lv circuitbreakers

27
CIRCUIT BREAKERS The Switching Arc and Arc Modeling Luigi Vanfretti  Friday, December 14 th 2007 Final Exam (Presentation), Surge Phenomena in EPE

Upload: koksa

Post on 03-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 1/27

CIRCUIT BREAKERSThe Switching Arc and Arc Modeling

Luigi Vanfretti – Friday, December 14th 2007

Final Exam (Presentation), Surge Phenomena in EPE

Page 2: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 2/27

OUTLINE

Circuit Breakers

The Switching Arc

Mathematical Models of the Switching Arc

General Switching Arc Equations Cassie Model

Mayr Model

 Arc-Circuit Interaction

U.Delft’s Arc Model Blockset Arc-Circuit Interaction Simulations

Cassie and Myar Models

References

Page 3: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 3/27

CIRCUIT BREAKERS

Key equipment in power systems.

Function:

To isolate faulted sections of a network

Interrupt fault currents (up to the MVA rating of the

breaker)

Interrupt abnormal currents: due to nonlinear loads

(arc furnace), and other load variations.

Some history: First oil circuit breaker patented by J.N. Kelman in

1907 (Two contacts in an oil tank)

In 1957 T.E. Browne et al file the first patent for SF6

breakers.

Page 4: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 4/27

FEATURES OF A CIRCUIT BREAKER

T YPES OF CIRCUIT BREAKERS

Features:

Good conductor when closed

Good insulator when opened

Fast switching capabilities (change from closed to open must be very

fast)

Doesn’t cause over-voltages when operating Reliable (opens when it has to!, stays closed otherwise)

Types: categorized by their extinguishing medium

Oil

 Air Blast

SF6

 Vacuum

We will focus on SF6 breakers

HV Circuits

(High Pressure Electric Arc)

MV Circuits

(Low Pressure Electric Arc)

Page 5: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 5/27

THE ELECTRIC A RC AND CURRENT

INTERRUPTION PROCESS

 A complex physical phenomena (not fully

understood)

Electric Arc: capable of changing from a

conducting to a non conducting state very fast.

Current Interruption (a simple description):1. High current is detected in the network

2. Control circuit sends a signal to action the movable contact

3. High-density current is established in a small contact surface

4.  As the movable contact parts, a plasma channel isestablished (more details are explained latter)

5.  As the movable contact continues to part, the arc is being

cooled down by the medium (gaseous or liquid)

6. When the contacts have fully separated, the arc has been

extinguished by the cooling process

Page 6: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 6/27

Page 7: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 7/27

THE PLASMA STATE

Molecular Energy exceeds Combination

Energy

Matter changes from SOLID LIQUID (melting)

Increase of Temperature Energy is added &

 Var der Waals forces are overcomed

Matter Changes from LIQUID GAS

Increase of Temperature each molecule is

given more energy, so much, that the

dissociate into separate atoms

Temperature Increases Further energy

level is increased further!

Orbital electrons dissociate into free electros,

positve ions are left

TemperatureIncreases

5000 ºK - 6000 ºK 

1800 ºK 

   T  e  m  p  e  r  a   t  u  r  e   R  e  g   i  o  n  s   f  o  r   S   F   6

4 ºK 

C t ti C t ti

Page 8: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 8/27

THE PLASMA STATE

Contraction

Zone

Contraction

Zone

Arc Column

e I 

Electrons 

Ions 

Space ChargeZone

Space ChargeZone

      C      A     T     H      O     D     E   A

N ODE

For higher temperatures the conductivity increases rapidly.

Thermal ionization is caused by collisions between fast

moving electrons and protons, the slower moving positively

charged ions and the neutral atoms.

 At the same time recombination process of the positive

charged electrons and positive charged ions into a neutral

atom occurs

Thermal equilibrium: rate of ionization = rate of

recombination.

What happens after the plasma is fully established?

Free electrons and heavier positive ions in the high temperature

channel make it (the plasma channel) highly conductive so current can

 flow freely after contact separation, until extinguished.

Page 9: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 9/27

S AHA ’S EQUATION

Thermal ionization can be used to

switch between a conducting state to a non

conducting state.

Relation of the pressure with the temperature

and the fraction of atoms that are ionized

Steep slope function of temperature reduction

of average kinetic energy level can be done by

cooling with cold gas.

Bring the arc channel from conducting to non-

conducting.

52

27

23.16 10

1

i V 

e kT 

 f P T 

 f 

19

23

: 1.6 10 , charge of

: ionization potential of the medium

: 1.28 10 , Boltzmann's Constanti 

e e 

Saha’s Eqn. for

 Different Gasses

Page 10: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 10/27

Page 11: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 11/27

PLASMA CHANNEL

The potential gradient and the

temperature distribution can

be measured from the arc

channel. Potential along the arc

channel is a function of: arc

current, energy exchange

between plasma and medium,

pressure, flow velocity, and

physical properties of themedium.

Contraction

Zone

Contraction

Zone

Arc Column

e I 

Electrons 

Ions 

Space Charge

Zone

Space Charge

Zone

      C      A     T     H      O     D     E   A

N ODE

Voltage

Gap Length   x 

arc V 

cathode V 

column V 

anode V 

Cathode: conducts current

carrying electrons to the arc

column.

 Anode: collector of electrons

leaving the arc column.

Page 12: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 12/27

M ATHEMATICAL MODELS OF THE

SWITCHING A RC

 Arc Models:

Physical:

describe the physical phenomena

used in design

complex mathematics

Black box:

describe the behavior of the arc

used for simulation of arc-circuit interaction

Give the relation between the arc conductance and circuit

variables not used for design network studies

Parameter Models

more accurate black box models

parameters are obtained from complex functions and tables

Page 13: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 13/27

GENERAL PHYSICAL MODEL Physical Models

Describe the entire physical process

 Actually used for design of breakers

Based on fluid dynamics equations that obey the laws of

thermodynamics in conjunction with Maxwell’s equations

(Large number of differential equations).

There are three important expressions in these models

Conservation of: mass, momentum, and energy

Conservation of mass – continuity equation:  Arc-plasma is a chemical reaction: conservation of mass and

rate equations for different chemical reactions are considered

in conjunction.

For local thermodynamic equilibrium, rate equations become

the equilibrium mass action laws – for a monotonic gas, this is

Saha’s equation.

Saha’s equation describes the degree of ionisation in the gas.

0 gas density gas flow velocitydiv u u  t 

Page 14: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 14/27

Page 15: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 15/27

CONSERVATION OF ENERGY 

Special Case: conservation equations becomedecoupled Thermally and hydronamically fully developed and wall-

constricted arc with negligible axial pressure drop, the conditions

are in the z plane as follows

The energy equation becomes:

Used for qualitative evaluation of current increase or arc-channel

diameter reduction.

2grad( ) div( ) div ( ) ,h 

u h E u K grad T R T r  t 

pressure enthalpy of gas thermal conductivitygas density electric field strength gas temperature

gas flow velocity electric conductivity radiation loss

arc radius

p h K 

E T 

u R

 

21

T Kr 

r R E 

r r  

               

0 0 0z 

r u    h u z z 

 

Page 16: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 16/27

BLACK -BOX MODELS

Consist on one or two differential equations.

 Arc is described by a mathematical equation relating

the arc conductance with the arc voltage and arccurrent

Classical models: Cassie, and Myar  solutions to the

 general arc eqn.

GENERAL A RC EQUATION

 Arc conductance is a function of:

Power supplied to the plasma channel,

Power transported by cooling and radiation, and Time

1

, ,   arc 

in out  

arc 

i g F P P t  

u R

Page 17: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 17/27

GENERAL A RC EQUATION

The arc conductance varies with the supplied power and the

transported power in the plasma channel. The stored energy in

the channel is

The instantaneous arc conductance can be defined as

The rate of change of the arc conductance, divided by the

instantaneous arc conductance is

Manipulation of the equations above gives the general arcequation

Solutions to this equation requires assumptions, black box

models are solutions to the equation each with different

assumptions.

0

in out  Q P P dt    

0

( )t 

in out  g F Q F P P dt  

 

1 1 ( ) ( )dg dF Q d Q  

g dt g dQ dt  

ln( ) '( )

( )   in out  

d g  F Q P P 

dt F Q  

C M

Page 18: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 18/27

C ASSIE MODEL  Assumptions:

The arc channel has the shape of a cylinder filled with highly ionised gas at constant

temperature.

The cylinder is of variable diameter.

Consequences:

Heat content and conductance are constant per unit of volume.

The diameter of the plasma channel varies in diameter due to cooling.

Model:

Substituting into the general arc equation yields

Time constant: time for the arc channel diameter to change.

 Applications: studying the behavior of the arc conductance in the high-currenttime interval at temperatures above 8000 Kelvin or more

00 0 0 0 0

0 0 0

( ) , '( ) , ,out 

g Q Q g F Q Dg g F Q Q DQ P DP P  

Q Q Q 

 Arc Conductance Energy Dissipated Energy

0 0

1 2

0 0 0 0

conductivity p.u. of vol., loss (cooling) p.u. of vol., arc channel diameter,

energy p.u. of vol., / static arc voltage

g P D 

Q u P g  

2/0 0

020 00

ln( ) ln( )1 ,   t arc 

d g d g  P u P g g 

dt Q dt Q  u 

 

     

Page 19: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 19/27

Page 20: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 20/27

OTHER MODELS: H YBRID MODELS

 Browne: uses Cassie equation for the high currentinterval, and Myar for current zero.

 Avdonin, Hochrainer, Kopplin, Schwarz, and Urbanek:

capable of simulating dielectric breakdown

 KEMA: based on experiments, capable of simulatingdielectric breakdown of the gaseous space between the

breaker contacts after current interruption.

Hybrid models calculate the conductance of the

channel with a Myar equation before current zero.During the intervals of pre-and-post current zero and

thermal-and-dielectric intervals the conductance is

obtained from the concentration of charged particles

and their drift velocity.

Page 21: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 21/27

 A RC-CIRCUIT INTERACTION

Interruption process: strong interaction between the

physical process between the contacts of the breaker and

the network connected at the terminals.

During current interruption, the arc resistance

increases from zero to infinite (ideally) in microseconds  After current interruption, the TRV (transient recovery

voltage) builds up across the circuit breaker contacts.

The TRV is thus formed by local oscillations and

reflected voltages.

The hot gas in the breaker does not change to aninsulating state instantaneously the arc resistance is

finite and a small current can still flow: post arc current.

Illustrate this interaction with the ARC Model Blockset.

Page 22: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 22/27

THE A RC MODEL BLOCKSET: U. DELFT

Features

Operates within V.2. and V.3. of the

SimPowerSystems toolbox for MATLAB/Simulink.

Seven different arc models.

Ideal for arm model comparisons.

Highly accurate

Current limitations:

The blockset complies with V.2. of SimPowerSystems,

it can be updated to V.3. using the “psbupdate”command (available only in V.3.).

It is incompatible with V.4. (directory, graphical, and

other issues). Updated not available from U. Delft as

of Dec. 2007.

Page 23: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 23/27

 Arc Model Blockset

© january 2001Electrical Power Systems

Delft University of Technology

Schwarz arc model

Schavemaker arc model

Modifi ed Mayr arc model

Mayr arc modelKema arc model Habedank arc model

Cassie arc model

 A RC MODEL BLOCKSET

Simple Test Circuit Schematic

voltage current

+-

v

+i-

Cassie arc mode l

• Simple Test Circuit

• Models in the Blockset:

L

C RArc 

Model S 

Page 24: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 24/27

SIMULATIONS SET UP

Two different arc models:Cassie, Myar.

Simulate breaker

interruption for two cases:

Case 1: Breaker opens att = 0 

Case 2: Breaker opens at

t = 9 ms

Observe the behavior at highcurrent and current zero

Compare differences with the

models

[vsw]vsw1

voltage

[vma]vma

[vca]vca

[isw]isw

[ima]ima

[ica]ica

current

     +   -

      v

     +   -

      v

     +   -

      v

Schavemaker arc mo del

Mayr arc model

[vsw]

[vma]

[vca]

[isw]

[ima]

[ica]

+  i

-

+  i

-

+  i

-

Cassie arc model

Page 25: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 25/27

0 0.005 0.01 0.015 0.02-4

-2

0

2

4

6

8x 10

4

Time (sec)

   A  r  c   V  o   l  t  a  g  e   (   V   ) ,

   A  r  c   C  u

  r  r  e  n  t   (   I   )

 

VMyar

IMyar

0.0167 0.0167 0.0167 0.0167 0.0167 0.0167

0

0.2

0.4

0.6

0.8

Time (sec)

   A  r  c   V  o   l  t  a  g  e

    2   0   K   V    (

   V   ) ,   A

  r  c   C  u  r  r  e  n  t   (   I   )

 

VMyar

  IMyar

8.328 8.33 8.332 8.334 8.336 8.338 8.34

x 10-3

-0.8

-0.6

-0.4

-0.2

0

Time (sec)

   A  r  c   V  o   l  t  a  g  e

    2   0   K   V    (

   V   ) ,

   A  r  c   C  u  r  r  e  n  t   (   I   )

 

VMyar

IMyar

SIMULATION RESULTS (C ASE 1)

0 0.002 0.004 0.006 0.008 0.01

-8

-6

-4

-2

0

2

4x 10

4

Time (sec)

   A  r  c   V  o   l  t  a  g  e   (   V   ) ,

   A  r  c   C  u  r  r  e  n  t   (   I   )

 

VMyar

IMyar

Zero Crossing

Arc Voltage

Extinguishing Peak

Post Arc

Current

TRV

SIMULATION RESULTS (C ASE 2)

Zero Crossing

Arc Voltage

Extinguishing Peak

Post Arc

Current

TRV

Page 26: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 26/27

Page 27: LV CircuitBreakers

8/11/2019 LV CircuitBreakers

http://slidepdf.com/reader/full/lv-circuitbreakers 27/27