m d llimodelling diverse communities · example phytoplankton succession insuccession in lake...

52
M d lli di iti M d lli di iti Modelling diverse communities Tradeoffs and species diversity pull the strings Modelling diverse communities Tradeoffs and species diversity pull the strings Jorn Bruggeman Jorn Bruggeman Department of Earth Sciences/St. John’s College University of Oxford Department of Earth Sciences/St. John’s College University of Oxford

Upload: others

Post on 01-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

M d lli di itiM d lli di itiModelling diverse communitiesTrade‐offs and species diversity pull the stringsModelling diverse communities

Trade‐offs and species diversity pull the strings

Jorn BruggemanJorn BruggemanDepartment of Earth Sciences/St. John’s College

University of OxfordDepartment of Earth Sciences/St. John’s College

University of Oxford

Page 2: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Natural diversityNatural diversity

Plankton communitiesPlankton communities

• Up to 50 % of global primary production• Up to 50 % of global primary production• Key role in biogeochemical cycles• High diversity = adaptability• Key role in biogeochemical cycles• High diversity = adaptability

Page 3: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Confronting complexity in modelsConfronting complexity in models

phytoplanktonnutrient assimilation

NO3 PO4

dd

H4SiO4 N2

deathdeath

di l d i l

zooplankton detritusdeath

dissolved particulate

labile refractionary

NPZD: Evans & Parslow (Biol Oceanog 1985), Franks et al., (Mar Biol 1986), Fasham et al. (J Mar Res 1990)

Plankton Functional Types: ERSEM/BFM, MEDUSA, Diat‐HadOCC, PlankTOM, PISCES, TOPAZ

Page 4: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

The desired outcome?The desired outcome?

Page 5: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Adaptive approachesAdaptive approaches

1.1. StandardizeStandardize speciesspecies•• unified modelunified model•• traitstraits describe interspecific variabilitydescribe interspecific variability•• tradetrade‐‐offsoffs link costs and benefitslink costs and benefits

sizesize

Page 6: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Adaptive approachesAdaptive approaches

1.1. StandardizeStandardize speciesspecies•• unified modelunified model•• traitstraits describe interspecific variabilitydescribe interspecific variability•• tradetrade‐‐offsoffs link costs and benefitslink costs and benefits

ance

ance

2.2. Generate Generate multimulti‐‐species communityspecies community•• introduce “all possible” species or introduce “all possible” species or 

randomly draw trait valuesrandomly draw trait values

abun

daabun

da

3.3. StudyStudy evolution in spatial and evolution in spatial and temporal varying environmentstemporal varying environments

““EverythingEverything isis everywhereeverywhere””the environment selects”the environment selects”

sizesizep y gp y g

•• Community selfCommunity self‐‐assembles through assembles through interspecific competitioninterspecific competition

““EverythingEverything is is everywhereeverywhere””BeijerinckBeijerinck (1913)(1913)_

, the environment selects”, the environment selects”& & BaasBaas‐‐BeckingBecking (1934)(1934)

Page 7: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

ExamplePhytoplankton succession in Lake Constance

ExamplePhytoplankton succession in Lake ConstancePhytoplankton succession in Lake ConstancePhytoplankton succession in Lake Constance

GermanyGermany

SwitzerlandSwitzerland AustriaAustria

Surface areaSurface area 536 km²536 km²

DepthDepth 101 m on average101 m on average 254 m maximum254 m maximumDepthDepth 101 m on average,101 m on average, 254 m maximum254 m maximum

Limiting nutrientLimiting nutrient PP

Dominant grazerDominant grazer DaphniaDaphnia sp.sp.

SeasonalitySeasonality physicsphysics‐‐driven: summer stratification, winter deep mixingdriven: summer stratification, winter deep mixing

Page 8: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

34 years of observations34 years of observations

•• PhysicsPhysicsyy–– hourly hourly meteometeo–– monthly temperature profilesmonthly temperature profiles

•• BiochemistryBiochemistry–– biweekly bulk nutrients & biweekly bulk nutrients & biomassbiomass–– weekly counts of weekly counts of 200+200+ phytoplankton phytoplankton speciesspecies

Page 9: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Observed phytoplankton speciesObserved phytoplankton species

1,600 µm1,600 µm33 1,500 µm1,500 µm331,100 µm1,100 µm33

120 µm120 µm33

40,000 µm40,000 µm33810 µm810 µm33810 µm810 µm

1,200 µm1,200 µm332,300 µm2,300 µm33

18,000 µm18,000 µm33 34,000 µm34,000 µm33 1,400 µm1,400 µm33

500 µm500 µm33790 µm790 µm33

1,100 µm1,100 µm33

µµ

100 µm100 µm33

10 µm10 µm332,700 µm2,700 µm33

86 µm86 µm33

1,200 µm1,200 µm33

320 µm320 µm3324,000 µm24,000 µm33 80 µm80 µm33300 µm300 µm3328 µm28 µm33150 µm150 µm33

Page 10: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

A generic phytoplankton modelA generic phytoplankton model

phytoplanktonphytoplankton

biomassbiomassphosphorus phosphorus phosphatephosphate

maintenancemaintenance

reservereservephosphatephosphate

maintenancemaintenance

zooplanktonzooplankton

mortalitymortality biomassbiomass

Dynamic Energy Budget (DEB) theory (Kooijman 2000;2010)Dynamic Energy Budget (DEB) theory (Kooijman 2000;2010)

Page 11: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

What traits govern interspecific variability?What traits govern interspecific variability?/d)

/d)

n (

n (‐‐))

wth ra

te (/

wth ra

te (/

 predatio

 predatio

mum

 grow

mum

 grow

ptibility to

ptibility to

maxim

maxim

suscep

suscep

slope = slope = ‐‐0.200.20 slope = slope = ‐‐0.260.26

cell volume (µmcell volume (µm33)) cell volume (µmcell volume (µm33))

Bruggeman et al. (Nucleic Acids Res 2009), Bruggeman (J Phycol 2011)Bruggeman et al. (Nucleic Acids Res 2009), Bruggeman (J Phycol 2011)

Page 12: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

By‐product: trait values for all taxaBy‐product: trait values for all taxa

cyanobacteria

dinoflagellatesg

diatoms

http:/http:///www.ibi.vu.nl/programs/phylopars/phytoplanktonwww.ibi.vu.nl/programs/phylopars/phytoplankton

Page 13: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Inserting size‐dependenciesInserting size‐dependencies

phytoplanktonphytoplanktonspecies cell volumespecies cell volume

biomassbiomassphosphorus phosphorus phosphatephosphate

maintenancemaintenance

reservereservephosphatephosphate

maintenancemaintenance

zooplanktonzooplankton

mortalitymortality biomassbiomass

Dynamic Energy Budget (DEB) theory (Kooijman 2000;2010)Dynamic Energy Budget (DEB) theory (Kooijman 2000;2010)

Page 14: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

A size‐structured communityA size‐structured community

For instance:

Moloney & Field (J Plankton Res 1991)Gin et al (Ecol Mod 1998)

For instance:

Moloney & Field (J Plankton Res 1991)Gin et al (Ecol Mod 1998)an

ceance

Gin et al. (Ecol Mod 1998)Armstrong (J Plankton Res 1999)Baird & Suthers (Ecol Mod 2007)Banas (Ecol Mod 2011)

Gin et al. (Ecol Mod 1998)Armstrong (J Plankton Res 1999)Baird & Suthers (Ecol Mod 2007)Banas (Ecol Mod 2011)

abun

daabun

da

Ward et al. (Limnol Oceanog 2012)Ward et al. (Limnol Oceanog 2012)

““E thiE thi ii hh ””th i t l t ”th i t l t ”

sizesize

““EverythingEverything is is everywhereeverywhere””BeijerinckBeijerinck (1913)(1913)_

, the environment selects”, the environment selects”& & BaasBaas‐‐BeckingBecking (1934)(1934)

Page 15: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Calibration: bulk nutrients and biomassCalibration: bulk nutrients and biomass

phosphate (µmol/L)phosphate (µmol/L)

h t l kt (h t l kt ( 33// 22))phytoplankton (cmphytoplankton (cm33/m/m22))

zooplankton (mg C/L)zooplankton (mg C/L)

Page 16: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Validation: the size distributionValidation: the size distribution

mean cell volumemean cell volume

s.ds.d. cell volume. cell volume

Page 17: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Selection pressuresSelection pressures (d

‐1)

primary production predation 1 ) net growth

ribution to

kton

 growth

wth ra

te  (d‐

+

l ll l ( 3)

cont

phytop

lank

l ll l ( 3) l ll l ( 3)

net g

row

ln cell volume (µm3) ln cell volume (µm3) ln cell volume (µm3)

e (µm

3 )

ate (d

‐1)

ncell volume

et growth ra

ln ne

Page 18: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Interim conclusionsInterim conclusions

•• A sizeA size‐‐based approach captures based approach captures seasonal variation seasonal variation in the in the size size structurestructure of the phytoplankton communityof the phytoplankton communitySi t t i t ll d bSi t t i t ll d b•• Size structure is controlled by:Size structure is controlled by:–– BottomBottom‐‐up pressure (resource limitation favours small species)up pressure (resource limitation favours small species)–– TopTop‐‐down pressure (grazers prefer small prey)down pressure (grazers prefer small prey)TopTop down pressure (grazers prefer small prey)down pressure (grazers prefer small prey)

Page 19: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Revisiting adaptive approaches ‐ differencesRevisiting adaptive approaches ‐ differences

H d l iH d l i i i ?i i ?•• How do you generate a multiHow do you generate a multi‐‐species community?species community?–– Sample trait space, repeat many times (ensemble simulation)Sample trait space, repeat many times (ensemble simulation)

Grid all of trait spaceGrid all of trait space–– Grid all of trait spaceGrid all of trait space•• What processes control species diversity?What processes control species diversity?

–– initial assemblageinitial assemblageinitial assemblageinitial assemblage–– immigrationimmigration–– background diversity/dormant communitiesbackground diversity/dormant communities–– genetic mutationgenetic mutation

•• How do you represent a multiHow do you represent a multi‐‐species community?species community?–– Explicitly model many speciesExplicitly model many species–– Implicitly represent community with aggregate statisticsImplicitly represent community with aggregate statistics

Page 20: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Generating a multi‐species communityGenerating a multi‐species community

•• Gridding vs. repeated samplingGridding vs. repeated sampling

bund

ance

bund

ance

bund

ance

bund

ance

abab

sizesize

abab

•• Distribution shapeDistribution shape

bund

ance

bund

ance

sizesize

abab

sizesize

Page 21: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Sustaining diversitySustaining diversity

C i i l i i bi i i d lC i i l i i bi i i d l•• Competitive exclusion is ubiquitous in modelsCompetitive exclusion is ubiquitous in models•• Why not in reality? Proposed reasons:Why not in reality? Proposed reasons:

S ti l i bilitS ti l i bilit–– Spatial variabilitySpatial variability–– Temporal variabilityTemporal variability–– “Kill the winner”: frequency dependent specific growth For“Kill the winner”: frequency dependent specific growth ForKill the winner : frequency dependent specific growth. For Kill the winner : frequency dependent specific growth. For 

instance: adaptive predator preferences (instance: adaptive predator preferences (FashamFasham et al. 1990), et al. 1990), viruses, interference feedingviruses, interference feeding

d ld l•• In modelsIn models–– Background species concentrationBackground species concentration

•• Source terms: P+PSource terms: P+P sink terms: Psink terms: P•• Source terms: P+PSource terms: P+P00, sink terms: P, sink terms: P–– Mix in new species (laterally, vertically)Mix in new species (laterally, vertically)–– Mutate (Clark et al. Mutate (Clark et al. EcolEcol Mod 2011)Mod 2011)(( ))

Page 22: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

From explicit species to aggregate statisticsFrom explicit species to aggregate statistics

NN speciesspecies Explicitly‐modelled speciesExplicitly‐modelled species

undance

undance

NN speciesspecies

Follows et al. (Science 2007)Bruggeman & Kooijman (Limnol Oceanog 2007)Follows et al. (Science 2007)Bruggeman & Kooijman (Limnol Oceanog 2007)

Explicitly‐modelled speciesExplicitly‐modelled species

abu

abu

sizesizesizesize

cece

total biomasstotal biomassmean sizemean sizes ds d of sizeof size

Approximation in terms of “moments”:total biomass, trait mean and varianceApproximation in terms of “moments”:total biomass, trait mean and variance

abun

dan

abun

dan s.ds.d. of size. of size

Wirtz & Eckhardt (Ecol Mod 1996)Norberg et al. (PNAS 2001)Merico et al. (Ecol Mod 2009)

Wirtz & Eckhardt (Ecol Mod 1996)Norberg et al. (PNAS 2001)Merico et al. (Ecol Mod 2009)

sizesize

Merico et al. (Ecol Mod 2009)Merico et al. (Ecol Mod 2009)

Close similarities with Adaptive Dynamics and adaptive dynamicsClose similarities with Adaptive Dynamics and adaptive dynamics

Page 23: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Dynamics of aggregate statisticsDynamics of aggregate statisticsnet growth

Total biomassTotal biomass

Mean trait valueMean trait valueWirtz & Eckhardt (Ecol Mod 1996)Wirtz & Eckhardt (Ecol Mod 1996)

VarianceVarianceWirtz & Eckhardt (Ecol Mod 1996)Norberg et al. (PNAS 2001)Merico et al. (Ecol Mod 2009)

Wirtz & Eckhardt (Ecol Mod 1996)Norberg et al. (PNAS 2001)Merico et al. (Ecol Mod 2009)

Page 24: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Revisiting Lake Constance – long‐term changeRevisiting Lake Constance – long‐term changemol L

mol L‐‐11))

hosphate (µ

mho

sphate (µ

mphph

66‐‐fold reduction in POfold reduction in PO44 between 1980 and 2000between 1980 and 2000

Page 25: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Calibration: bulk nutrients and biomassCalibration: bulk nutrients and biomass

phosphate (µmol/L)phosphate (µmol/L)

h t l kt (h t l kt ( 33// 22))phytoplankton (cmphytoplankton (cm33/m/m22))

zooplankton (mg C/L)zooplankton (mg C/L)

Page 26: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Where does the nutrient go?Where does the nutrient go?(µmol L‐1)

hospho

rus 

phactio

nspho

rus  fra

phos

Page 27: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Another look at the size distributionAnother look at the size distribution

mean cell volumemean cell volume

s.ds.d. cell volume. cell volume

Page 28: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Proposed chain of eventsProposed chain of events

1980 – 1988

[PO4] reduction only affects internal P store

1988 – 19921988 – 1992

internal P store drops to critical level reduced  dominance by fast growers i d di it increased diversity increased prey availability for grazer increase in grazers selection towards larger phytoplankton selection towards larger phytoplankton

19921992 –

further nutrient reduction, increased bottom‐up pressure decreases in phytoplankton and grazer decreases in phytoplankton and grazerselection towards smaller phytoplankton

Page 29: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Sedimentary record: diatom frustulesSedimentary record: diatom frustules

Cyclotella comensisCyclotella comensis640 µm3

Cyclotella cyclopuncta640 µm3

Cyclotella spec. < 8 µm200 µm3

Tabellaria fenestrata2600 µm32600 µm

Stephanodiscus minutulus50 µm3

Stephanodiscus hantzschii600 µm3

Asterionella formosa450 µm3

F il i t iFragilaria crotonensis700 µm3

Aulacoseira granulata1200 µm3

Wessels et al. (J Paleolimnol 1999)

Page 30: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Long‐term diatom sizeLong‐term diatom size

Page 31: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Tentative conclusionsTentative conclusions

•• Phytoplankton response to Phytoplankton response to oligotrophicationoligotrophication1.1. no response for 5no response for 5‐‐8 years8 years2.2. increase in grazer concentrationincrease in grazer concentration3.3. increase in phytoplankton sizeincrease in phytoplankton size

•• CausesCauses–– intracellular storage of nutrients delays responseintracellular storage of nutrients delays responseg y pg y p–– interaction between resource limitation, interaction between resource limitation, diversitydiversity, and , and predationpredation

Page 32: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Towards global, IPCC‐class modelsTowards global, IPCC‐class models

Page 33: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Towards the world oceanTowards the world ocean

Page 34: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Stripped modelStripped model

PPhytoplanktonhytoplanktonspecies cell volumespecies cell volume

NNutrientutrientmaintenancemaintenance

biomassbiomass

mineralisationmineralisation

maintenancemaintenance

ZZooplanktonooplankton

mineralisationmineralisation

biomassbiomassDDetritusetritus mortalitymortality

Page 35: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Bermuda – calibrationBermuda – calibrationdissolved inorganic nitrogendissolved inorganic nitrogen

chlorophyllchlorophyll

particulate organic nitrogenparticulate organic nitrogen

iinitrogen exportnitrogen export

primary productionprimary production

Page 36: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Size from optics: conceptsSize from optics: concepts

Take a fixed quantity of pigment, and distribute it over cells of different sizes.Take a fixed quantity of pigment, and distribute it over cells of different sizes.q y p gq y p gWhat happens to light absorption?What happens to light absorption?

40 % absorption40 % absorption 60 % absorption60 % absorption 80 % absorption80 % absorption

Page 37: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Size from optics: pigments and absorptionSize from optics: pigments and absorption

Morel & Morel & BricaudBricaud (Deep(Deep‐‐Sea Res A 1981)Sea Res A 1981)Roy et al. (J R Roy et al. (J R SocSoc Interface 2010)Interface 2010)

Page 38: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Reconstructed Bermuda cell sizeReconstructed Bermuda cell size

1994 1994 –– 20072007

annual meanannual meanannual meanannual mean

Page 39: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Bermuda: size vs. growth rateBermuda: size vs. growth ratemodelled modelled meanmean of maximum of maximum growthgrowth raterate

/d)

/d)

/d)

/d)

/d)

/d)

wth ra

te (/

wth ra

te (/

wth ra

te (/

wth ra

te (/

wth ra

te (/

wth ra

te (/

observed annual mean cell size observed annual mean cell size –– reconstructed from light absorptionreconstructed from light absorptionmum

 grow

mum

 grow

mum

 grow

mum

 grow

mum

 grow

mum

 grow

maxim

maxim

maxim

maxim

maxim

maxim

cell volume (µmcell volume (µm33))cell volume (µmcell volume (µm33))cell volume (µmcell volume (µm33))

Page 40: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

In the global oceanIn the global ocean

3D 3D globalglobal simulationsimulation•• MOM4p1MOM4p1MOM4p1MOM4p1•• 11°° resolutionresolution•• climatologicalclimatological forcingforcing (CORE)(CORE)

Page 41: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Multiple traitsMultiple traits: : mixotrophymixotrophy

Page 42: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Multiple traitsMultiple traits:: mixotrophymixotrophyMultiple traitsMultiple traits: : mixotrophymixotrophy

PhototrophsPhototrophs and and heterotrophsheterotrophs: a section through diversity: a section through diversity

bactbact 11

bact 3bact 3 bact 2bact 2??

heterotrophyheterotrophy?? ??

mix 2mix 2 mix 3mix 3

mix 1mix 1

??

phyt 2phyt 2

phyt 1phyt 1mix 4mix 4

??

??

mix 3mix 3 ??

h t t hh t t h

phyt 3phyt 3??

phyt 2phyt 2

phototrophyphototrophy

Page 43: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Generalizing the ecosystem: mixotrophyGeneralizing the ecosystem: mixotrophy

trait 1: investment in autotrophy

light harvesting

+

+nutrient

maintenance

structural biomass +

organic matter harvesting

+

trait 2: investment in heterotrophy

organic matter harvestingorganic matter

death

trait 2: investment in heterotrophy

BruggemanBruggeman (2009)(2009)

Page 44: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Community representationCommunity representationab

unda

nce

unda

nce

abu

BruggemanBruggeman (2009)(2009)

Page 45: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Model characteristicsModel characteristicsModel characteristicsModel characteristicsvariance of allocation to autotrophy

mean allocation to autotrophy

variance of allocation to autotrophy

covariancemean allocation to autotrophy

nitrogen detritusbiomass

covariance

mean allocation to heterotrophy

nitrogen detritusbiomass

mean allocation to heterotrophy

variance of allocation to heterotrophy

7 physiological parameters7 physiological parameters•• maximum autotrophic and heterotrophic productionmaximum autotrophic and heterotrophic production•• halfhalf‐‐saturation constants for light nutrient organic mattersaturation constants for light nutrient organic matter

p y

•• halfhalf saturation constants for light, nutrient, organic mattersaturation constants for light, nutrient, organic matter•• maintenance rate, death ratemaintenance rate, death rate

BruggemanBruggeman (2009)(2009)

Page 46: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Patterns: productivityPatterns: productivityPatterns: productivityPatterns: productivity

Mean rank: 4/10Mean rank: 4/10

L ti R k P tilLocation Rank Percentile

1 BATS 6/13 42 %

2 NABE 7/13 50 %

3 North‐East Atlantic 7/13 50 %

4 Black Sea 2/2 75 %

5 Mediterranean 1/5 10 %

6 Arabian Sea 2/12 13 %

7 HOT 5/12 38 %

8 Ross Sea 2/5 30 %

Saba et al. (Global Saba et al. (Global BiogeochemBiogeochem. Cycles). Cycles)Saba et al. (in prep.)Saba et al. (in prep.)

9 Antarctic Polar Frontal Zone 6/10 55 %

Page 47: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Patterns: biodiversityPatterns: biodiversityPatterns: biodiversityPatterns: biodiversity

Variance of investment in autotrophy = measure of autotrophic diversityVariance of investment in autotrophy = measure of autotrophic diversity

Fuhrman et al. (PNAS, 2008)Fuhrman et al. (PNAS, 2008) PommierPommier et al. (Molecular Ecology 2007)et al. (Molecular Ecology 2007)

Page 48: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Patterns: mixotrophyPatterns: mixotrophy

Correlation between autotrophic and heterotrophic investmentCorrelation between autotrophic and heterotrophic investment

Page 49: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

ExtensionsExtensions

•• DiscretelyDiscretely‐‐valued traitsvalued traits–– diatom vs. nondiatom vs. non‐‐diatom, diatom, calcifyercalcifyer vs. nonvs. non‐‐calcifyercalcifyer

WirtzWirtz && EckhardtEckhardt ((EcolEcol Mod 1996)Mod 1996)–– WirtzWirtz & & EckhardtEckhardt ((EcolEcol Mod 1996)Mod 1996)

•• BiomassBiomass‐‐dependent specific growth ratesdependent specific growth rates–– PredationPredationPredationPredation–– Frequency dependent pop. growth (Savage et al. J Frequency dependent pop. growth (Savage et al. J TTheorheor BiolBiol 2007)2007)

•• Indirect dependencies between growth and traitsIndirect dependencies between growth and traitsp gp g–– Trait controls nutrient uptake, nutrient store control growthTrait controls nutrient uptake, nutrient store control growth

Page 50: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Note: Limitations of allometryNote: Limitations of allometry

•• NonNon‐‐monotonic trademonotonic trade‐‐offsoffs

e (/d)

e (/d)

tion (

tion (‐‐))

rowth ra

terowth ra

te

to predat

to predat

ximum

 gr

ximum

 gr

eptib

ility 

eptib

ility 

ma

ma

susc

susc

cell volume (µmcell volume (µm33)) cell volume (µmcell volume (µm33))

WirtzWirtz (J Plankton Res 2011; Mar (J Plankton Res 2011; Mar EcolEcol ProgProg SerSer 2012)2012)

Page 51: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

Aggregate statistics: costs and benefitsAggregate statistics: costs and benefits

A i ti d dA i ti d d•• Approximation = reduced accuracyApproximation = reduced accuracy–– Errors: 1 % biomass, 10 % mean, 25 % varianceErrors: 1 % biomass, 10 % mean, 25 % variance

•• No more distinct speciesNo more distinct speciespp–– No harmful algae, invasive species, commercial targetsNo harmful algae, invasive species, commercial targets

•• NonNon‐‐standard tracersstandard tracersR i t f ti d t li i l i i GCMR i t f ti d t li i l i i GCM–– Requires transformations and custom clipping logic in GCMsRequires transformations and custom clipping logic in GCMs

•• InsightfulInsightfulgg–– Direct measures of community strategy & functional diversityDirect measures of community strategy & functional diversity

•• WellWell‐‐constrained and fastconstrained and fastMinimal number of parameters and state variablesMinimal number of parameters and state variables–– Minimal number of parameters and state variablesMinimal number of parameters and state variables

•• FlexibleFlexible–– Accommodates succession, genotypic evolutionAccommodates succession, genotypic evolution

Page 52: M d lliModelling diverse communities · Example Phytoplankton succession insuccession in Lake Constance GermanGermanyy SwitzerlandSwitzerland Austria Austria Surface area 536 km²

RecipeRecipe

•• A standard model for “all species”A standard model for “all species”•• Knowledge about interspecific variabilityKnowledge about interspecific variability

–– Measured trait valuesMeasured trait values–– Principal traitsPrincipal traitspp–– Trait covariance and tradeTrait covariance and trade‐‐offsoffs

•• Assemble a communityAssemble a communityAssemble a communityAssemble a community–– Explicit species, optionally aggregate statisticsExplicit species, optionally aggregate statistics

•• Expose to environmental variabilityExpose to environmental variability•• Expose to environmental variabilityExpose to environmental variability–– Seasonality, Seasonality, interannualinterannual variability, spatial gradientsvariability, spatial gradients