ma 2211 unit 1

26
1 MISRIMAL NAVAJEE MUNOTH JAIN ENGINEERING COLLEGE, CHENNAI - 97 DEPARTMENT OF MATHEMATICS (MA2211) TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS FOR THIRD SEMESTER ENGINEERING STUDENTS ANNA UNIVERSITY SYLLABUS (R-2008-2009) This text contains some of the most important short-answer (Part A) and long- answer questions (Part B) and their answers. Each unit contains 30 university questions. Thus, a total of 150 questions and their solutions are given. A student who studies these model problems will be able to get pass mark (hopefully!!). Prepared by the faculty of Department of Mathematics AUGUST, 2009 www.engg-maths.com

Upload: csetube

Post on 22-Nov-2014

365 views

Category:

Documents


3 download

DESCRIPTION

transforms and partial differential equations

TRANSCRIPT

Page 1: MA 2211 Unit 1

1

MISRIMAL NAVAJEE MUNOTH JAIN ENGINEERINGCOLLEGE, CHENNAI - 97

DEPARTMENT OF MATHEMATICS

(MA2211)

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

FOR

THIRD SEMESTER ENGINEERING STUDENTSANNA UNIVERSITY SYLLABUS (R-2008-2009)

This text contains some of the most important short-answer (Part A) and long- answerquestions (Part B) and their answers. Each unit contains 30 university questions. Thus, atotal of 150 questions and their solutions are given. A student who studies these modelproblems will be able to get pass mark (hopefully!!).

Prepared by the faculty of Department of Mathematics

AUGUST, 2009

www.engg-maths.com

Page 2: MA 2211 Unit 1

2

UNIT I FOURIER SERIES

PART – A

Problem 1 Write the formula for finding Euler’s constants of a Fourier series in ( 0, 2 ).Solution:

Euler’s constants of a Fourier series in ( 0, 2 ) is given by

2

0

0

2

0

2

0

1

1cos

1sin

n

n

a f x dx

a f x nxdx

b f x nxdx

Problem 2 Write the formula for Fourier constants for f(x) in the interval , .

Solution:

0

1

1cos

1sin

n

n

a f x dx

a f x nxdx

b f x nxdx

Problem 3 Find the constant a0 of the Fourier series for the function f(x) = k , 0 2x .Solution:

2

0

0

2

0

2

0

1

1

1

2

a f x dx

kdx

kx

k

Problem 4 If f(x) = e x in x , find a n .Solution:

1cosx

na e nxdx

2

1cos sin

1

xenx n nx

n

Page 3: MA 2211 Unit 1

3

2 2

11 1

1 1

n ne e

n n

2

1

1

n

na e en

.

Problem 5 Write the formula’s for Fourier constants for f(x) in (c, c+2l).Solution:

2

0

2

2

1

1cos

1sin

c

c

c

n

c

c

n

c

a f x dx

a f x nx dx

b f x nx dx

Problem 6 Write the formulas for Fourier constants for f(x) in (-l, l).Solution:

0

1

1cos

1sin

n

n

a f x dx

a f x nx dx

b f x nx dx

Problem 7 What is the sum of Fourier series at a point x = x 0, where the function f(x) has afinite discontinuity ?Solution:

Sum of the Fourier series at 0x x is 0 0

2

f x f x

Problem 8 If

22

2 2 2

cos cos2 cos34 .......... (1)

3 1 2 3

x x xx to

in x , find2 2 2

1 1 1.............

1 2 3to .

Solution:

Put2

x

a point of continuity

2 2

2 2

1 1(1) 4 ........

4 3 1 2

Page 4: MA 2211 Unit 1

4

2 2

2 2

1 14 .......

4 3 1 2

2

2 2

1 1 1. .......

12 4 1 2

2

2 2 2

1 1 1.....

1 2 3 48

Problem 9 Check whether the function is odd or even, where f(x) is defined by

21 0

21 0

xx

f xx

x

Solution:

2 2

0, 1 1 , 0x x

For x f x f x where x

f x is an even function.

Problem 10 When an even function f(x) is expanded in a Fourier series in the intervalx , show that bn = 0.

Solution:

1

sinn

n

n

b f x nxdxn

Given f x is even and

sin nx is odd function

even X odd = odd. Therefore sinf x nx is odd function.

1

sinnb f x nx dx

= 0.

Problem 11 Find the Fourier constant bn for x sin x in x , when expressed as a

Fourier series.Solution:

sin

sin

sin

f x x x

f x x x

x x f x

Here f x is an even function

0nb

Problem 12 If f(x) is a function defined in 2 2x , what is the value of bn ?Solution:

Page 5: MA 2211 Unit 1

5

2

2

1sin

2 2n

n xb f x dx

Problem 13 Explain half range cosine series in 0, .

Solution:

Half range cosine series in 0, is given by

0

1

cos2

n

af x a n

0

0

2a f x dx

0

2cosna f x nxdx

Problem 14 Find the sine series of f(x) = k in 0, .

Solution:

1

sinnf x b nx

0

2sinnb k nxdx

0

2 cosk nx

n

1 12n

n

kb

n

1

1 12sin

nk

f x nxn

.

Problem 15 Write Parseval’s formula in the interval , 2c c n .

Solution:

2 2

2 2 20

1

1 1

2 4 2

c

n n

c

af x dx a b

PART – B

Problem 16 If 2

2

xf x

in 0 2x . Hence show that

(a)2

2 2 2

1 1 1.............

1 2 3 6

.

(b)2

2 2 2 2

1 1 1 1...

1 2 3 4 12

.

Page 6: MA 2211 Unit 1

6

Solution:We know that

0

1

cos sin2

n n

af x a nx b nx

22

0

0

1

2

xa dx

2

2

0

1

4x dx

31

4 3

x

3 3 21

4 3 3 6

22

0

1cosn

xa nxdx

2

2

0

1cos

4x nxdx

2

2

2 3

0

1 sin cos sin2 2

4

nx nx nxx x

n n n

2 2

1 cos 2 20 2 0 0

4

n

n n

2 2

1 4 1

4 n n

2

2

0

1sin

4nb x nxdx

2

2

2 3

0

1 cos sin cos2 2

4

nx nx nxx x

n n n

2 2

3 3

1 2 20

4 n n n n

2

21

1cos .

12f x n x

n

2

2 2

1 1cos cos .... 1

12 1 2x x

0Put x

2

2 2

1 10 ... 2

12 1 2f

0x is a pt of discontinuity.

Page 7: MA 2211 Unit 1

7

2 2 21

02 4 4 4

f

2 2

2 2

1 12 ...

4 12 1 2

2 2

2 2

1 1......

4 12 1 2

2

2 2

1 1.....

1 2 6

Put x in (1)

2

21

13

12

n

f xn

Here is a pt of continuity.

0.f

2

2 2 2

1 1 13 0 .....

12 1 2 3

2

2 2 2

1 1 1.....

12 1 2 3

2

2 2 2

1 1 1.....

12 1 2 3

Problem 17 Find the Fourier series of f (x) = xsin x in 0 2x .

Solution:

0

1

cos sin2

n n

af x a nx b n x

2

0

0

1sina x x dx

2

0

1 1cos 1 sin 2 1 2x x x

2

0

1sin sinnb x x nxdx

2

0

1cos 1 cos 1

2x n n dx

2

cos 1sin 111

2 1 1

n xn xx

n n

2

2

0

sin 1 cos 11

1 1

n x n xx

n n

2 2 22

1 1 1 1 1

2 11 1 1nn n n

0 1n

Page 8: MA 2211 Unit 1

8

2

1

0

1sin sinb x x x dx

2

2

0

1sinx x dx

2

0

1 cos 21

2

xx dx

22

0

1 sin 2 cos 21

2 2 2 4

x x xx

21 4

0 02 2

2

0

1sin cosna x x nx dx

2

0

1sin 1 sin 1

2x n x n x dx

2

2 2

0

cos 1 sin 1 cos 1 sin 111 1

2 1 11 1

n x n x n x n xx x

n nn n

1 2 2

2 1 1n n

2

1 1 2, 1

1 1 1n

n n n

2 2

1

0 0

1 1sin cos sin 2

2a x x x dx x x dx

2

0

1 cos 2 sin 21

2 2 4

x xx

1 2

2 2

1

1

2a

22

2 1 1cos 2 cos sin

2 2 1f x x nx x

n

22

1 11 cos 2 cos sin .

2 1f x x nx x

n

Problem 18 Find the Fourier series for f(x) = x2 in x and deduce that

(c)2

2 2 2

1 1 1.............

1 2 3 6

.

(d)2

2 2 2

1 1 1.............

1 2 3 12

.

Page 9: MA 2211 Unit 1

9

(e)2

2 2 2

1 1 1.............

1 3 5 8

.

Solution:

Given: 2f x x

2f x x f x

f x is an even function. Hence 0nb

1

cos2

nn

af x a nx

3 3 22

0 0

2 2 2 2.

3 3 3n

xa x dx

2 2

2

0 0

2 2 sin cos sincos 2 2 .n x

nx nx nxa x nx dx x x

n n n

2

2 120

n

n

2 2

4 1 4 1n n

n n

2

21

14 1 cos 1

3

nf x nx

n

Put x in (1)

2

21

14 1 1

3

n nf

n

x is a point of continuity.

2

2

2 2

1 12 4 ....

3 1 2

2

2

2 2

1 14 ....

3 1 2

2

2 2

2 1 14 ...

3 1 2

2

2 2

1 1.... 3

6 1 2

(ii) put x = 0, a point of continuity

2

21

10 4 1

3

n

n n

2

21

14 1

3

n

n n

2

21

11

3

n

n n

Page 10: MA 2211 Unit 1

10

2

2 2 2

1 1 1.......

12 1 2 3

2

2 2 2

1 1 1

12 1 2 3

2

2 2 2

1 1 1........ 4

1 2 3 12

Add (3) and (4)2 2

2 2

1 1....

6 12 1 3

2

2 2

1 12 ....

4 1 3

2

2 2

1 1....

8 1 3

Problem 19 If f (x) = x + x2 in x . Hence show that

i.2

21

1

6n

ii.2

2 2 2

1 1 1.............

1 2 3 12

.

Solution:

Given: 2f x x x

2f x x x

f x is neither even nor odd

0

1

cos sin2

n n n

af x a x b x

2 3

20

1 1

2 3

x xa x x dx

2 3 2 3 3 21 1 2 2

2 3 2 3 3 3

21cosna x x nxdx

2

2 3

1 sin cos sin1 2 2

nx nx nxx x x

n n n

2 2

1 111 2 1 2

n n

n n

2 2

1 4 14

n n

n n

Page 11: MA 2211 Unit 1

11

21sinnb x x nx dx

2

2 3

1 cos sin cos1 2 2

nx nx nxx x x

n n n

2 2

3 3

1 11 2 21 1

n nn n

nn n n n

2 2

2 3

11 2 2n

n n n

2

21 1

2

21 1

2

21

2 1

4 1 2 1cos sin

3

1 14 cos 2 sin 1

3

0 1

10 4 2

3

n

n

n

n

n

bn

f x nx nxn n

f x nx nxn n

Put x in

fn

Here 0 is a pt of continuity

2

2 2

2

2 2 3

2

2 2 3

0 0

1 12 0 4 ....

3 1 2

1 1 14 ...

3 1 2 3

1 1 1......

12 1 2 3

f

Hence (ii)Put x in (1)

2

21

14 1 3

3

nn

fn

x , is a pt of discontinuity

2 21

2 2

f ff x

2 212

2

2

2

21

13 4

3 n

2

2 2 3

2 1 1 1...

3 4 1 2 3

Page 12: MA 2211 Unit 1

12

2

2 2

1 1...

6 1 2

Hence (i)

Problem 20 a. Expand 2f x x x as a Fourier series in 0, 2 .

Solution:We know that

0

1

cos sin2

n n

af x a nx b nx

22 3 3 2

23 2

0 00

1 1 1 82 2 4 8 4

2 3 3 3

x xa x x dx

2

0

4

3a s

2

2

0

12 cosna x x nxdx

2

2

2 2

0

1 sin cos sin2 2 2 2

nx nx nxx x x

n n n

2 2 2

1 2 2 4

n n n

2

2

0

12 sinnb x x nx dx

2

2

2 3

0

1 cos sin cos2 2 2 2

nx nx nxx x x

n n n

3 3

1 2 20

n n

2

21

2 4cos .

3f x nx

n

b. Find the Fourier series for f (x) = ex defined in , .

Solution:

1

cos sin2n

n n

af x a nx b nx

0

1 xa e dx

1 xe

1e e

1cosx

na e nx dx

Page 13: MA 2211 Unit 1

13

2

1cos sin

1

xenx n nx

n

2 2

1cos cos

1 1

e en n

n n

2

1

1

n

e en

1sinx

nb e nx dx

2

1sin cos

1

enx n x

n

2 2

11 cos

1 1

ne en n nx

n n

2 2

111

1 1

nnn e e

nn n

2

1

1

n

nb n e en

2 21

1 11cos sin .

2 1 1

n nn

f x e e e e nx e e nxn n

Problem 21 Obtain the Fourier series expansion of f (x) where

21 , 0

21 0

xx

f xx

x

and hence deduce that2

2 2 2

1 1 1.............

1 3 5 8

.

Solution:

2 2

1 1x x

f x f x

0 0 .x x The given function is an even function.Hence 0nb

0

1

cosn

af x a nx

0

0

2 21

xa dx

2

0

2 20

2

xx

Page 14: MA 2211 Unit 1

14

0

2 21 cosn

xa nx dx

2

0

2 2 sin 2 cos1

x nx nx

n n

2 2

2 12 2n

n n

2 2

41 1

n

n

0na if n is even

2 2

8na

n is n is odd.

2 21,3,5

8cosf x nx

n

2 2 2

8 cos cos3...

1 3

x x

2 2 2

8 cos cos30 ...

1 3

x xf

0Putx

2 2 2

8 1 10 ... 1

1 3f

0 is a pt of continuity 0 1f

2 2 2

8 1 11 1 .....

1 3

2

2 2 2

1 1 1....

8 1 3 5

Problem 22 Obtain the Fourier series to represent the function f(x) = | x | is x and

deduce that2

2 2 2

1 1 1.............

1 3 5 8

.

Solution:

Given f x x

f x f x

The given function is an even function.Hence 0nb

0

1

cos2

n

af x a nx

0

2na x dx

Page 15: MA 2211 Unit 1

15

2

0

2

2

x

0

2cosna x nxdx

2 2 2 20

2 sin cos 2 cos 1 21 1

nnx nx nx

n n n n n

0na if n is even

2

4na

n if n is odd

21,3

4cos

2f x nx

n

2

4 cos3cos ...

2 3

xx

0Put x

2 2

4 1 10 1 ...

2 3 5f

Here 0 is a pt of continuity

0 0f

2 2

4 1 10 1 ...

2 3 5

2 2

4 1 11 ...

2 3 5

2

2 2

1 11 ... .

8 3 5

Problem 23 Find the Fourier series expansion of period 2 for the function f(x) = 2

x in

the range 0, 2 . Deduce the sum of the series

21

1

n.

Solution: The Fourier series of f x in 0,2 is given

0

1

cos sin2

n n

a n x n xf x a b

l l

232 22 2

0

0 00

1 1 2

3 3

ll l l x

a f x dx l x dx ll l l

2

2

0

1cos

l

n

n xa l x dx

l l

Page 16: MA 2211 Unit 1

16

2

2

2 2 3 3

2 30

sin cos sin1

2 1 2

l

n x n x n x

l l ll x l xn n nll l l

2 2 2 2

2 2

1 2 cos 2 2l n l

n nl

l l

2

2 2

4n

la

n

2

2

0

1sin

l

n

n xb l x dx

l l

2

2

2 2 3 3

2 3

0

sin cos1

cos 2 1 2

l

n x n x n x

l l ll x l xn n nll l l

22

3 3 3 3

3 3

1 cos 2 2cos 2 2n n ll

n nn nll ll l

2 210

l l

n nll l

2 2

2 21

4cos 1

3

l l n xf x

n l

0x in (1)

2 2

2 21

40 2

3

lf

n

Here 0 is a Pt of discontinuity

0 2

02

f f lf

2 2 21

2l l l

2 2

2

2 21

42

3

l ll

n

2 2

2

2 21

4 1

3

l ll

n

2 2

2 2 2

2 4 1 1...

3 1 2

l l

Page 17: MA 2211 Unit 1

17

2

2 2 2

1 1 1... .

6 1 2 3

Problem 24 a. Find the Fourier expansion of f x if

0 , 2 1

1 , 1 0( )

1 , 0 1

0 , 1 2

x

x xf x

x x

x

.

Solution:

0

1

cos sin2

n n

a n x n xf x a b

l l

2

0

2

1

2a f x dx

1 0 1 2

2 1 0 1

10 1 1 0

2dx x dx x dx dx

0 12 2

1 0

1

2 2 2

x xx x

1 1 10 1 1 0

2 2 2

0 1

1 0

11 cos 1 cos

2 2 2n

n x n xa x dx x dx

0 1

2 2 2 2

1 0

sin cos sin cos1 2 2 2 21 1 1 12

2 24 4

n x n x n x n x

x xn nn n

0

0 1

1 0

11 sin 1 sin

2 2 2n

n x n xb x dx x dx

0 1

2 2 2 2

1 0

cos sin cos sin1 2 2 2 2

1 1 1 12

2 24 4

n x n x n x n x

x xn nn n

2 2 2 2

1 4 4 10 sin sin 0

2 2 2

n n l

n n n n

1

1sin .

2

n xf x

n

Page 18: MA 2211 Unit 1

18

b. Find the Fourier series for f (x) where 0, 1 0

1, 0 1

xf x

x

.

Solution:

0

1

cos sin2

n n

a x n xf x a b

l l

0

1a f x dx

l

0 1

1 0

0 dx dx

1

01x

0 1

1 0

10 cos

1na dx n x dx

1

0

sinn x

n

0sin sin 0

n n

n n

1

0

11sin

1nb n x dx

1

0

1 1cos cos 1n

n n

n n n n

1,3

1 2sin .

2f x n x

n

Problem 25 Find the half – range cosine series for f (x) = (x – 1)2 in (0, 1). Hence show that2

2 2 2

1 1 1...

1 2 3 6

.

Solution:Here 1l

0

1

cos2

n

af x a n x

1212

0

00

12 1 2

3

xa x dx

0

2

3a

1

2

0

2 1 cosna x n xdx

1

2

2 2 3 3

0

sin cos sin2 1 2 1 2

n x n x n xx x

n n n

Page 19: MA 2211 Unit 1

19

2 2 2 2

2 42

n n

2 21

1 4cos

3f x n x

n

2 21

1 4 1cos 1

3f x n x

n

0 1Put x in

2 21

1 4 10 2

3f

n

Here 0 is o pt of discontinuity

0 0

0 12

f ff

2 21

1 4 11

3 n

2 2 2

2 4 1 1...

3 1 2

2

2 2

1 1.......... .

1 2 6

Problem 26 a. Express

1, 02

1,2

ax

f xa

x a

as a cosine series

Solution: 0

1

cos2

n

a n xf x a

a

2

0

0

2

2 21 0 0

2 2

a

a

a

a aa dx dx a

a a

2

0

2

2cos cos

a

a

n

a

nx nxa dx dx

a a a

2

02

sin sin2

aa

a

n x n x

a an naa a

2 4sin sin sin

2 2 2

a n a n n

a n n n

1

4sin cos .

2

n nf x

n a

Page 20: MA 2211 Unit 1

20

b. Express f x as a Fourier sine series where

1 1, 0,

4 2

3 1, ,1

4 2

x

f x

x

.

Solution:

We know that 1

sinn

n xf x b

l

1

12

10

2

2 1 3sin sin

1 4 4nb x n x dx x n x dx

11

2

2 2 2 21

02

1 cos sin 3 cos sin2 1 (1)

4 4n

n x n x n x n xb x x

n n n n

2 2

2 2 2 2

cos sin1 1 1 12 22 04 2 4

cos sin3 cos sin 1 3 2 22 14 2 4

n n

n n n

nn

n n

n n n n

2 2

sin12

24

n

n n

2 2

sin1 cos 22 04

nn

n n

2 2

4sin 1122 2

nn

n n n

2 2

4sin12 isn

n

b if n oddn n

= 0 if even

2 21/ 3

4sin12 sin .

n

f x n xn n

Problem 27 a. Find the Fourier cosine series for x x in 0 x .

Page 21: MA 2211 Unit 1

21

Solution:

0

1

cos2

n

af x a nx

0

0

2a x x dx

2 2

0

2

2 3

x x

3 3 22

2 3 3

0

2cosna x x nx dx

2 3

0

2 sin cos sin2 2

nx nx nxx x x

n n n

2 2

12n

n n

2

21 1

n

n

2

4na

n If n is even

0na If n is odd.

2

22,4

4cos .

6f x nx

n

b. Prove that complex form of the Fourier series of the function , 1 1xf x e x is

2 2

11 sin 1.

1

n in xinf x h e

n

.

Solution:Here 2 2, 1l l

in xnf x C e

1

1

1

2x in x

nC e e dx

1

1

1

1

2

in xe dx

11

1

1

1

2

in x

in

e

1 11

2 1

in in xe ein

Page 22: MA 2211 Unit 1

22

1 1

2 2

1cos sin cos sin

2 1

ine n i n e n i n

n

1 1

2 2

1cos

2 1

inn e e

n

1

2 2

11

2 1

nine e

n

2 2

11 sinh 1

2 1

nin

n

2 2

11 sinh 1 .

2 1

n in xinf x e

n

Problem 28 Find the cosine series for f (x) = x in (0, ) and then using Parseval’s theorem,

show that4

4 4

1 1....

1 3 96

.

Solution:

0

1

cos2

n

af x a nx

0

0

2a f x dx

0

2x dx

2

0

2

2

x

0

2cosna x nx dx

2

0

2 sin cos1

x nx nx

n n

2 20

2 cos 10

n

n n

2

2 cos 1n

n

2

21 1

n

n

2

4na

n

if n is odd

0na if n is even

2

21,3

4cos

2f x nx

n

Page 23: MA 2211 Unit 1

23

By Parseval’s theorem

2 2

20

0

1 1

4 2n

af x dx a

222

21,30

1 1 4

4 2x dx

n

2 2

2 41,30

1 1 16

3 4 2

x

n

3 2

2 4 4

1 8 1 1....

3 4 1 3

2 2

2 4 4

8 1 1....

3 4 1 3

2 2

4 4

1 1.....

12 8 1 3

4

4 4

1 1.....

96 1 3

Problem 29 a. Find the complex form of Fourier series of f x if

sinf x ax in x .

Solution: in xnf x C e dx

1sin

2inx

nC ax e dx

2 2

1sin cos

2

inxein ax a ax

a n

2 2

1sin cos sin cos

2

in ine in a a a e in a a aa n

2 2

1sin 2cos cos 2isin

2in a n a a n

a n

1

2 2 2 2

2 1 sin 1 sin

2

n nin a in a

a n a n

1

2 2

1sin.

n

inxinaf x e

a n

b. Find the first two harmonic of the Fourier series of f (x) given by

x 0 1 2 3 4 5f (x) 9 18 24 28 26 20

Page 24: MA 2211 Unit 1

24

Solution:Here the length of the in level is 2 6, 3l l

01 1 2 2

2 2cos sin cos sin

2 3 3 3 3

a x x x xf x a b a b

x

3

x 2

3

x ycos

3

xy

sin

3

xy

2cos

3

xy

2sin

3

xy

0 0 0 9 9 0 9 01

3

2

3

18 9 15.7 -9 15.6

2 2

3

4

3

24 -12 20.9 -12 -20.8

3 2 28 -28 0 28 04 4

3

8

3

26 -13 -22.6 -13 22.6

5 5

3

10

3

20 10 17.6 -10 -17.4

125 -25 -3.4 -7 0

0

2 1252 41.66

6 6

ya

1

1

2cos 8.33

6 3

2sin 1.15

6 3

xa y

xb y

2

2 2cos 2.33

6 3

xa y

2

2 2sin 0

6 3

xb y

41.66 2

8.33cos 2.33cos 1.15sin .2 3 3 3

x x xf x

Problem 30 a. Find the first two harmonic of the Fourier series of f (x). Given by

x 0

3

2

3

4

3

5

3

2

f (x) 1 1.4 1.9 1.7 1.5 1.2 1.0

Solution: The last value of y is a repetition of the first; only the first six values will be used

The values of cos , cos 2 , sin , sin 2y x y x y x y x as tabulated

Page 25: MA 2211 Unit 1

25

x f x cos x sin x cos 2x sin 2x

0 1.0 1 0 1 0

3

1.4 0.5 0.866 -0.5 0.866

2

3

1.9 -0.5 0.866 -0.5 0.866

1.7 -1 0 1 0

4

3

1.5 -0.5 -0.866 -0.5 -0.866

5

3

1.2 0.5 -0.866 -0.5 -0.866

0 2 2.96

ya

1

cos2 0.37

6

y xa

2

cos 22 0.1

6

y xa

1

sin2 0.17

6

y xb

2

sin 22 0.06

6

y xb

b. Find the first harmonic of Fourier series of f x given by

x 0

6

T

3

T

2

T 2

3

T 5

6

T T

f (x) 1.98 1.30 1.05 1.30 -0.88 -0.35 1.98

Solution:

First and last valve are same Hence we omit the last valve

x 2 x

T

y cos sin cosy siny

0 0 1.98 1.0 0 1.98 0

6

T

3

1.30 0.5 0.866 0.65 1.1258

3

T 2

3

1.05 -0.5 0.866 -0.525 0.9093

2

T 1.30 -1 0 -1.3 0

Page 26: MA 2211 Unit 1

26

2

3

T 4

3

-0.88 -0.5 -0.866 0.44 0.762

5

6

T 5

3

-0.25 0.5 -0.866 -0.125 0.2165

4.6 1.12 3.013

0

2 4.61.5

6 3a y

1

2 cos 21.12 0.37

6 6

ya

1

23.013 1.005

6b

0.75 0.37 cos 1.005sinf x