a total drop height of approximately 4 feet was

used and p=ovided a total time for testing of approximately 550

msec at a gravity field of I/6g. The total, drop height of

16 feet would provide a time of approximately io0 see under

free fall.

E-Ii

-- - ,.,! mm I II II III -_-

I

00000004-TSC06

Page 227: Lunar Module (LM) J ! Soil Mechanics Study I

IV. _NSTRUMENTAT ION

The instrumentation system consisted of eight record/

reproduce channels. Six channels were used to record analog

data signals and two were used to record time information (one

channel for a time base channel and the second for "time of

event" data).

Figures 7 and 8 are block diagrams of the recording

instrumentation and the reproduce equipment_ Data signals

recorded on magnetic tape, were reproduced as oscillogram

traces.

The signal output of each measuring system was terminated

into a patchbay located in a monitoring unit which contained

the circuitry to perform the electrical calibration. It also

contained visual monitors and test equipment that was used-to

assure that the measuring systems were in proper operating con-

dition prior to conducting the test.

A. TRANSDUCERS

Bending and axial loads were measured by electrical

strain gages mounted on the load cell as shown in Figure 3.

The strain gages were metal film gages and were connected in

a four active element Wheatstone-bridge configuration. The

strain gages were placed so as to provide maximum data_signals

for the parameter being measured and, at the same time, be

non responsive to other effects. The cross sensitivity of the

different elements were observed to be less than 5 percent and

were taken into account in the reduction of the data_

The load cell contained two piezoelectric accelerometers,

mounted in an orthogonal array to monitor the horizontal and

vertical component of the acceleration. A Kistler 802 unit

was used to measure the vertical acceleration and a Kistler

808A was used in the horizontal position. Both units had an

electrical frequency response from near DC to 8,000 Hz. The

transverse sensitivity was less than five percent of the

normally applied load.

E-12

O0000O04-T.q_.n7

Page 228: Lunar Module (LM) J ! Soil Mechanics Study I

E-13

i

.... -- , . .. • , • • =, i = , m, I I I II ....

00000004-TSC08

Page 229: Lunar Module (LM) J ! Soil Mechanics Study I

i I tO_ C'. ;>

p.4

{o

_ _..--, _._

0

.rt _,

._

_: ,

E-14

i

, j• • • a i imll I i II ll I II II IIII ----

00000004-TSC09

Page 230: Lunar Module (LM) J ! Soil Mechanics Study I

I

IA variable potentiometer was used to provide time-

displacement data of the footpad,

B. RECORDING E_UIPMENT

The recording equipment used on the test program were

analog magnetic tape recorders. The initial tests were run at

a recording speed of 60 ips and reproduced at a speed of I-

7/8 ips. These conditions produced oscil_ogram recordings

with an effective ba_d pass of DC to 20,000 Hz. A cursory

review of the oscillogram recordings indicated that there was

no pertinent data in the frequency range about 3,000 Hz. In

view of this, the remaining tests were run at a recording speed

of 15 ips, providing an effective band pass of DC to 5,000 Hz.

Oscillograms were used to produce traces of the data recorded on

magnetic tape.

C. CALIBRATION

The transducers were initially calibrated_over the

anticipated range of application by applying the load stimulus

to the transducer and then recording the output signal voltage.

The signal voltages were then converted to units characteristic

of the sensing element (i.e., AR per pounds for the load cell,

pcb per g for the accelerometer and AR per inch for the linear

potentiometer).

Electrical calibration was conducted prior to each

experiment to verify the integrity of the signal conditioning

equipment and recording system. The electrical calibration

signal was recorded on each data channel immediately preceding

the recording of the data signal from the test run.

The electrical strain bridge circuits were electrically

calibrated by shunting one element of the bridge Rg with an

accurately known resistor R s causing an unbalance, AR, in the

: bridge circuit. This, in turn, caused a voltage rise, AE,

proportional to AR, at the output of the bridge circuit. The

calibration signal AE was equivalent to AR/K units of force.

E-15

O0000004-TSCIO

Page 231: Lunar Module (LM) J ! Soil Mechanics Study I

i(K being the sensitivity fac_or,AR/pound, determined in the pre-test calibration.)

The accelerometer channels were electrically callbrated

by injecting a known calibration voltage signal Ec, at the

output of the charge amplifier. The acceleration equivalent, Act

of the calibration voltage could be determined by the relation-

ship:

EcAe =

where S is the range setting of the charge amplifier. (mv/peb)

and K is the sensitivity factor of the accelerometer (pcb/g).

The linear potentiometer channel was electrically cali-

brated by recording, in turn, the voltages at the two ends and

at the center of the resistance elements. This method produced

a calibration signal that represented 0 percent, 50 percent, and

I00 percent of full potentiometer travel.

D. DATA REDUCTION

The data was reduced by manually digitizing the

oscillogram records and key punching this data for reduction

on the IBM 7094 computer.

The horizontal force on the load cell was determined by

_ting that the difference between bending moments at the two

extreme strain gage bridges on the load cell was due to the Ihorizontal force. Thus, the difference between bending

moments divided by the spacing between the bridges yielded the

horizontal force. The axial force on the load cell was

simply a linear function of the output voltage of the middle

strain gage bridge.

The forces acting on the footpad were datermined by

adding the mass of the footpad times the appropriate component

of acceleration (which was measured) to the force on the load

cell. The cross sensitivity of the various elements in the

load cell were also taken into account in the computer program.

E-16

O0000004-TSC11

Page 232: Lunar Module (LM) J ! Soil Mechanics Study I

lieFERENC ES

I. Black,R. J.,etal,"FinalReport - Lunar LandingDynamics SpecificSystemsEngineeringStudies,"Bendix Report No. MM_65-4. Energy ControlsDivision,The Bendix Corporation,South Bend,Indiana.June 1965.

i 2. Black,R. J.,etal,"Development ofa MathematicalAnalysisfor PredictingtheDynamic Behaviorofthe ApolloCommand Module duringEarth Landing," BendixReport No. MM-66-15. Energy ControlsDivision,The BendixCorporation,SouthBend,Indimm. May 1966.

3. Meyerhof, G. G., "The BearingCapacityofFoundationsunder EccentricandInclinedLoads,"Session4/24,Proceedingsofthe 3rd InternationalConferenceofSoilMechanics,pp. 439-445,Switzerland1953.

4. Mizuno, T.,"On the BearingPower ofSoilunder Uniformly DistributedCircularLoad," Session4/25 Proceedingsofthe 3rd InternationalCmfferenceofSoilMechanics,pp. 446-449,Switzerland1953.

5. Shipley,E. N.,"Surveyor and LM Penetrationintoa Model Lunar Soil,"BellcommTechnicalMemorandum 67-1014-I,February 23, 1967.

6. Biarez,Jean,"Contributionof l'etudedes proprietesmecaniques des solsetdesmateriaux pulverulents"(DoctorThesis)- UniversityofGrenoble,Grenoble, France...........

7. Terzaghi,K. and Peck, R. B.,',SoilMechanics inEngineeringPractice,"John Wileyand Sons,Inc.1946.

8. Surveyor ScientificEvaluationand AnalysisTeam, "Surveyor I - A PreliminaryReport," NASA SP-126, June 1966.

9. Surveyor InvestigatorTeams, ScientificEvaluationAdvisory Team, and WorkingGroups, "Surveyor HI Mission Report - Part IIScientificResults," JPL TechnicalReport 32-1177,June 1967.

10. Barkan, D. D.,Dynamics of Bases and Foundations,McGraw-Hill Book Co., 1962,11. 14.

11. Harr, M. E., Foundationsof TheoreticalSollMechanics,McGraw-Hill Book Co.,1966, pp. 3-49.

#

i II i I I il I I I l II I I I I I I --- III i

00000004-TSC13

Page 233: Lunar Module (LM) J ! Soil Mechanics Study I

12. Leoaards, O. A., (editor), Foundation Engineering, McGraw-Hill Book Co., 1962,pp. 74-76.

13. Means, R. E. and Parcher, J. V., Physical-Pl"opel:!:!e s of Soils, Charles E. MerrillBooks, Inc., 1963, pp. 323-33 i.

14. Sehimming, B. B., Haas, H. J._ and Saxe, H. C._ Study of Dynamic and StaticFailure Envelopes, Journal of the Soft Mechanics alicl Foui$_iations Division,American Society of Civil Engineers, March 1966.

15. Scott, R. F., Principles of Soil Mechanics, Addison-Wesley Publisldng Co., Inc.,1963, pp. 304--'_I0.

16. Taylor, D. W., Fundamentals of Soft Mechanics, Johll Wiley an&Sons, Inc., 1948,pp. 210-211.

17. Jaffe, L. D., et al, "Surveyor I Mission Report- Part If. Scientific Data andResults," JPL Technical Report No. 32-1023, Pasadena, California, SeptemberI0, 1966.

IS. Jafle, L. D., et al, "Surveyor I - A Preliminary Report," National Aeronautics andSpace Administration, Report No. SP-126, Washington D. C ._ June 1966.

19. Gault, D. E., Quaide, W. L., Oberbeck, V. R., Moore,H. J., "Luna 9 Photographs:Evidence for a Fragmental Surface Layer" Science Vol. 153, No. 3739, pp. 985-988,August 26, 1966.

20. Mitche11, J. K., "Current Lunar Soil Resea=ch," Journal of the Soil Mechanics andFoundation Division (ASCE), pp. 53-83, May 1964.

21. Green, Jack, "The Moon's Surface," International Science and Technology, pp. 59-67, September 1966.

22. Halajian, "Gravity Effects on Soil Behavior," Lunar Surface Materials Conference,Boston, Massachusetts, May 21-23, 1963.

23. Vey, E. and Nelson, J. D., "Studies of Lunar Soil Mechanics," Final Report ContractNo. NASR-65(02) IITRI Report No. M272 (Phase II) j National Aeronautics and ....Space Administration, Washhlgton, D.C., February 1965.

24. Johnson, L. D. and Black, R. J., "Analysis of Size - Frequency Distribution Function ....for Soil Grains on the Lunar Surface," Bendix Report No. MM-66-24, South Bend,Indiana, August 1, 1966 (Unpublished).

25. Fielder, G., Structure of the Moon's Surface, Pergamon Press, London, 1961.

26. UPI and AP press releases and photographs covering Luna 12, October 22, 1966,(Landed in Sea of Rains) and Luna 13, December 24, 1966. (Landed in Ocean ofStorms and Activated Penetrometer.)

1

- i

00000004-TSD01

Page 234: Lunar Module (LM) J ! Soil Mechanics Study I

27. P.ausch, H., "Russian Moon Lander Yields Data on Lunar Soil Firmness, Density,"Aviation Week, January 16, 1967.

, L

28. Dobar, W. I., Tiffany, 0. L., Gnaedinger, J. P._ "Simulated Extrusive MagmaSolidification in Vacuum," Icarus, Volume 3, No. 4, Academic Press, November1964.

29. Mackrill, F. P., Black, R. J., and Sehmidt, R. E., "Progress Report No. 7-LMSoft Mechanics Study," Bendix Report No. MM-67-1, South Bend, Indiana,January 1967 (Unpublished - an estimated grain size distribution cu_we for thelunar soil is given and discussed in this report).

30. Lambe, T. W., Soil Testing for Engineers, John Wiley and Sons, Inc., 1951.

31. American Society for Testing and Materials, Procedures for Testing Soils, ASTM,Philadelphia 3, Pennsylvanla, 4th Edition, 1964 .....

32. New Products Catalog 65-i, Soiltest, Inc., 2205 Lee Street, Evanston,Illinois 60202, 1965.

33. Soiltest, Inc., Engineering Testing Equipment, Catalog Edition III, Soiltest, Inc.,2205 Lee Street, Evanston, Illinoi_ 60202, 1964.

34. Testlab Corporation, Engineering Testing A_proaches, General Catalog No. 2,Testlab Corporation, 216 N. Clinton Street, Chicago, Illinois 60606, 1965.

35. Burmister, D. M., Soil Mechanics, Vol I, Columbia University, New York, NewYork, 1948.

36. Teng, W. C., Foundation Design, Prentice-Hall, Inc._ 1962.

37. Wu, T. H., Soil Mechanics, Allyn and Bacon, Inc., Boston, 1966.

38. Terzaghi, K._Theoretical Soil Mechanics, John Wiley and Sons, Inc., 1943.

39. U.S. Bureau of Yards and Docks, "Design Manual - Soil Mechanics, Foundationsand Earth Structures," Navdocks DM-7, Dept. of the Navy, Bureau of Yards andDocks, Washington 25, D. C, November 1, 1961.

40. Miller, I. and Freund, J. E., Probability and Statistics for Engineers, Prentice-Hall, Inc., 1965.

41. Graybill, F. A.,_A_I)Introduction to Linear Statistical Models_, Volume I, McGraw-Hill, 1961.

42. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, 1956.

q

I i i i I II _-- ii d

00000004-TSD02

Page 235: Lunar Module (LM) J ! Soil Mechanics Study I

43. Draper, N. and Smith, H., Applied Regression Almlysis, John Wiley and Sons, Inc.,1967.

44. Timoshelfl_o and Goodter, Theory of Elasticity, McGraw-Hill, New York, 1951.

45. Clarke, F. W.,The Data oi Geaebemis!ry, BiJlletin 770, 5tb Ed., U. S., Geol, Surv.,Government Printing Office, Washington, D. C._ 1924.

46. Tyrrell, G. W., The Principles of Petrology, Methuen and Co., Ltd., London,E. P. Dutton and C¢J., inc., New'Yo{'k, "i926,

47. Black, R. J., et al, "Interim Report of Lunar Landing Dynamics Specific SystemsEngineering Studies," Bendix Report No. MM-65-2, an extension to BellcommSubcontract No. 10002 prepared by Bendix Products Aerospace Division (Dept. 870),South Bend, Indiana, February 17, 1965.

ADDITIONAL BIBLIOGRAPHY

48. American Geological Institute, Glossary of Geology and Related Sciences, NAS-bIRC ......Publication 501, Published by A_merican Geological Institute operating under the ............National Academy of Sciences - National Research Council, Washington, D. C.,1957.

49. Barkan, D. D. i Dyl_tmics of Bases and Foundations, McGraw-Hill Book Co., Inc.,1962.

50. Bishop, A. W. and Henkel, D. J., The Measurement of Soil .Properties in the Tri-axial Test, Edward Arnold (Publishers), Ltd._ London, 2nd Edition, 1962.

51. Dobor, W. I., Tiffany, O. L., and Gnaedinger, J. P., "Simulated Extrusive MagmaSolidification in Vacuum," Icaru_s, Vol. 3, No. 4, Academic Press, November 1964.

52. Brnevich, V. P., Hall, J. R., Jr., and Richart, F. E., Jr., "Transient Loading Testson a Rigid Circular Footing," Contract Report No. 3-146, prepared by Department,d Civil Engineering, U iversity of Michigan for U. S. Army Engineer WaterwaysExperiment Station under contract No. DA-22-079-eng-340, NWER Subtask-1;L009,February 1966.

53. Gault, D. E._ Quaide, W. L._ Oberbeck, V. R., and Moore, H. J., "Luna 9 Photographs:Evidence for a Fragmeutal Surface Layer;' Science, Vol. 153, No. 3739, August 26,1966, pp. 985-988.

54. Guttman, I. and Willes, S. S._ Introductory Engineering Statistics, John Wiley andSons, Inc., 1965.

55. Hampton, D. and Wetzel, R. A., "Stress Wave Propagation in Confined Soils,"Technical Report No. AFWL-TR-66-56 prepared fox' Air Force Weapons Commandby IIT Research Institute,October 1966,

Page 236: Lunar Module (LM) J ! Soil Mechanics Study I

56. IIuang, W. T., Petrology, McGraw-Hill Book Co., 1962.

57. Jaffe, L. D., et al, "Surveyor I .- A Preliminary Report," Report No. SP-12_66,Washington, D. C., June !966.

58. Jumikis, A. R., Soil Mechanics, D. Van Nostrand Co., Inc., Princeton, New Jersey,1962.

59. Krynine, D. P. and Judd, W. R., Principles of Engineering Geology and Geoteclmics,McGraw-Hill Book Co., Inc., 195"_/:

60. Mitchell, J. K., "Current Lunar Soil Research," Proceedillgs_ ASCE, Vol. 90,No. SM3, May 1964, pp. 53-83.

61. Nelson, J. D., "Environmental Effects on Engineering Properties of SimulatedLuimr Soils," PhD Thesis Submitted to Illinois Institute of Technology, January 1967.

62. Poplin, J. K._ "Dynamic Bearing Capacity of Soils; Report 2 - Dynamically Loaded .......Small - Scale Footing Tests on Dry, Dense Sand," Technical Report No. 3-599,U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi,September 1965.

63. Richmond, S. B., Statistical Analysis, The Ronald Press Company, 2nd Edition,1964.

64. Schimming, B. B., Haas, H. J., and Saxe, H. C., "Study of Dynamic and StaticFailur_ Envelopes," Proceedings, ASCE, Vol. 92, No. SM2, March 1966, pp. 105-124.

65. Scott, R. F._ Principles of Soil Mechanics, Addison - Wesley Publishing Co., Inc.,1963.

66. Selig, E. T. and Vey, E., "Shock Induced Stress Wave Propagation in Sand,"Proceedings, ASCE, Vol. 91, No. SM3, May 1965, pp. 19-49.

67. Taylor, D. W., Fundamentals of Soil Mechanics, John Wiley and Sons, Inc., 1948.

68. Tschebotarioff, G. P., Soil Mechanics, Foupdations _and Earth Structures, McGraw-Hill Book Co., Inc. 1951.

69. U.S. Bureau of Reclamation, Earth ,Manual, U. S. Governraent Printing Office,Washington 25, D. C., 1st Editiolh 1960.

70. Vey, E._ Nelson, J. D., "Engineering Properties of Sinmlated Lunar Soils,"Proceedings, ASCE_ Vol_ 91, No. SM1, January 1965, pp. 25-52.

71. Wahlstrom, E. E.,Petrographic Mineralogy, John Wiley and Sons, Inc., 1955.

72. Whitman, R. V. and Healy, K. A. t "Shear Strength of Sands During Rapid Loadings,"Proceedings, ASCE_ Vol. 88, No. SM2, April 1962, pp. 99-132.

t

00000004-TSD04